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Abstract—Calculus is the mathematical study of change.
Process Calculus models the changing behavior of computer
processes. Usually a process refers to a running program. -
calculus is a form of process calculus that has been heavily used
in the functional programming arena. While, \-calculus model
changes in sequential computer processes, w-calculus formalizes
behavior of a concurrent process. In this paper we will study
general m-calculus language and variations of 7-calculus that are
applicable to distributed systems and programming languages.

Index Terms—Pi Calculus, Process Algebra

I. INTRODUCTION

The m-calculus provides a conceptual framework to model
concurrent systems and a set of mathematical tools for express-
ing systems and reason about their behaviors. Before dwelve
into details of m-calculus we will study the development of
process calculus and how m-calculus originated from process
calculus.

A. Process Algebra

A process is a series of actions or events. Algebra is a set of
symbols combined according to defined rules. Process Algebra
is a set of defined symbols along with set of rules that can
be used to model computer processes. There are number of
process algebras available in the literature. Algebra of Com-
municating Processes (ACP) [1], Calculus of Communicating
System (CCS) [2] and Communicating Sequential Processes
(CCS) [3] are some of the widely known process algebras.
Though there are number of process algebras they all share
following common features;

1) Compositional Modeling
Process algebras provide small number of primitive con-
structs to build larger parallel communicating systems.
For example CCS provides six operators in total. These
operators can be used to model parallel systems. Some
operators are needed to compose parallel systems, some
other operators are needed to select actions (choice) and
rest is needed to restrict scope of actions. Compositional
Modeling is mostly about syntax.

2) Operational Semantics
In Operational Semantics Process Algebras define the
meaning of a program built using primitive constructs.
Usually Process Algebras use Structural Operational

Semantics (SOS) to derive the meaning of a program.
SOS was first introduced by Plotik [4] and the basic idea
behind SOS is to define the behavior of the program in
terms of behavior of its sub constructs.
3) Behavioral reasoning via equivalence

Process Algebras are usually interested in capturing the
notion of equivalent (or same) programs. To capture
equivalent notion, process algebras construct behavioral
equivalence relations. Identifying these equivalences are
important for Process Calculus as it allows system to
do various optimizations and refinements. The most
common method of constructing behavioral relations is
to construct bisimulations.

Most of the Process Algebra definitions are based on set of
Names and set of rules. A Name may refer to an object, data
or may even be a communication channel. Rules govern how
process states should change.

B. Why Process Algebra?

Process Algebra plays a major role in program verification.
During program verification we write two process algebraic
specifications. First specification models the actual system
implementation and second specification describes the desired
“high-level” system behavior. One may prove the correctness
of the system implementation by proving that behavior of first
(implemented) specification is “as same as” the behavior of
the second (high-level system behavior) specification.

Checking whether pair of specifications is the “same” can
be done in two ways. First method is to compare two specifica-
tions in syntax oriented manner. Second method is to compare
specifications in semantics oriented manner. In syntax-oriented
case, we perform transformations on the specification syntax
according to set of defined rules in order to derive one syntax
from another. In semantic comparison we build a behavioral
relation based on operational semantics to check whether 2
specifications behave in the same way.

Process algebra theory is also used in programming lan-
guage development; mainly during type checking and during
optimizations.

C. w-Calculus

m-calculus is a recent addition to the process algebra family.
Main difference between m-calculus and other process algebra



is the ability to communicate channel names. Because of
this feature, m-calculus is specifically useful in describing
concurrent computations where network configurations change
during program execution.

The basic computational step in m-calculus is the transfer
of a communication link between two processes. When sender
sends the communication link the recipient can use the com-
munication link for its subsequent communication. Our detail
discussion about 7-calculus starts with the example described
below.

D. An Example

Client

E

it

Fig. 1: m-calculus example

There is a printer server (S), which handles all printing
requests from other clients (C as client). The client has
document “d” to be printed. In a real implementation client
will first authenticate and authorize to use the printer. Then
client sends the document to the server and server redirect
document data to the printer.

m-calculus models above scenario in terms of the behavior
of client and server. Before presenting exact formula lets first
get us familiar with some 7m-calculus terms.

o ba - Sending name a through channel name b

e b(a) - Receiving a name in channel name b and the value
is represented using name “a”

« S - Behavior of the printer server after authenticating and
authorizing the channel

o P - Behavior of the client after sending the document to

printer
Above interaction is formulated using 7-calculus as follows;

ba.S|b(c).ed.P — S|ad.P ()

In 7-calculus each parallel executing component is sepa-
rated by “|”. Above transition is interpreted as follows; The
server sends name “a” through channel name b (ba) and
afterwards server goes to its normal operation (S) (waiting
for new client connections). The client receives “c” through
channel “b” (b(c)) and sends the document to printer through
received channel (¢d). Afterwards client goes to its normal
operation (depicted by “P”). After exchanging channel “a”
between server and client will perform as S|ad.P.

As per above example the channel name (a) is treated in the
same way as data object (d). Infact this is the reason why 7-
calculus is different from other process algebras. Intuitively we
can think of transferring “a” represent granting access rights
to client. Then client uses those access rights to access the
printer. Another interpretation is that printer is “moved” to

the client (if channel “a” is the only way to communicate
with printer). Based on this interpretation m-calculus is also
called a calculus of mobile processes.

Most process algebras have a way to declare a communica-
tion link local to a set of processes. As an example processes
P and Q may share channel “a” to exchange some data. In
m-calculus such situations are called restrictions (restricting
channel “a” only to P and Q processes). m-calculus models
restricting behaviours as (va)(P|Q). In above example sup-
pose R represent the printer process. Then initially “a” is a
channel name private to server (S) and printer (R). Therefore

using 7-calcuclus we can write (va)(ba.S|R).

Since 7-calculus treats communication links as first class
entities we can transfer links to other processes. Therefore
we can transfer private link “a” to client (P) process and this
behaviour is modeled as given in 2;

(va)(ba.S|R)|b(c).ed.P = (va)(S|R|ad.P) (2)

E. About This Paper

Though the central idea of m-calculus, is developed based
on process algebra with link passing, there are number of
variations and descendants of m-calculus. In this paper we are
more focused on general 7-calculus definitions; but whenever
applicable we will discuss variations of m-calculus and their
applicability. Through this paper we do not wish to introduce
any new concept or theorem. We discuss and summarize
standard 7-calculus with several worked examples. Rest of the
paper is organized as follows; In Section II we will discuss the
syntax of m-calculus and structural congruence; in Section III
we will discuss the operational semantics. Behavioral equiv-
alence and bisimulations are discussed in Section IV. Few
m-calculus variations are summarised in Section V. In VI and
VII we will discuss how m-calculus is related to distributed
computing and programming languages.

The paper contents are based on following references; the
process algebra definitions are mostly based on reference [5],
core m-calculus definitions are based on references [5], [6], [7].
The m-calculus variations are based on references [8], [9].

II. m-CALCULUS SYNTAX

The basic entities in 7-calculus are called Names. Names
represent communication channels, variables and data values.
m-calculus also defines set of agent identifiers, each with
a fixed non-negative arity. Processes evolve by performing
actions. The capabilities for an action are expressed through
prefixes. The syntax of mw-calculus is given in Table 1.



Prefixes « n= az Output
a(x) Input
T Silent
Agents P Q = 0 Nil
a.P Prefix
P+Q Sum
PlQ Parallel
if x=y then P Match
if x£y then P Mismatch
(vx)P Restriction
P Replication
A(y1,...,yn)  Identifier
Definitions A(z1,...,z,) et powherei fiz it

Table 1: The syntax of mw-calculus

As per Table 1, an agent can be in one of the following
forms;

1) 0 - The empty agent cannot perform any action.
2) « - Prefix state

a) Output prefix az.P : The name x is sent over
channel a and afterwards agent continues to act
as P.

b) Input prefix a(z).P : A name is received through
channel a and x is a placeholder for the received
name. After input is received agent will continue
processing as P.

c) Silent prefix 7.P : An agent that can evolve to P
without interacting with other agents.

Many references use «, (3 to represent prefixes. We will
also follow the same approach. Further we say that input
prefix and output prefix has a subject and an object. For
example in output prefix az. P, “a” is the subject and “x”
is the object. In input prefix a(z).P, “a” is the subject
and “x” is the object.

3) Sum P+ @ : An agent that can act on either P or Q.

4) Parallel Composition - P|Q : Represents combined
behavior of P and Q executing in parallel. Elements
separated by “|” are called components. Components P
and Q can act independently and may also communicate
if P has a send and Q has a receive on the same channel.

5) Match - if x = ythen P : The agent will behave as P
if x and y are the same name, otherwise it does not.

6) Mismatch - if x # ythen P : If x and y are “not” the
same name then agent will behave as P, otherwise agent
will not behave as P.

7) Restriction - (vx)P : The name x is local to P. The
agent will behave as P but agent will not be able to
use X to communicate between components in P and
components outside (vx)P expression; x can be only
used to communicate between components inside P.

8) Replication - | P : Infinite composition P|P|---; equiv-
alently, a process satisfying the equation !P = P|!P.
Replication enables us to define infinite behaviors.

9) Identifier - A(y1,...,yn) Where n is the arity of
A : Every identifier correspond to a Definition
Az, ..., zp) /' p where each x; is pairwise dis-

tinct. We can think that A(yi,...,y,) behave as P
by replacing each x; with y;. Further definition is
similar to function decleration with x1, ..., x, as formal
parameters and the identifier A(y1, ...,y ) similar to an
real invocation with actual parameters y1, ..., Yn-
In following we will go through several m-calculus examples
to get a better understanding about each syntactic constructs
explained above.

Example 1. z(z).5z.0 - Process receives a name via channel x
and received name is identified by z. Then channel y is used to
send received name (7). After sending z via y process becomes
inactive.

Example 2. x(z).zZy.0 - Process receives a name via x and
send y via the name received (z) and become inactive.

Example 3. z(2).if z = ythenzw.0 - A name is received via
x and if received name is same as y then send w via received
name. Otherwise process will not do anything further.

Example 4. x(z).y(w).if z = wthentu.0 - Process receives
2 names from channels x and vy, if those 2 names are same
process send u via v, otherwise process will come to an inactive
state.

Example 5. z(z).Zy.0+wv.0 - Process either recieves a name
via x and send y via received name and become inactive “OR”
send v via w and become inactive.

Example 6. (x(2).zy.0 + wv.0)|Zu.0 - The process has
2 components. Those components can behave independently
from one another. Therefore the process has 4 capabilities.
The first component may receive a name via x and use that
received name to send y and become inactive “OR” send v
via w and become inactive. The second component send u via
x and become inactive. Further since x is shared between first
component and second component they can silently evolve.

Example 7. (vx)((z(z).z2y.0+wv.0)|Zu.0) - Unlike previous
example, this statement has one 2 capabilities. In this example
x is a restricted channel. One capability is to send v via w
and other capability is to evolve silently due to the interaction
between 2 components through x.

Example 8. !z(2).!52.0 - The process can receive names via
x repeatedly, and can repeatedly send received names via y.

Next we will discuss how we can establish, two w-calculus
terms are syntactically equivalent (also called structural equiv-
alence). Before going into details of structural equivalence we
need to discuss several related definitions. In next subsections
we will discuss two related topics to structural equivalence;
namely Bindings and Substitution.

A. Binding

From the constructs described in Table 1, the input Prefix
and Restriction constructs are different from others in a special



way; i.e. both input Prefix and Restriction bind names.

The input Prefix a(x). P said to bind x in P, and occurrences
of x in P are then called bound. In contrast the output Prefix
ax.P does not bind z. In summary the object is bound in input
Prefixes and object is free in output prefixes. The silent Prefix
7 does not have an object or subject; therefore it does not
have the notion of binding. Further the Restriction operator
(va)P binds x in P. Same kind of bindings can be seen in
other process algebras (\z in CCS and J, in ACP) as well.
But in other process algebras we cannot pass channel names
between agents. But in 7-calculus we can transfer channel
names between agents.

In following we give the formal definition of a Binding.

Definition 1. (Binding of a variable)

In each of x(z).P and (vz) P, the displayed occurrence of z is
binding with scope P. An occurrence of a name in a process
is bound if it is, or it lies within the scope of, a binding
occurrence of the name. An occurrence of a name in a process
is free if it is not bound.

We write fn(P) for the set of names that have a free
occurrence in P and bn(P) to denote the set of bound names
in P.

Example 9. fn((zy.0 + @v.0|Zu.0) = {z,y,w,v,x,u} and
bn((zy.0 + ©v.0|zu.0) = {}.

Example 10. fn((vz)((z(z).2y.0 + wv.0)|(vu)Zu.0)) =
{y,w,v} and
bn((ve)((z(z).2y.0 + ©v.0)|(vu)Tu.0)) = {z, z, u}.

B. Substitution

A substitution is a function from Names to Names. We write
x/y for the substitution that maps y to x and is identity for
all other names. In general we use {z1,...,2n/Y1,.--,Yn}
to denote substitution where each y; are pairwise distinct, for
a function that maps each y; to z;.

As a notation we use o to range over substitutions. The
agent Po is P where all free names z are replaced by o(x).
But the replacement must however be done in such a way
that unintended captures of names by binders is avoided.
For example if we try to execute a(x).Zy{z/y} we would
get a(z).Tx which gives a complete different semantics from
the original expression. A correct way to execute substitu-
tion would be to first substitute z with a different name
other than = and y and then perform substitution on y.
ie. a(x).zy{z/x}{x/y} = a(z).zZz. This behavior is quite
similar to the A-calculus substitutions. In A-calculus we use
a-conversion to avoid unintended capture replacement. In
m-calculus we will use a similar convertible rule to avoid
unintended substitutions.

Definition 2. (a-convertible)

1) If the name w does not occur in the process P, then
P{w/z} is the process obtained by replacing each free
occurrence of z in P by w.

2) A change of bound names in a process P is the replace-
ment of a subterm x(z).Q of P by x(w).Q{w/z}, or the

replacement of a subterm (vz)Q of P by (vw)(Q{w/z},
where in each case w does not occur in Q.

Example 11. (y(w).wz.0){z/z} = y(w).wz.0

Example 12. (!(v2)zz.0)y(w).0){v,v/z,y}
=l(vz)vz.0|v(w).0

More formally we define application of substitution (o) as
follows;

Definition 3. (Application of substitution) The process Po
obtained by applying o to P is defined as follows;

0o Y o
(a.P)o Y wo.Po
(P+Po ¥ PotPo
(PIPYe ¥ polPo
def
((vz)P)o = (vz)Po
(IP)o Y \pg

C. Structural Congruence

The agents a(x).bz and a(y).by are syntactically different.
But both depict the same behaviour; i.e. an agent that receives
a name along channel a and sends it through channel b. Further
the order in parallel composition (P|Q) is not important. We
can either have P|Q or Q|P. But still statements P|Q and
Q| P are syntactically different.

To identify agents, which intuitively represent the same
meaning, we use a relation called Congruence. Structural
Congruence is a form of congruence relation that is defined
based on m-calculus syntax. Before delving into structural con-
gruence we will first give a definition to general congruence
relation. To define congruence formally we need two helper
definitions.

Definition 4. (Degenerate and Non-degenerate) An occur-
rence of 0 in a process is degenerate if it is the left or right
term in a sum My + Ms, and non-degenerate otherwise.

Definition 5. (Context) A context is obtained when the hole [.]
replaces a non-degenerate occurrence of 0 in a process-term
given by the grammar in Table 1.

To clarify the definition we will look into an example
context.

Example 13. An example context - Cy = (vz)([.]'z(w).0a.0)

If C is a context and P a process, we write C[P] for
the process obtained by replacing the [.] in C' by P. The
replacement is purely literal. An example is as follows;

Coy[!zb.0] = (vz)(120.0|!2(w).wa.0)

Now we can define the congruence formally. In following
we give congruence definition.



Definition 6. (Congruence) An equivalence relation S on pro-
cesses is a congruence if (P,Q) € S implies (C[P],C[Q)) €
S for every context C.

Structural Congruence is a congruence relation to identify
agents, which intuitively represent the same meaning (syn-
tactically). The structural congruence is purely based on the
syntax and structure and does not deal with the semantics.
There are several different versions of structural congruence.
Our structural congruence definition is based on reference [6].
The structural congruence definition is given in Table 2.

Definition 7. Structural Congruence The structural congru-
ence = is defined as the smallest congruence satisfying the
following laws;
1) If P and Q are variants of a-conversion then P = Q.
2) The Abelian monoid laws for Parallel
a) Commutativity : P|Q = Q|P
b) Associativity : (P|Q)|R = P|(Q|R)
c) 0 as unit: Pl0 =P
3) The Abelian monoid laws for Sum
a) Commutativity : P+ Q=Q + P
b) Associativity : (P + Q)+ R=P+ (Q+ R)
c) Oasunit : P+0=P
4) The unfolding law A(y) = P{y/z}if A(T) “p
5) The scope extension laws
a) (vx)0=0
b) (v2)(P|Q) = P|(vz)Q if x & fn(P)
©) (vr)(P+Q) =P+ (v2)Q ifzr & fn(P)

d) (vx) if uw = v then P = ifu =
v then (vax)P ifr #uwand x # v
e) (vr) if u # v then P = ifu #

v then (vx)P ifr #uand x # v
) (vz)(vy)P = (vy)(va)P
6) The equational reasoning laws
a) Refl P=P
b) Syym P=Q - Q=P
¢) Trans P=Qand Q=R —~ P=R

Table 2: The definition of Structural Congruence

The a-conversion identifies agents like a(x).bx and a(y).by
as the same. Abelian Monoid laws for Sum and Parallel
basically says that Parallel and Sum are unordered operations.
The unfolding just states that Identifier is same as it definition
with appropriate parameter instantiation. The scope extension
rules say that if private channel is used in only within
a single component then we can move private channel to
that component. For example in parallel composition if all
occurrences are in one of the components then it does not
matter if the Restriction covers only that component or the
whole composition. In following we will look into an example
where structural congruence is used to prove 2 w-calculus
statements are syntactically equivalent.

Example 14. We prove P = (vz)P
P = P|0 (Using 2-c)

P|0 = P|(vx)0 (Using 5-a)
P|(vz)0 = (vx)(P|0) (x & fn(0) and 5-b)
(va)(P|0) = (vz) P (Again 2-c)

Therefore P = (va)P.

Reductions and Structural Congruence goes hand in hand.
Therefore we will look into examples after discussing reduc-
tions. In next subsection we start the discussion of reductions.

D. Reductions

Consider following process;
a(x).cxlab

Above process has 2 components. The first component
accepts an input from channel a and second component sends
a name through channel a. Therefore we can simulate above
process as first component replacing all its x names with b and
second component sending b and afterwards becoming Nil.
This behaviour is similar to Silent Transition (7 transition). So
the transition would look like as follows;

a(x).cz|ab = eb|o

Doing reduction based on syntax would greatly help to
check whether 2 processes are the same. Therefore 7-calculus
introduces set of axioms to perform reductions based on
syntax. These axioms give the same effect as silent action.

The assertion P —» P’ express that process P can evolve
to process P’ as a result of intra-action, that is an action within
P. Reduction is defined by a family of inference rules.

Definition 8. (Reduction Semantics) The reduction relation,
—>, is defined by the rules in Table 3.

- (2
P —p P

pP— P
(vz)P — (vz)P!

P1—>P1/
P1|P2—>P1/|P2

3) (4)

P1—>P1/

Table 3: Reduction inference rules.

Informally processes P and () stand in the reduction relation
just if the assertion P — () can be inferred via the rules.
The assertion expresses that P can evolve to Q. Lets have a
closer look at above rules.

Consider the process denoted by left hand side of the rule
(1) (in denominator). This process has 2 components. The first
component can send name y through channel x or act as M.
The second component takes a name through channel x as an
input or act as M,. The rule says that process has a reduction
due to the interaction between its components via channel x
and as a result y is passed from the first component to second



component and is substituted for the placeholder z in P,. The
two prefixes are consumed and other behaviours, namely M,
and M5 are rendered void.

The rule (2) says the process can evolve due to a silent
action. In this case also the additional capability (i.e. M) is
rendered void. The rules (3) and (4) are similar. (3) says if
the component P; has a reduction then process P;|P» has a
reduction. Similar behaviour is applied for restrictions.

In following we will look into several examples where we
use reductions and structural congruence in combination to
reduce processes.

Example 15. Suppose P = (va
We need to reduce P.

Using associativity rule (Table 2, 3-b) we have;

P = (vr)((z(2).2y.0|1Za.0)|Zb.0)

Using commutavity rule (Table 2, 3-a) we have;

P = (va)((Za.0|z(z).2y.0)|zb.0)

Using 0 introduction (Table 2, 3-c) we have;

P = (vz)((Za.0 + 0|z(2).2y.0 + 0)|2b.0)

Now, let P, o (Za.0 + 0)|((x(z).2y.0 + 0). Then we have
P = (vz)(P1|zb.0)

Consider P, o (Za.0 + 0)|((z(2).2y.0 + 0);

Using Table 3, rule (1), we have P, — 0|(Zy.0){a/z}
Therefore P, —> 0|ay.0

Further, using Table 3 rule (3);

)(z(2).2y.0|(Za.0|20.0))

P — 0|&y0
Prlab0 — (0)ay.0)[zb.0

Then using Table 3, rule (4) we have following;
P1|zb.0 — (0]ay.0)|zb.0
(va)(P1]|zb.0) — (vz)((0|ay.0)|zb.0)

Further we know (Table 2, rule 3-c) ((0|ay.0)|zb.0) =

(ay.0|zb.0)

Then using Table 3, rule (5) we get below result;

(v2) (P1[0.0) — (v)(ay 0].0)

Finally we have P — (vz)(ay.0|Zb.0).
=4

Example 16. Let Q ve)((z(y).x(2).gz.0|
z(w).z(v).0w.0|Za.zb.0).

We need to reduce Q.

Using commutavity rule (Table 2, 3-a) we have;

Q = (vz)(Za.zb.0|(x(y).2(2).72.0|
z(w).z(v).7w.0))

Then using associativity rule (Table 2, 3-b) we have;

Q = (va)((Za.zb.0|z(y).x(z).52.0)|
z(w).z(v).0w.0)

With 0 introduction (Table 2, 3-c)

Q = (vz)(((Za.z2b.0 + 0)|(z(y).x

z(w).x(v).7w.0)

Let P ¥ (3a.3b.0 + 0)|(2(y).x

(vz)(Plz(w).z(v).0w.0).

Then we can apply Table 3, rule (1) as follows;

(2).52.0 + 0))]

(2).52.0 + 0). Then Q =

(Za.zb.0 + 0)|(x2(y).x(2).92.0 + 0) — Zb.0|x(2).52.0{a/y}

Which results in following;

(Za.zb.0 + 0)|(x(y).x(2).52.0 + 0) — Tb.0|x(2).az.0
Further using 0 introduction we
zb.0|z(z).a2.0 = 7b.0 + 0|z(z).az.0 + 0
Now we apply Table 3 rule (1) to right hand side of above
equivalence as follows;

have  following;

(0.0 + 0)|(z(2).az.0 + 0) — 0]ab.0
Then from Table 3 rule (5) we get following result;
zb.0|x(z).a2.0 = Tb.0 4 0)|z(2).a2.0 + 0 — 0|ab.0 = ab.0
zb.0|x(2).a2.0 — ab.0

From last 4 steps we derived P — ab.0. Now applying
Table 3, rule (3)

P—ab.0
Plz(w).x(v).0w.0 — ab.0|z(w).x(v).0w.0
Applying Table 3, rule (4)
Plz(w).z(v).0w.0 — ab.0|zx(w).x(v).0w.0
(ve)(Plz(w).z(v).0w.0) — (vz)(ab.0lz(w).xz(v).tw.0)
Since Q = (vz)(Plz(w).z(v).7w.0) we obtain final result by

applying Table 3, rule (5), which yields following;
Q — (vz)(ab.0|z(w).z(v).7w.0).

So far we have been looking at syntactic behaviour of 7-
calculus. In next section we will look at how we can give
meaning to syntactic constructs we defined in Table 1.

III. OPERATIONAL SEMANTICS

Activity within a system can be described using reduction
relation. But reductions do not explain how a system can
interact with its environment (input/output). In order to under-
stand the behaviour of the system we analyse the behaviour
of actions performed by each sub-part. This is the same SOS
approach that is used to define the operational semantics. In
this section we discuss about Operational Semantics.

In the literature of m-calculus we find several operational
semantic definitions for m-calculus. In this paper we discuss
widely used methodology to encode operational semantics to
m-calculus. This standard definition is based on a labeled
transition system(LTS).

In LTS the transitions would look like P —7= Q for some
set of actions ranged over 6. It is important to identify possible
actions within the system (in other words possible values for
). For an agent a.P there will be a transition labelled «
leading to P. Further Restriction operator will not permit an
action with the restricted name as subject, i.e. (vx)Zu has no
transition and therefore it has the same effect as 0 (Nil). But
the behaviour is different when restricted name appear as an
object. When the restricted name is an object we should have
an action. But intuitively the action does not belong to any of
the actions we defined under Prefixes (Input, Output or Silent).
We further analyse the situation with an example.



Consider process (vu)au.P. In this example the bound
variable u is an object. To convince ourselves that (vu)au.P
has an action we will consider another agent which has 2 com-
ponents and one of the component is (vu)au.P. The process
we are considering is a(z).Q|(vu)au.P. Since u € fn(Q)
by structural congruence we can have a(x).Q|(vu)au.P =
(vu)(a(z).Qlau.P). There is an interaction between com-
ponents in expression, (vu)(a(x).Q|au.P). Therefore clearly
(vu)au.P cannot behave as Nil (0) process. Then can
(vu)au.P act au ? We prove that is not the case; using
example below;

Consider a component (a(z).ifz = u then Q). We parallel
compose this component with au and (vu)au to see whether
we derive the same output.

Using reduction rules we can prove (a(z). if = =
u then Q)lau — if u = w then Q which continues as
Q......(a) Now consider (a(z).if x = u then Q)|(vu)au.
Then (a(z).if v = uthen Q)|(vu)au = (vv)((a(z).if x =
uthen Q)lav) — (vv)if v = u then Q.......(b).

As per (a) and (b) the results we got by parallel composing
(a(z).if = wu then Q) with au and parallel composing
(a(z).if x = u then Q) with (vu)au are different. Therefore
we conclude that (vu)au does not behave same as au.

All of above discussion convince that we need to have a new
action type for restrictions that bind objects. Therefore (vu)au
is given action called bound output (which is different from the
actions defined for Prefix) and written as avu. More formally
the bound output is a combination of an output and restriction
and can be defined as avz.P = (vz)ax.P. Intuitively the
bound output says we are sending a fresh name through the
channel.

In summary, 6 ranged over following actions;

1) The internal action - 7

2) Sending name X via a - ax.

3) Receiving x via a - a(z)

4) Sending a fresh name via x - avx

Definition 9. Action The actions (0) is given by;
0 ::= ayla(y)|avy|r

Definition 10. (Operational Semantics) The operational se-

mantics (denoted LN ) for w-calculus ranged over 0 is defined
in Table 4.

STRUCT
P=PP-%0Q0Q=¢
L
OUT
zy.P 2% P
INP
z(z
2(y).P 22 P{z/y}
TAU

P p

SUM
p-Lp
r+Q-Lp
MATCH )
pP— P
if x = x then P s p
MISMATCH
-2 Plx#y
if x #ythen P O pr
PAR )
P— P bn(a)N fn(@Q)=0
PIQ " P'|Q
COM )
P prg
PlQ — P'{u/x}|Q’
RES )
P — P’ x & names(a)
(va)P N (va)P’
OPEN
P2 Plata
(vz)P 25 pr
CLOSE

PP Q Qs ¢ fn(Q)
PlQ = (v2)(P'|Q)

Table 4: The standard operational semantics for 7-calculus.

The names («) represent all the names present in « (both
bound and free). To keep the discussion concise we skip the
inference rules for Replication. The STRUCT rule basically
says that if 2 terms are structurally congruent then they have
the same operational semantics. COM rule is used in many
situations where local communication is possible. OPEN is
the rule that generates bound outputs.

In following we go through few examples.

Example 17. Consider process x(z).zy.0 with an arbitary
input name a.
Using INP we observe following result.

z(z).z2y.0 =) ay.0

Further using OUT ay.0 Y 0
Therefore x(z).z2y.0 — 0.

Example 18. Consider x(z).if z = y then zZw.0 with input y
via x. We first apply INP rule.

z(2)if z =ythen zw.0 M if y =ythen gw.0

Now we apply MAT rule.

gw.0 2% 0

ify:ythengjw.()g—w>0



Example 19. Consider x(z).zy.0 + wv.0 with input a via x.
Applying INP to x(z).2y.0 we get following;
x(2).z2y.0 =a) ay.0

ay
Further ay.0 — 0 Now we apply SUM rule with above
outcome;

x(2).z2y.0 Q)
x(2).2y.0 + wv.0 i)

Example 20. Consider following process;

r¥ ((vs)Zs.5a,50.0)|x(w).(w(v).w(u).vu.0|z(t).0)

To check the behaviour of above process we first consider
zs.5a, 5§b.0 part. Then using OUT we can have a derivation
as follows;

zs.5a,5b.0 == 5a.5b.0
Applying OPEN;

zs.5a,5b.0 == 50.5b.0

(vs)zs.5a,5b.0 223 5a.5b.0

Now  we  focus on other part of P; e

z(w).(w(v).w(u).vu.0|2(t).0). We apply INP rule on

this component with input x(8s).

2(w). (w(v) w(u).5u.0)2(t).0) 22 5(v).5(u).5u.0]2(t).0
Now we use (vs)ts.5a,50.0 %  5a.5b.0 and

z(s

z(w).(w(v).w(u).ou.0|z(t).0) s(v).s(u).vu.0 to
apply CLOSE rule. CLOSE rule will yield us following
behaviour;

P 15 (vs)(3a.5b.0|(5(v).s(u).0u.0|2(t).0))

Example 21. We will use the same P expression in previous
example to demonstrate the COM rule.

Using OUT rule we can have following;

5a.50.0 =% 3b.0
Then by PAR rule

5a.5b.0|2(t).0 =% 5b.0

Further using INP we get following;

s(v).s(u).vu.0 s s(u).au.0

Applying COM (using above results)
(5a.50.0/2(1).0)|5(v).5(u).0u.0 — (5b.0|2(t).0)|s(u).au.0
Then using RES we have following;

P - (vs)((50.0|2(t).0)|s(u).au.0)

we have following outcome;

Above we encoded operational semantics to 7-calculus.
Important aspect now is to check whether two processes are
equivalent in their behaviour. To check whether 2 processes
behaviorally equal we use a technique called Bisimulation. In
next section we discuss about bisimulations in detail.

IV. BEHAVIOURAL EQUIVALENCE

In most process algebras the equivalence of two processes
is decided by building an equivalence relation on agents. 7-
calculus follows the same strategy. The basic technique behind
behavioural equivalence is Bisimulation. In following we give
the most general form of Bisimulation definition.

Definition 11. (Bisimulation) Bisimulation is a symmetric

binary relation R on agents satisfying
PRQ and P - implies 3Q" : Q — Q' A P'RQ’.

The basic intuition is that if P can do an action then @) can
do the same action and the derivatives lie in the same relation.

In the context of w-calculus the most simplest form of
Bisimulation is defined based on reduction relation. The re-
duction based bisimilarity is defined as follows;

Definition 12. (Reduction Bisimilarity) A symmetric relation
S is a reduction bisimulation if whenever (P,Q) € S then
P =5 P implies Q —— Q' for some Q' with (P',Q’) € S.
Reduction Bisimilarity is the union of all reduction bisimula-
tions.

Reduction Bisimilarity is not the best process equivalence
for m-calculus. As an example consider following processes
Zy.0 and 0. These two processes does not depict the same
execution behaviour, but reduction bisimilarity relates those
two processes as they dont have 7 transitions. Therefore
reduction bisimilarity is a weak equivalence.

To obtain a satisfactory notion for equivalence we need to
observe processes in more detail. There are several plausible
bisimilarities on mw-calculus based on direct comparison of the
actions that they can perform. Each of them has different
qualities. In rest of the section we discuss about the most
natural form of bisimilarity known as Strong Bisimilarity.

A. Strong Bisimilarity

The Strong Bisimilarity definition is based on general bisim-
ulation definition, but with special care to define simulation
rule for input actions. In following we discuss why we need
special care in defining strong bisimilarity with an example.

Consider processes P = a(u) and Q = a(z).(vv)vu.
Intuitively both P and Q represent the same behaviour; i.e.
they both can take an input via a and then terminate. But
in Q the name u is free where u is bound in P. Therefore
the x in Q cannot be a-converted to u. Further the transition

P M 0 cannot be simulated by (). But we can very well
a-conver v in P and get the same behaviour between P and
Q. Therefore the conclusion is it is sufficient for () to simulate
only the bound actions where the bound object is not free in
Q. Therefore for the strong bisimulation definition we assume
bn(a) N (fn(P)U fn(Q) is empty. This argument applies to
both input and bound output actions.

In addition the input actions mean that the bound object
is a placeholder for something to be received. Therefore, if

P L P’ then the behaviour of P’ must be considered for
all substitutions {u/x}, and we must require that for each
substitution )’ is related to P’.

We now define strong bisimulation by considering above
discussed factors.

Definition 13. (Strong Bisimulation) A strong bisimulation
is a symmetric binary relation R on agents satisfying the
following;



PRQ and P -+ P’ where bn(a) N (fn(P)U fn(Q)) = 0
implies
D If a = a(z) then 3 Q' QMQ'/\Vu
Pu/x}RQ{u/z}
2) If a is not an input then 3 Q' : Q = Q' A P'RQ’
P and Q are strongly bisimilar, written P ~ @, if they are
related by a bisimulation.

It follows that ~ is the union of all bisimulations. Further
we also have P = @ implying P ~ @ (Using STRUCT rule in
Definition 9). In following we will go through few examples.

Bisimulation is like a two player game on a directed
graph where nodes represent processes and each directed edge
represent a transition given in Table 4. The players move
alternately. A play begins with two nodes occupied by tokens.
The first player can move either of the tokens from the node
along an outgoing edge to a neighboring node. The second
player responds only by moving the remaining token from the
node it is on along an outgoing edge which had the same action
as first player’s. If play is infinite then the second player wins,
if after some finite number of moves the player whose turn it
is, cannot move, then that player loses. To check whether 2
processes are in a bisimulation we apply this gaming strategy.
First we will assume two processes are in a bisimulation, then
we execute transition from Table 4, at a time we apply the
same transition to both processes. After some finite number
of steps if one process has a transition and if other doesn’t for
same action then we decide two processes are not related by
a bisimulation.

Example 22. Consider P, = a(z).P + a(x).0 and P, =
a(x).P + a(z).if © = uthen P

Assume P~ 0. Then is P ~ Py ?

Using INP rule we have following;

a(z).0 i)

Further using SUM rule we can derive following;

a(z).0 )
a2y

Similarly from Py we can either get Py @ P or P @
if x =wuthen P.

When P; ﬂ P definitely Py =~ P as P ~ 0.
Now consider when Ps @ if x = wu then P. This also does

not satisfy because when input is a(u), Py M P and P ~ 0.
Therefore we can conclude Py ~ Ps.

Example 23. Consider Py « (v2)(za|z(w).Zw) and Py “

T.2a. We need to find whether P, ~ Ps.

Suppose P, ~ P». Now lets look at possible actions we can
perform on Py. The only possible action is internal action.
Therefore we have P, —— (vz)(0|za)

Let’s check how Ps reacts to T; Py —s Za.

o (v2)(0|za) ~ Ta i

Similarly we can prove (vz)(0|za) = 0

Further we have Ta(= Ta.0) =% 0.

We know 0 ~ 0 (because they are structurally same), therefore
our initial assumption is correct and Py ~ Ps.

We are tempted to think if two processes are bisimilar then
the processes we get by prefixing an input are also bisimilar.
However previous statement is not true. We prove this using
a counter example.

Example 24. Let P & &

zz.a(y).0 + a(z).zy.0

Suppose Py ~ Ps. Py has 2 possible actions. They are to
receive an input via a or send a name via z.

We will first consider sending a name via z. Then we have
following (using PAR rule);

zx.0la(x).0 and P,

Z0.0 =5 0
zz.0la(z) =5 0

Now we perform the same action on P,. Then we get following
using SUM rule;

zx.a(y).0 LN a(yf).0 .
(z.a(x).0 + a(z).2y.0) =5 a(y).0

Therefore 0 ~ a(y).0. Further we get a(y).0 9 and 0 “
0 (input on an inactive process will remain inactive). Finally
0~ 0.

We get similar result when action a(u) is performed on Pj.
Therefore Py ~ Ps.

Example 24 shows that zz.0la(z).0 ~ ZzZz.a(y).0 +
a(x).zy.0. Using that result can we say input prefixed
processes of those are also strongly bisimilar ? i.e.
2(2).(zz.0la(x).0) ~ x(2).(Zz.a(y).0 + a(x).Zy.0) ? It turns
out the answer is no. One name that can be received for
both processes is z(a). In that case after INP transitions we
will have processes az.0la(y).0 and az.a(y).0 + a(z).at.0.
Only process ax.0la(y).0 is capable of having a 7 transition
and other process cannot have a 7 transition. Therefore in-
put prefixed processes of strong bisimilar processes are not
necessarily bisimilar.

Further generalized observation is strong bisimilarity is not
preserved by substitution. i.e,

(zz.0la(x).0){a/z} = (Zx.a(y).0 + a(x).zy.0){a/z}

To define a congruence relation that works for substitution
we need to formulate a more stronger version of bisimilarity.
In following we define Strong full bisimilarity.

Definition 14. (Strong full bisimilarity) Processes P and @)
are strong full bisimilar, P ~° @Q if Po ~ Qo for every
substitution o.

Strong full bisimilarity is strictly finer than strong bisim-
ilarity. As per above example zz.0la(x).0 and Zz.a(y).0 +
a(x).zy.0 are strong bisimilar but not strong full bisimilar



as substitution {a/z} does not generate strong bisimilar pro-
cesses.

A variation of Example
follows;
Let M & zx.0la(z).0 and N &ef (zz.a(y).0 + a(z).z2y.0 +
(if z = athen 1.0)
Then; M ~¢ N. The reason is IN now has a if condition.
This ¢ f condition helps to keep terms bisimilar when they are
input prefixed and when input name is same as “a”.

We now establish an important theorem in behavioural
equivalence for 7-calculus.

24 that is full bisimilar is as

Theorem 1. (Congruence for ~¢) ~ is a congruence.
g

[6] gives the detail proof for above theorem. In following
we will go through sketch of the proof.

Consider processes P and ). Suppose P ~¢ Q). We do
induction on contexts, i.e. for every context C and substitution
o, C[Po] ~¢ C[Qo]. In the base case of induction, i.e. when
C =[] the result follows immediately as P ~¢ (). Then we
perform induction for other cases of contexts based on initial
results.

We now have established a mechanism to check whether 2
processes behave in the same way for all inputs. Technically
to check whether 2 processes are behaving same we need to
check whether the process pair is in a strong bisimulation.
Theorem 1 guarantees that both processes have the same
behaviour on all substitutions.

V. VARIATIONS OF m-CALCULUS

The core of the m-calculus consists of a syntax definition,
semantic definition, actions and notion of a behavioural equiv-
alence. There are several variations of m-calculus where those
variations alter sections associated with core 7-calculus. These
variations are used in different domains.

The calculus we learnt so far is sometimes referred to
monadic m-calculus, because an interaction involves the com-
munication of a single name between processes. Polyadic cal-
culus can communicate multiple names in a form of tuples. In
polyadic calculus outputs look like a < vy, ...y, > and inputs
are of type a(z1,...x,). An interesting question in polyadic
calculus is how to reduce an expression like a(zy).Pla < u >
.Q), where the arity of the output is not the same as the arity of
the input. To solve this complication polyadic calculus assign
some type of information to each name. In polyadic calculus
calls that name a sort. The semantics for polyadic calculus is
only notational more complex compared to monadic calculus.

Another important addition to m — calculus is recursion.
Recursion is a mechanism for describing iterative or arbitrarily
long behaviours. In a way replication helps to define such
behaviour. [6] shows that any process that involves recursion
can be represented using replication, conversely whenever
process involves replication we can use recursion to represent
the program. Further there are several different variants of
bisimulation defined for 7-calculus: ground bisimilarity, open
bisimilarity, late bisimilarity are some of such definitions. We
will not go into details of those definitions. Security ™ —

calculus (spi) is an extension designed for the description
and analysis of cryptographic protocols.

The 7 — calculus we discussed so far is based on syn-
chronous communication; i.e. one component emits a name
and at the same time as another component receives it. An
interesting variation of 7-calculus is asynchronous m-calculus.
Asynchronous 7-calculus is particular important in modeling
distributed systems. Therefore in next section we will discuss
asynchronous m-calculus in more detail.

VI. DISTRIBUTED COMPUTING & m-CALCULUS

Distributed Systems involve communication through a net-
work channel. Unlike in concurrent processes, processes in a
distributed system have a delay associated with communica-
tion. Therefore the distributed communication can be treated
as an asynchronous communication (Runtime environment
or programming model may try to abstract communication
as synchronous but whenever there is communication be-
tween a remote process the communication is asynchronous).
Therefore the asynchronous m-calculus plays a major role in
modeling distributed systems.

A. The Asynchronous w-Calculus (Am)

In asynchronous communication there is an unpredictable
delay between output and input, especially when there is a
message in a network channel (transit). This behaviour can be
modeled by inserting an agent representing an asynchronous
communication medium between sender and receiver. The
properties of the medium (whether it has a bound on capacity,
etc.) is then determined by the definition. An example is given
below;

M = i(z).(ox|M)

In above example when M receives a name u along ¢ it
evolves to ou|M, and deliver u along o at any time and also
continue to accept more messages.

A captures above described asynchronous communication
in a form of a subcalculus. A7 consists agents satisfying the
following requirements;

1) Only 0 can follow an output Prefix
2) An output Prefix may not occur as an unguarded
operand of +

First of all we will focus on what we meant by unguarded
above. In following we define guarded and unguarded process
variables.

Definition 15. (Guarded vs Unguarded) An occurrence of
process variable X is guarded in term P if it occurs in Q
where «.Q) is a subterm of P.

Process variable is unguarded when it is not guarded.

We now go back to agent requirements of Aw. We will
first consider second requirement. The second requirement
basically disallows expressions like @z + b(y), but allows
T.ax + b(y). The first requirement disallows agents such as
ax.by, where an agent other than 0 follows ax.



The motivation to have above constructs is as follows; An
unguarded output Prefix ax occurring in a term represents a
message that has been sent but not yet received. The action of
sending message is placed at an unguarded position as follows;

r.(az|P) —— ax|P

After above transition, ax can interact with a receiver,
and the sender proceeds concurrently as P. The requirement
1, forces sender to detect that message has been sent until
receiver sends an acknowledgement. In summary the term
7.(ax|P) can be read as “send @z asynchronously and con-
tinue as P”.

B. Distributed Asynchronous PI-CALCULUS (ADPI)

Mathew Hennessy describes a variation of A7 specifically
taking distributed computing concepts into consideration (cited
in [8]). A distributed system formulated as a set of independent
domains. A domain may have one or more processes run-
ning. ADPI augments Ax to add distributed system specific
constructs. An interesting addition is the process migration.
Process migration represents executing a process remotely. As
per ADPI the process migration is depicted as follows;

gotok.P

Intuitively executing above statement in a domain [ will
migrate to location k and process P is launched.

VII. PROGRAMMING LANGUAGES & m-CALCULUS

Type systems for Programming Languages are closely re-
lated with 7-calculus. Type systems help to detect errors stati-
cally, improve the efficiency of code generated by a compiler,
let users understand programs easily. Type m-calculus is a
variation of m—calculus that is closely related to programming
language type system.

In Type m-calculus the programming language type system
is formalized by means of ryping rules. The terms that can
be typed using these rules are called well typed terms. Fun-
damental property of the type system is its agreement with
the reduction relation of the calculus. Accurately implemented
type system guarantees that well typed terms do not raise
runtime errors during reductions. This notion is also called
type soundness.

In the literature we find several programming language im-
plementations based on 7-calculus. Business Process Modeling
Language(BPML) [10] is a widely used workflow modeling
language that is based on m-calculus. occam-pi [11] is a
programming language that aims to write correct, expressive
concurrent programs. Pict [9] is another experimental statically
typed programming language that is based on m-calculus.

VIII. SUMMARY

m-Calculus is a latest addition to the process algebra family.
m-Calculus is different from other process algebra’s due to its
ability to send receive channels. In this paper we went through
core m-calculus definitions with several examples. Definition
of a m-calculus mainly consists of syntax definition, semantic
(reduction) definition, congruence definition (both structural
and behavioural). In this paper we went through each section
with elaborating examples.

There are several variations of m-calculus. Most of the
extensions are created by modifying the syntax, reduction
behaviour, or by changing behavioural equivalence. Asyn-
chronous 7-calculus plays a major role in modeling distributed
systems. Further m-calculus based programming languages
guarantee significant safety during runtime. i.e. programming
errors related to concurrency or distributed computing are
captured at early stage (during compile) of the program.

In the literature already there are few experimental lan-
guages that are based on m-calculus (pl-pic). Those languages
are introduced to the reader in the previous section.

m-calculus is highly relevant in building distributed systems.
Further m-calculus is closely related to programming language
type theory. In this paper we discussed about general -
calculus in depth with several examples. Finally we discussed
how m-calculus is relevant to programming language research
and distributed computing research.
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