
PHD QUALIFYING EXAM, 2014; SCHOOL OF INFORMATICS AND COMPUTING, INDIANA UNIVERSITY 1

Secure Provenance for Data Preservation
Repositories

Isuru Suriarachchi, School of Informatics and Computing, Indiana University

Abstract—Importance of research data preservation and man-
agement has been accepted by the scientists all around the world.
Interest and investment in data preservation projects has become
higher than ever before. Already there are number of well-
known research data repositories for different types of research
data. Data preservation, sharing, discovery and reuse are the key
features which are common across all such repositories. Data
provenance is used to track lineage or processing history of a par-
ticular data product. Capturing provenance has been identified
as an important step in any scientific application. Therefore, data
preservation repositories are also utilizing provenance practices
mainly to enhance data discovery. However, in some situations,
the complete provenance information about datasets cannot be
published in preservation repositories due to various possible
reasons. Therefore, such repositories should facilitate mechanisms
to control the amount of provenance information exposed for
outside people. In this paper, we identify the scenarios in which
the conflicts between obfuscation and disclosure of provenance
exists in the context of data preservation repositories. We propose
a secure provenance model which is capable of preserving
provenance integrity while satisfying obfuscation requirements.
We build our design based on SEAD [1] repository.

Keywords—Secure provenance, Provenance integrity, Data
preservation, Policy.

I. INTRODUCTION

REPRODUCIBILITY of research experiments has been
an issue for a long time due to lack of accessibility to

input and output data, source codes and configurations used
in those experiments. Research data preservation repositories
have been introduced to solve this problem by preserving and
managing research datasets. Good examples of such already
available repositories are DataONE [2], Data Conservancy [3]
and SEAD [1]. A research dataset in the context of preserva-
tion repositories can include any data related to the research
including inputs, outputs, source codes, scripts, configuration
parameters etc. A researcher can create a dataset by including
all important data and upload it to a preservation repository.
Inside the repository, the dataset is identified as a Research
Object [4] and it can go through various management steps.
Researchers may share their datasets with other researchers in
the same group. And also, they may improve the dataset by
editing related metadata. In some cases, external data curators
may curate the dataset or convert them into different formats so
that different research groups can make use of it. Finally, when
the dataset is ready to be published, a unique Digital Object
Identifier (DOI) is assigned for the dataset and it is archived
with a publicly available URI. Most of the preservation
repositories provide comprehensive search facilities to support
discovery of published datasets. Researchers can search and

find relevant datasets and reuse those for new experiments.
They may also upload their results as new datasets at the end
of the experiments.

Provenance is defined as the information about entities,
activities, and people involved in producing a piece of data.
Provenance can be used for many purposes like reproducibility,
derivation of ownership, assessment of trustworthiness and
failure tracing. Most of these usages are applicable in the
context of data preservation repositories as well. Therefore,
capturing provenance related to preserved data sets has been
identified as a vital task in such repositories. We identify
two different kinds of provenance capture for preservation
repositories based on our SEAD [1] experience. As pointed
out above, a dataset can go through number of curation steps
performed by different researchers while it resides in the repos-
itory. We refer capture of provenance related to these curation
steps as curation time provenance in this paper. Curation time
provenance is important to track which events were performed
on a given dataset by whom. Once a dataset is published, it
can be downloaded and reused by some researcher. If a derived
version of the same dataset is re-uploaded later, a provenance
relationship can be inferred between these two data sets. We
refer capture of such provenance among published datasets
as published object provenance. Published object provenance
plays a vital role in data discovery. For example, SEAD makes
the provenance information available as a graph along with the
published dataset. When a researcher searches for datasets, she
can see the entire lineage of the dataset by looking at the
provenance graph and make decisions based on that.

Even though the disclosure of provenance as much as
possible is useful for the researchers who use preserved data,
data owners may not be willing to expose some provenance
information in some situations. For example, datasets related
to human subjects may contain data about private information
of people. In such cases, researchers cannot make the datasets
publicly available. However, they may still want to preserve
the datasets and derive publishable datasets using those original
datasets. When publishing those derived datasets, provenance
related to the original confidential data set may need to
be hidden in the provenance graph. In some other cases,
researchers may want to hide the names of agents (people
or organizations) involved in producing certain datasets due to
policies. Likewise, there can be many restrictions in publishing
provenance related to the datasets in preservation repositories.
Therefore, repositories should be capable of obfuscating prove-
nance information based on the needs of data owners.

Disclosing maximum amount of provenance information
while enforcing obfuscation is a challenge as it can lead
to many conflicts. In this paper, we identify the scenarios



PHD QUALIFYING EXAM, 2014; SCHOOL OF INFORMATICS AND COMPUTING, INDIANA UNIVERSITY 2

in which the conflicts between disclosure and obfuscation
exists in data preservation repositories. Based on SEAD
project and its provenance collection system Komadu [5], we
build a design to preserve provenance integrity while dealing
with conflicts introduced by applying obfuscation requests
on provenance graphs. Cheney and Perera [6] highlights the
capability of ProPub [7] to automatically detect and resolve
conflicts introduced by applying user customizations on work-
flow provenance traces. ProPub uses a logic-based approach
to easily handle conflicts. In our work, we try to adapt some
of the concepts used in ProPub for preservation repository
provenance.

Remainder of the paper is organized as follows. In section II
we discuss SEAD and Komadu provenance collection system
in more details to set the background. Then in section III we
identify provenance disclosure requirements and the need of
obfuscation in the context of data preservation. We present our
design based on SEAD in section IV and conclude in section
V.

II. BACKGROUND

The provenance related concepts and features that we intro-
duce in this paper are applicable in data preservation repos-
itories in general. However, we build our secure provenance
design based on the SEAD architecture. SEAD project is still
under active development. Therefore, some features that we
discuss in this paper are not yet implemented in SEAD. In this
section we discuss the SEAD architecture and the Komadu [5]
provenance collection system in detail before we move onto
our secure provenance design.

A. SEAD
SEAD [1] can be used by scientists to easily discover,

manage, share and preserve research data in sustainability
science. SEAD repository consists of three major components:
Project Spaces or Active Curation Repository, Virtual Archive
and Research Network. These components are interconnected
and can be used in different stages in the dataset life cycle.

SEAD Project Spaces (PS) can be used to manage active
data. This component is a secure team-controlled space for
managing data. A group of researchers can collaborate through
a SEAD project space. Researchers can be added to and
removed from a project space. And also, different roles can be
assigned for different people within a project. Researchers can
upload any kind of data into the project in any format. Collec-
tions can be created to group a set of data files together. SEAD
PS can automatically extract metadata from the uploaded files.
Data curation is a main feature of PS where the researchers
can add or edit metadata on data files and collections through
the user interface. Relationships between datasets can also be
added by the researchers who own the datasets. In addition
to that, SEAD PS supports number of social features like
commenting, view counts, download counts etc.

SEAD Virtual Archive (VA) acts as the data preservation
layer in SEAD. Researchers can insert datasets into VA either
by pulling data collections from SEAD PS or by uploading a
local data collection in BagIt [8] format. A data collection in

Fig. 1: SEAD Virtual Archive Architecture

VA is also referred to as a research object (RO). While the
collection is in VA, different data curators can edit metadata
related to the data in the collection. In addition to that, they
may perform advanced curation steps like converting data
into different data types. Once the collection is ready to be
published, it can be deposited into an institutional repository
for long term preservation. SEAD VA acts as a federation layer
across multiple institutional repositories where the destination
repository is selected according to the publishing researcher.
Once an RO is published, a DOI is assigned for it. SEAD VA
offers an easy to use search functionality for data discovery
where it provides results by searching through all connected
institutional repositories.

SEAD VA captures both curation time provenance and
published object provenance. Figure 1 shows the current high
level architecture of SEAD VA. When an RO is ingested
into VA either by pulling from SEAD PS or by uploading
a BagIt package, it goes through the SEAD VA workflow.
RO Subsystem is responsible of handling metadata and prove-
nance. SEAD VA Registry component stores all metadata
about each data item in the research object. Komadu is the
provenance collection system which is used to store all types
of provenance information in SEAD VA. When a curator
edits metadata in some collection, those actions are stored
as provenance information in Komadu. When a new RO is
uploaded, SEAD VA checks whether it is a derived version of
some already existing RO in the system. If such a relationship
is found, that is also stored in Komadu. By processing all such
relationships, Komadu generates a lineage graph for each RO
which is displayed along with the RO when searched by some
researcher. By looking at the lineage graph, the researcher can
get an idea about the origin of the dataset and see what datasets
contributed in deriving the current dataset.

SEAD Research Network maintains profiles of number of
researchers in sustainability science. Researchers can link their
publications and research data sets with their profiles in the
network. All the co-authors of a publication can be linked
with the publication page and that creates a research network.

B. Komadu
Komadu [5] is a W3C PROV [9] compliant provenance

collection system which is used by SEAD VA. Figure 2



PHD QUALIFYING EXAM, 2014; SCHOOL OF INFORMATICS AND COMPUTING, INDIANA UNIVERSITY 3

Fig. 2: Komadu Architecture

shows the high level architecture of Komadu. To collect
provenance, a client can send runtime notifications into the
system using either the Web Service API or the the Rabbit
MQ [10] messaging API. Incoming raw notifications are stored
in the database as it is by the Raw Notification Ingester.
The Asynchronous Raw Notification Processor module runs
periodically and separates Activities, Entities, Agents and their
relationships by processing the raw notifications. When a
client issues a query to retrieve a provenance graph, Query
Processor accepts the request and generates the graph using
Graph Generator.

C. SEAD Features to be Implemented
As the SEAD project is still under active development, there

are number of useful features which are not implemented yet.
The Komadu system also can be improved with more important
features. In this section, we discuss some of those features
which will be implemented in the future. We build our secure
provenance model for SEAD by considering the complete set
of features to make sure we do not have to change the model
when new features will be added in the future.

As described above, currently only SEAD VA collects
provenance related to data collections. However, once a dataset
is uploaded into SEAD PS, there can be number of curation
steps done by researchers to enhance metadata. Capturing
provenance related to these curation steps is important to check
the complete curation history. This feature will be implemented
by connecting PS component with Komadu. When a curator
(agent in provenance terms) does some edit step on a data item
(entity in provenance terms), it will be recorded in Komadu by
adding an agent-entity relationship. When the dataset is pulled
into VA, it will use the same set of identifiers for all entities
in the dataset. Therefore, provenance captured in VA can be
added to the provenance captured in PS.

Missier et al. [11] presents a way of stitching provenance
traces generated by related workflows. That work has been
done by the Scientific Workflows and Provenance Working
Group [12] of DataONE [2]. We adapt the concept of stitching
provenance traces into SEAD by letting researchers to upload
their W3C PROV compliant provenance traces along with their
datasets. For example, if a dataset contains an output data file
which was generated by a workflow engine like Kepler [13],
the researcher can upload the provenance trace generated by
the workflow with the data file. The uploaded provenance trace

is ingested into Komadu which combines it with in-repository
provenance. As both PS and VA accepts datasets, this feature
has to be implemented in both those components.

To support the above feature in SEAD, Komadu should
be able to accept provenance traces and stitch them with the
existing provenance information. Currently this feature is not
supported by Komadu. This can be implemented by splitting
the incoming W3C PROV compliant provenance trace into
activities, entities, agents and their relationships and storing
them in the same way Komadu stores processed notifications.
When the first query for a particular root node comes in,
the graph generator will build the graph from the scratch by
reading the database. Therefore, the provenance information
created by splitting the ingested graph will automatically be
considered.

In addition to that, both Web Services and RabbitMQ
communication channels for Komadu are not secured currently.
Securing the channels and authenticating users are must have
features for our secure provenance architecture presented in
the next sections. User authentication in Komadu can be im-
plemented by integrating a user store as a backend component
and authenticating the requests against the users in the user
store. For Web Services channel, we propose the Username
Token over HTTPS and for RabbitMQ channel, we propose
SASL authentication [14].

III. DISCLOSURE AND OBFUSCATION

There are two main motivations for provenance disclosure
in preservation repositories. First is to enhance data discov-
ery. Provenance history of a dataset plays an important role
in conveying more information to the researchers who are
searching for data. A complete provenance trace related to a
published dataset should contain details about previous datasets
which has been used to derive the current dataset and curation
time provenance of each dataset in the graph. Researchers
can check the origin and decide on the quality, reliability
and trustworthiness of a dataset by looking at its provenance
history. Second is to track provenance related to curation
activities before a dataset is published to outside researchers.
By looking at the curation provenance trace, researchers can
see the edit history of each data item in the dataset.

Even though disclosing provenance as much as possible
is useful for users, there are number of situations where
provenance information must be obfuscated in the context of
data preservation repositories. Sometimes researchers cannot
share research data with external researchers due to privacy
policies and other restrictions. Such situations are common in
biomedical, social and behavioural sciences. But still they may
be interested in preserving these datasets by uploading those
into preservation repositories. In such cases, those datasets
should not be searchable and provenance information related to
those datasets should not be exposed to researchers out of the
group. In some other cases, researchers may derive publishable
datasets using confidential datasets. In such situations, once
the derived dataset is published, its provenance trace should
not expose sensitive provenance information of the original
dataset. Therefore, the researcher should be able to control the



PHD QUALIFYING EXAM, 2014; SCHOOL OF INFORMATICS AND COMPUTING, INDIANA UNIVERSITY 4

Fig. 3: Curation Time Provenance Window

amount of provenance information to be published by using
the tools provided by the repository.

As discussed above, allowing researchers to upload prove-
nance traces with their datasets is important. However, re-
searchers may want to hide some parts of the uploaded
provenance traces due to various reasons. Those traces may
contain sensitive information about the systems by which those
are generated or may be too detailed for preservation needs.
Therefore the researcher should be able to restrict the amount
of information submitted to the preservation repository using
some tool.

Considering these obfuscation scenarios, we adapt the fol-
lowing customization operations defined in [7] to be available
in our SEAD secure provenance implementation. Researchers
can use these operations to control the amount of provenance
information published related to their datasets.

• Hide: Completely remove a node or an edge in the
published provenance graph. In case of a node, all edges
connected to the hidden node are also removed.

• Anonymize: Show only the existence of a node. Hide
all attributes of the node. In case of a collection entity,
do not allow to see the sub entities.

• Abstract: Create a single node by merging a selected set
of nodes. Do not inherit attributes of the original nodes
to the abstract node.

IV. SECURE PROVENANCE FOR SEAD

Here we present our secure provenance model based on
SEAD. We use some of the concepts used in ProPub [7] here.
However, in ProPub the entire provenance graph is owned by
the user of the system. User can do any customizations to
the provenance graph to have enough obfuscation. And also,
the system can allow the user to modify her customization
requests in case of a conflict. But in SEAD, different nodes
of a published object provenance trace are owned by differ-
ent researchers. Customization requests are submitted by the
researcher before the dataset is published. System generates
the provenance graph later when some user searches for data.
Therefore, the system cannot alter any customization requests
or get feedback from the user.

Fig. 4: Provenance Graph for a Published Data Collection

TABLE I: Customization Requests

hide(N) Completely hide node N
anonymize(N) Show only the existence of node N, hide details
hide_edge(N1, N2) Completely hide the edge between nodes N1 and N2

abstract(N, G) Replace all nodes mapped to group G with node G

A. Provenance Related Features

In the proposed model, both SEAD PS and VA comes with a
curation time provenance window which displays provenance
information related to unpublished data collections. As shown
in Figure 3 each data item in the collection is shown as a
separate entity which is a member (hadMember PROV rela-
tion) of the collection entity. The curation steps performed on
individual entities by researchers (Agents) are also displayed.
When a researcher submits an existing provenance graph
with a data collection, that is also merged with in-repository
provenance and displayed on the curation time provenance
window.

SEAD VA displays a complete provenance graph for each
published data collection. Each node in the graph represents
a data collection. Edges represent the derivation relationships
among collections. User can expand a node to see curation time
provenance for a particular data collection. Figure 4 shows an
example provenance graph for a published data collection. In
this sample, Col1 is the collection for which the graph was
generated. Three other collections have been used to derive
(wasDerivedFrom PROV relation) Col1. If the user clicks on
any collection, she will be shown the curation time provenance
graph as shown for Col4 in Figure 4.

Curation time provenance windows on both SEAD PS and
SEAD VA allows users to make customization requests. Cus-
tomization requests can be made either on the entire collection
entity or on any internal node or edge of the graph. Table I
shows the set of customization requests supported by SEAD.
For example, if the owner of Col1 in Figure 3 wants to hide the
entire collection in any published provenance graphs, she can
select the Col1 node and select hide from the operations. In



PHD QUALIFYING EXAM, 2014; SCHOOL OF INFORMATICS AND COMPUTING, INDIANA UNIVERSITY 5

Fig. 5: New SEAD Architecture for Secure Provenance

that case, if some dataset (say Col2) derived from Col1 will be
published in the future, provenance of Col1 will not be shown
on the provenance graph for Col2.

SEAD adheres to a set of policies which makes sure the
customized provenance graphs are correct and complete. These
policies are set at the system level and can not be altered by
users. When the graph is generated, customization requests
from the users are applied on the original graph first. Then the
system checks whether the customized graph adheres the set
of polices.
NWC: No Write Conflict. Any entity cannot have more than
one wasGeneratedBy relationships. In other words, only one
activity can generate a given entity.
NC: No Cycles. There cannot be any cycles in the provenance
graph. SEAD supports only directed acyclic graphs.
NFD: No False Dependencies. The customized graph cannot
have any transitive dependencies which were not there in the
original graph.
NFI: No False Independencies. The customized graph cannot
have any independent nodes which were transitively dependent
in the original graph.

Whenever there are conflicts between customization requests
and polices, SEAD internally tries to repair those. When the
conflicts cannot be repaired, the priority is given to customiza-
tion requests as SEAD must honour privacy requirements
of the researchers. In such cases, some polices have to be
violated and the violated polices are displayed along with the
customized graph.

B. Architecture

Figure 5 shows the new SEAD architecture which supports
secure provenance. As mentioned above, researchers can up-
load raw data into SEAD PS or they can upload data in BagIt
[8] format into SEAD VA. In both cases, they are given the
option of including W3C PROV compliant provenance graphs
in their submission.

When a dataset is submitted to SEAD PS, relevant entities
for the collection and sub entities are created in Komadu.
Provenance information related to all curation steps performed
on the dataset are also captured by creating relationships in
Komadu. Provenance graphs submitted by the researcher are
also sent to Komadu and stitched to the same provenance
graph. Curation provenance window in PS displays the com-
plete provenance graph by pulling from Komadu. Researchers
in the same project group are allowed to submit customization
requests using the curation provenance window as shown in
Figure 3. Customization requests are stored in Komadu to be
used in future graph generation for published ROs. Researchers
may create derived datasets in PS. For example to create a
publishable dataset out of a private dataset. In such cases, that
derivation relationship also stored in Komadu.

Curators in SEAD VA with proper permission to access
collections in PS can import data collections into VA. In that
case, all entity identifiers are passed to VA such that VA
can pull provenance information from Komadu. When some
researcher uploads a BagIt package into VA, new entities are
created in Komadu. In both cases, the curation provenance



PHD QUALIFYING EXAM, 2014; SCHOOL OF INFORMATICS AND COMPUTING, INDIANA UNIVERSITY 6

TABLE II: Additional operations in Komadu API

addPolicy(P) Add a set of policies P to be adhered
hide(N, t) Hide node N of type t (Agent, Entity or Activity)
anonymize(N, t) Drop all attributes of node N of type t (Agent, Entity or Activity)
hide_relationship(N1, N2, t) Hide the edge between nodes N1 and N2 of type t (derivation, attribution etc.)
abstract(N, G) Replace node N with node G, drop attributes of N
getActivityGraph(i, c) Return graph for activity i, with customized true or false
getEntityGraph(i, c) Return graph for entity i, with customized true or false
getAgentGraph(i, c) Return graph for agent i, with customized true or false

window in VA displays the complete provenance graph. Like in
PS, curators in VA can submit customization requests using the
curation provenance window in VA. When the research object
is published, internal identifiers for entities are included in the
OAI-ORE [15] resource map. If the published research object
is re-uploaded as a new research object (most probably after
using for some other research) after modifications, VA iden-
tifies that the new research object is a derived version of the
original published research object and creates the relationship
in Komadu. When a scientist searches and selects a published
data collection on SEAD VA, she can see the provenance
graph for the published data collection as shown in Figure
5. The purple dots represent published collections. Users can
click on those to expand and see curation time provenance
as described above using Figure 4. This provenance graph
honours all customization requests made by the owners of the
displayed collections.

Both SEAD PS and VA communicate with Komadu using
the secure Web Services channel. Users of PS and VA are
managed at the SEAD level and not propagated into Komadu.
SEAD communicates with Komadu as a single system user.
The new operations added to the existing Komadu API are
listed in Table II. The set of policies adhered by SEAD is
passed to Komadu on SEAD initialization. All customization
requests coming from curation provenance windows are passed
into Komadu and stored in the relational database. Provenance
graphs for curation windows and published research objects
are created by passing the entity id to Komadu. In case
of published object graphs, SEAD VA instruct Komadu to
return the customized graph instead of the full graph. When a
customized graph generation request comes in, Komadu Graph
Generator generates the graph by applying customization
requests. Then the Conflict Resolution layer checks whether the
customized graph adheres to SEAD graph policies. If not, the
graph is repaired to make sure there are no conflicts between
customizations are polices. If there are conflicts which cannot
be repaired, priority is given to customization requests and the
graph is returned with the set of breached policies.

C. Graph Generation

In our secure provenance model for SEAD, we include
the graph customization and conflict resolution modules in
Komadu as those are general features which add more value
for a provenance repository. This makes sure that these features
are not limited to SEAD and can be used by any Komadu user.

Algorithm 1 Algorithm for applying customization requests

1: // Input: Full provenance graph (V, E)
2: // Output: Customized provenance graph (V, E)
3:
4: for (v in V) do
5: if (v.hide == true) then
6: V.remove(v);
7: R = get related edges(v, E);
8: for (r in R) do
9: E.remove(r);

10: end for
11: end if
12: if (v.anonymize == true OR v.abstract == true) then
13: remove attributes(v);
14: if (v.collection == true) then
15: remove members(v, V, E);
16: end if
17: end if
18: if (v.abstract == true) then
19: i = v.abstractNodeId();
20: g = V.get(i);
21: if (g == null) then
22: g = new node(i);
23: V.add(g);
24: end if
25: V.remove(v);
26: repair edges(v, g, E);
27: end if
28: end for
29:
30: for (e in E) do
31: if (is hidden edge(e) == true) then
32: E.remove(e);
33: end if
34: end for

In the existing Komadu implementation, the Graph Gener-
ator module is responsible of generating provenance graphs.
Following the standard practice, it treats a graph G as a set
of vertices V and a set of edges E where G = (V, E). In our
new design, we extend the Graph Generator module to apply
customization requests on the complete provenance graph
when a customized graph is requested. As mentioned above,
the customization requests are stored in the same relational



PHD QUALIFYING EXAM, 2014; SCHOOL OF INFORMATICS AND COMPUTING, INDIANA UNIVERSITY 7

TABLE III: Policy validation rules

Transitive closures for G and G’
tcdep’(X,Y) :- dep’(X,Y)

tcdep’(X,Y) :- tcdep’(X,Z), tcdep’(Z,Y)

tcdep(X,Y) :- dep(X,Y)

tcdep(X,Y) :- tcdep(X,Z), tcdep(Z,Y)

Conditions for policy violations
wc(X,Y) :- wGB’(A,X), wGB’(A,Y), not X=Y

cycle(X,Y) :- tcdep’(X,Y), tcdep’(Y,X), not X=Y

fi(X,Y) :- tcdep(X,Y), not tcdep’(X,Y)

fd(X,Y) :- tcdep’(X,Y), not tcdep(X,Y)

database which is used to store provenance information in
Komadu. Therefore, when the database is queried during the
complete graph generation process, customization requests
are also read and loaded into Java objects as properties.
Komadu generates the full provenance graph first using the
existing algorithm and then applies customizations. Algorithm
1 shows the customization algorithm which is used to apply
customizations on the full provenance graph. The algorithm
first loops through all vertices and looks for customizations.
If there is a hide request (line 5) on current vertex, first it is
removed from the set of vertices. The get_related_edges
operation returns the subset R of edges out of all edges E
which are connected to vertex v. Then all those edges are
removed from the graph. If there is an anonymize request
or an abstract request (line 12) on current vertex v, all
attributes are removed from it. In addition to that, If v is a
collection, all member nodes and their edges are removed to
make sure that node is not further expandable. The subroutine
remove_members takes care of that (line 15). If there is an
abstract request (line 18) on current vertex, a new node
g is created if it does not already exist in V. Original vertex
v is removed from V. Then the subroutine repair_edges
moves all edges connected to v to new node g (line 26). Finally
the algorithm loops through all edges and removes the edges
to be hidden (line 30).

D. Conflict Resolution

The Graph Generator module returns both the complete
provenance graph and the customized provenance graph. We
refer the complete graph by G and customized graph by G’.
The Conflict Resolution layer in Komadu gets both G and G’.
First it checks whether there are any integrity violations in G’
by applying the set of polices described above. Here we use
the transitive closure technique used in ProPub [7] to detect
dependency related policy violations. Table III shows the set
of policy validation logic rules based on transitive closure.
Komadu Conflict Resolution layer applies the rules on top of
G’ to detect any policy violations. Notation tcdep’(X,Y)
denotes that node X and node Y are transitively dependent in
G’. Notation wGB’(A,X) denotes that entity X wasGenerat-
edBy activity A in G’. After applying the logic rules on G’, if
there are no policy violations found, Conflict Resolution layer
immediately returns G’ as the final customized provenance

(a) Full (b) Customized (c) Repaired

Fig. 6: Write Conflict Scenario

(a) Full (b) Customized (c) Repaired

Fig. 7: Cycle Scenario

graph. If there are policy violations, it tries to repair them
without losing much information exposed by the graph.

Figure 6 shows how Komadu handles a Write Conflict
scenario. Original full provenance graph is shown in Figure
6a and the Write Conflict created by abstract user request
is shown in Figure 6b where node g1 is generated by two
activities a1 and a2. The Conflict Resolution layer repairs the
conflict by abstracting a1 and a2 with g2 as shown in Figure 6c.
Figure 7 shows how Cycles are handled. As shown in Figure 7a
Cycles are also created by abstract customization request.
In such cases, one node involved in the Cycle is an abstracted
node. As shown in Figure 7c, other node participating in
the Cycle (a1) is also included in the abstraction node to
resolve the Cycle. This is called swallowing. Figure 8 shows
how False Independencies are created by hide customization
request. In this case, the conflict is resolved by adding a
dependency between e1 and e3 to re-introduce the dependency
which was there in the original graph. However, the Conflict
Resolution layer does not add this new edge if there is a
hide_edge customization request between e1 and e3. In
that case, the conflict cannot be resolved. Figure 9 shows
how False Dependencies are handled. Such scenarios are



PHD QUALIFYING EXAM, 2014; SCHOOL OF INFORMATICS AND COMPUTING, INDIANA UNIVERSITY 8

(a) Full (b) Customized (c) Repaired

Fig. 8: False Independency Scenario

(a) Full (b) Customized (c) Repaired

Fig. 9: False Dependency Scenario

occurred by abstracting two different dependency paths. In
Figure 9b, e3 is dependent on e6 which was not the case in
the original graph. As shown in Figure 9c, Komadu tries to
resolve this by abstracting e2 and e3. This can create further
False dependencies in more complex graphs. In such cases,
the original conflict is considered unsolvable.

By applying the conflict resolution strategies on G’, Komadu
generates a new graph which we refer by G”. As the next step,
Komadu re-applies the policy validation rules in III on G”.
If there are no policy violations, G” is returned as the final
customized graph. If there are new conflicts introduced by the
conflict resolution process, Komadu does not try to resolve
them further as recursive application of the conflict resolution
process removes lot of information from the provenance graph.
Therefore, Komadu selects the graph with minimal policy
violations out of G’ and G” and returns it with the set of
violated policies. However, Komadu always makes sure that all
customization requests are satisfied in the returned provenance
graph.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a secure provenance model
for preservation repositories. First we identified the scenarios
in which secure provenance is important in data preservation.
Disclosure of maximum available provenance information is
important for researchers in data discovery. However, there
are many cases where data producing researchers and curators
want to obfuscate provenance information due to various
reasons. Based on SEAD architecture, we have presented our
secure provenance model to satisfy both ends while preserving
provenance integrity. We used a policy-based approach to
resolve conflicts introduced by user requested customizations
on provenance graphs. Our model always honours all cus-
tomization requests to make sure the privacy of research data
is preserved.

Implementing this secure provenance model on SEAD as
a future work will immensely help the researchers who are
using the system. Researchers who have sensitive data will not
hesitate to use the system as the data and provenance security
is always preserved.

REFERENCES

[1] Sustainable Environment Actionable Data. [Online]. Available:
http://sead-data.net/

[2] Data Observation Network for Earth. [Online]. Available:
https://www.dataone.org/

[3] Data Conservancy. [Online]. Available: http://dataconservancy.org/

[4] S. Bechhofer, J. Ainsworth, J. Bhagat, I. Buchan, P. Couch,
D. Cruickshank, D. D. Roure, M. Delderfield, I. Dunlop, M. Gamble,
C. Goble, D. Michaelides, P. Missier, S. Owen, D. Newman,
and S. Sufi, “Why linked data is not enough for scientists,”
in Proceedings of the 2010 IEEE Sixth International Conference
on e-Science, ser. ESCIENCE ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 300–307. [Online]. Available:
http://dx.doi.org/10.1109/eScience.2010.21

[5] Komadu Provenance Collection Tool. [Online]. Available:
http://d2i.indiana.edu/provenance komadu

[6] J. Cheney and R. Perera, “An analytical survey of provenance sanitiza-
tion,” CoRR, vol. abs/1405.5777, 2014.

[7] S. C. Dey, D. Zinn, and B. Ludäscher, “Propub: Towards a declarative
approach for publishing customized, policy-aware provenance,” in
Proceedings of the 23rd International Conference on Scientific
and Statistical Database Management, ser. SSDBM’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 225–243. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2032397.2032414

[8] A. Boyko, J. Kunze, J. Littman, L. Madden, and B. Vargas, “The bagit
file packaging format (v0. 97),” Washington DC, 2011.

[9] W3C PROV Specification. [Online]. Available:
http://www.w3.org/TR/prov-dm/

[10] Rabbit MQ. [Online]. Available: http://www.rabbitmq.com/

[11] P. Missier, B. Ludascher, S. Bowers, S. Dey, A. Sarkar, B. Shrestha,
I. Altintas, M. Anand, and C. Goble, “Linking multiple workflow
provenance traces for interoperable collaborative science,” in Workflows
in Support of Large-Scale Science (WORKS), 2010 5th Workshop on,
Nov 2010, pp. 1–8.

[12] DataONE Scientific Workflows and Provenance Working Group. [On-
line]. Available: https://www.dataone.org/working groups/scientific-
workflows-and-provenance-working-group/



PHD QUALIFYING EXAM, 2014; SCHOOL OF INFORMATICS AND COMPUTING, INDIANA UNIVERSITY 9

[13] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management
and the kepler system: Research articles,” Concurr. Comput. : Pract.
Exper., vol. 18, no. 10, pp. 1039–1065, Aug. 2006. [Online]. Available:
http://dx.doi.org/10.1002/cpe.v18:10

[14] SASL Authentication for RabbitMQ. [Online]. Available:
https://www.rabbitmq.com/authentication.html

[15] Open Archives Initiative Object Reuse and Exchange. [Online].
Available: http://www.openarchives.org/ore/


