Chapter 1

A Survey
of Data Flow
Analysis Techniques

Ken Kennedy

1-1. INTRODUCTION

High-level programming languages are valuable programming tools
because they permit the specification of algorithms in notations more natural
for expressing the abstract concepts involved. Thus, freed from attending to
. numerous machine-dependent implementation details, the programmer can
produce correct, reliable code more easily. Why then aren’t such languages
universally used for programming? The usual answer is that the resulting
programs are inefficient. That is, the code generated by a high-level language
is less efficient than the code a good assembly language programmer would
write. The problem is that the generality of programming languages, the very
generality which is such a desirable aid to algorithm specification, prevents
the programmer from making use of specific machine features to improve the
efficiency of the code. Unfortunately, compilers for these languages fail to
take up enough of the slack. Since a major aim of programming languages
is to encourage programming at a more abstract level, there must be an
improvement in the efficiency of object programs produced by compilers.
This is the goal of compiler optimization.

Note that optimization is not intended to compensate for poor pro-

6 A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES / CHAP. 1

gramming, but rather to reduce the inefficiencies in code to within “reason-
able” bounds—to a point where the advantages of high-level language
programming outweigh any remaining efficiency penalties. For some lan-
guages, optimizing compilers might well be expected to produce code for
inner loops that would be competitive with loops hand-coded by assembly
language programmers.

This last goal is difficult to achieve because high-level languages, if they
are to be usable, must include general-purpose features flexible enough to
serve many different applications. It is not enough to merely include a grab
bag of specialized features because programmers would find such a grab bag
difficult to learn and use. The assembly language expert can write efficient
code because he or she knows the specific purpose to which each data
structure in a particular program will be put; therefore the language expert
can choose for each structure the machine realization that will be most effi-
cient. By contrast, the high-level language programmer must use one of the
general-purpose data structures provided by the language. In the absence of
better information, the compiler generates code for accesses to these structures
which will be correct for any legal application. Thus it is unable to take advan-
tage of any efficient shortcuts which the specific problem at hand might allow.
If the compiler is to compete with assembly language coding, it must be able
to determine enough of the nature of the program being compiled to safely
take those shortcuts; in other words, it must be able to perform some kind
of global program analysis.

As an example, consider run-time subscript range checking. It is desir-
able to capture all attempts to reference outside the limits of an array because
out-of-bounds references are the sources of many subtle errors. Unfortunately,
range checks are expensive and can result in a significant speed degradation.
Optimization offers a viable alternative to the common but questionable
practice of eliminating all range checks: global program analysis can show
that many range checks are superfluous, while others may be safely moved to
less frequently executed code [Harr77a, Suzu77]. The result will be more
efficient programs without the cost of compromised reliability.

There is a widely held notion that -optimization is intended to compen-
sate for bad programming. Nothing could be further from the truth. In fact,
no currently known technique can compensate for the main component of
bad programming: a poor choice of algorithm. Instead, optimization encour-
ages good programming by making high-level languages more attractive and
by taking care of small matters of efficiency so the programmer is free to
concentrate on the essence of the problem.

A variety of code improvement transformations have been proposed in
the literature; I won’t attempt to discuss them all since they are covered in
two important compendia: The Allen-Cocke catalogue [Alle72a] and the
“Irvine Catalogue” [Stan76]. But as background for the discussion of analysis

sec. 1-1 / INTRODUCTION 7

methods, I will mention the most prominent techniques. First, two transfor-
mations are fundamental to optimization in straight-line code.

(a) Redundant subexpression elimination [Cock70a, Fong77]. 1If two
instructions that both compute the expression 4 * B are separated by code
which contains no store into either 4 or B, then the second instruction can be
eliminated if the result of the first is saved.

(b) Constant folding [Cock70b]. If all the inputs to an instruction are
constants whose values are known, the result of the instruction can be
computed at compile time and the instruction replaced by a “load” of the
constant value.

In simple loops, two more transformations can lead to significant
improvements.

(c) Code motion [Cock70a, Cock70b]. Instructions that depend only
upon variables whose values do not change in a loop may be moved out of
the loop, improving performance by reducing the instructions’ frequency of
execution.

(d) Strength reduction [Alle69, Cock77, Fong76, Paig77, Alle79].
Instructions that depend on the loop induction variable cannot be moved out
of the loop, but sometimes they can be replaced by less expensive instructions.
For example, in the loop

I:=1;
while 7 << 100 do

A:=1T%5;

I:=71T-+1
od

the value of 7* 5 can be saved in a temporary 7T whose value is incremented
by 5 on each iteration; I *# 5 can then be replaced by a load from T as shown
below. ‘

I:=1;

T:=35;

while 7 << 100 do

A:=1T;

8 A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES / CHAP. 1

I:=1+41;
T:=T+5
od

In effect, the multiplication has been replaced by an addition.

Automatic introduction of instructions at new positions in a program
(2 la code motion) gives rise to two important questions. First, the safety
question asks whether the new instruction can cause an error interrupt that
would not have occurred in the original program. This problem can be illus-
trated by the example in Fig. 1-1. It is easy to see that if a computation of

Pointp
}
2
4
B +—expression;
Compute A/B
Y
3
Compute A/B

Figure 1-1 Safety example

A/B is inserted at point p in block 1, the computation in block 3 becomes
redundant and can be eliminated. But what if the purpose of the branch from
block 2 to block 3 is to prevent an attempt to divide by zero? Moving A/B
to block 1 might well introduce an error interrupt that the programmer has
been careful to avoid.

The question of profitability asks whether we are really moving code to
a region of less frequent execution. Most compilers assume that code inside
a loop is executed more often than code outside the loop, but this assumption
could be wrong if there are several alternative branches within the loop. 1t is
possible to do a fairly complete job of frequency estimation [Cock76], but
few compilers make the attempt since it is not known whether the benefits
will justify the cost.

SEC. 1-1 /| INTRODUCTION 9

Both “constant folding” and “redundant subexpression elimination,”
introduced earlier as local optimizations, can be applied on a global scale as
well. Complementing these are two new global optimizations that “clean up”
after other transformations.

(¢) Variable folding [Lowr69]. Instructions of the form A4 := B
will become useless if B can be substituted for subsequent uses of A.

(f) Dead code elimination [Kenn75c]. If transformations like variable
folding are successful, there will be many instructions whose results are never
ased. Dead code elimination detects and deletes such instructions.

An extremely important class of transformations is intended to improve
the efficiency of procedure invocation.

(g) Procedure integration [Alle72a]. Under certain circumstances, a
procedure call can be replaced by the body of the procedure being called
(open linkage); in other cases the overhead associated with standard calling
sequences, parameters, and global variables can be reduced by compiling the
procedure with the calling program (semiopen linkage).

Procedure integration is an extremely important optimization because
procedure calls, desirable from the point of view of programming method-
ology, are often unbelievably inefficient in nonoptimizing compilers. Thus
good modular programming is penalized rather than rewarded by most
compilers.

The last three optimizations are classified as “machine-dependent”
because they aim to increase efficiency by taking advantage of special features
of the target machine.

(h) Register allocation [Beat74]. This optimization seeks to eliminate
load and store instructions by assigning variables to CPU registers whenever
" possible.

(i) Instruction scheduling [Seth70, Beat72]. The proper arrangement
of instructions often leads to improved performance. Different machines give
rise to different scheduling criteria: on a machine with pipelined arithmetic
units the goal is to achieve maximum parallelism, while on simpler machines
the goal is to minimize register usage.

(j) Detection of parallelism [Schn75]. For vector machines it is desir-
able to detect inherently parallel operations and code them as vector instruc-
tions.

This list is by no means complete, but it gives the flavor of some typical
optimizing transformations. For those interested in reading further, an

10 A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES /[CHAP. 1

excellent introductory treatment of optimization appears in [Aho77], and
Knuth’s famous empirical study [Knut71] demonstrates the utility of various
optimization techniques.

1-2. OPTIMIZATION IN BASIC BLOCKS

One of the first steps in analyzing a program for the purpose of code
improvement is to subdivide the program into basic blocks, which are simply
sequences of consecutive instructions that are always executed from start to
finish. In other words, a basic block may only be entered at the first instruc-
tion and left at the last. Fig. 1-2 shows how a PL/I program would be parti-

REPT:

- S itmingtapiin
1IFA=0 ! THEN | STOP; | 2

e et e o e e ot e e i A —— ——— — —— —— —

TDROOT = SQRT(DISC);
E R1 = (—-B + DROOT)/(2.0"A);
| R2 = (—B — DROOT)/(2.0*A);

e e e e — e —————— —

ELSE DO;
________________ .
IDROOT = SQRT(-DISC);! §
IR1 =—B/(2.0A);

1
1R2 = DROOT/(2.0%A);

|

|END;
I-'_'L _______________ =
{ PUT DATA (DISC,R1.R2); | 6
|GOTOREPT; }

Figure 1-2 A PL/l program fragment partitioned into basic blocks

tioned into basic blocks. Of course, in a compiler the partitioning is usually
performed on some intermediate code representation of the program.

The subdivision process itself is fairly straightforward. I present a
method adapted from [Aho77] that identifies a set of leader instructions,
instructions which begin basic blocks, and then constructs a block by
appending to its leader all subsequent instructions up to, but not including,
the next leader. The algorithm is informally specified in an Algol-like high-
level language which admits set theoretic notation.

Algorithm BB : Basic Block Partition

Input: A program PROG in which instructions are numbered in
sequence from 1 to | PROG/|. INST(7) denotes the ith instruction.

SEC. 1-2 / OPTIMIZATION IN BASIC BLOCKS 11

Output:
1. The set LEADERS of initial block instructions.
2. WV x € LEADERS, the set BLOCK(x) of all instructions in the
block beginning at x.
Method:
begin

LEADERS := {1}; ¢ first instruction in PROG ¢

for i := 1 to | PROG| do
if INST(i) is a branch

then add the index of each potential target to LEADERS

fi

od;

TODO := LEADERS;

while TODO == ¢ do
x := element of TODO with smallest index;
TODO := TODO — {x};
BLOCK(x) := {x};
for i :— x + 1 to {PROG} while i ¢ LEADERS do

BLOCK(x) := BLOCK(x) U {i}

od

od

end

Once the program is subdivided into blocks, each block can be optimized
using local techniques. In this section 1 will describe the value numbering
scheme of Cocke and Schwartz [Cock70b], which performs redundant expres-
sion elimination and constant folding in straight-line code. As a side effect,
the method can also compute some of the information used by the global
analysis methods treated later.

Suppose the source language version of a basic block under considera-
tion is as follows:

A:= 4
K:=1IxJ+ 5
L:=5xA4A%xK
M:=1T
B:=M=xJ+ Ix A
This might be transformed into the intermediate code in Table 1-1.

Table 1-1. Intermediate code example.

71: = C4 75: C5 % A 79: M= J
T2: I %J 76: T6 x K T10: I A

73: T2 + C5 T77: L:=T76 7T11: 79+ 710

T4: K:=T73 78: M:=1 712: B:=T11

12 A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES /[CHAP. 1

Each triple in this code represents a simple operation; operands may be
variables, constants (c.g., C4), or the results of previous operations (e.g., 72).

The main data structure of the value numbering method is a hash-coded
table of available expressions which is used to help uncover redundant
subexpressions. As each triple is treated in sequence from the start of a block,
the table is searched for a previous instance of the same expression. If a
match is found, the new triple may be eliminated if all subsequent references
to it are replaced by references to the previous triple.

For the method to work, there must be some way to determine when
two operands are identical. This is provided by a system of value numbers
in which each distinct value created or used within the block receives a unique
identifying number. Two entities have the same value number only if, based
upon information from the block alone, their values are provably identical.
For example, after scanning the first instruction in Table 1-1,

Ti: A:= C4

variable 4 and constant C4 would have the same value number. The “current”
value number associated with a variable (or constant) is kept in the symbol
table entry for that variable; the value number for the result of a triple is
kept in the table of available computations and as an auxiliary field of the
triple itself. The hash function for entry to the available expression table is
based on the value numbers of the operands and a special code for the
operator.

Constant folding is handled via an auxiliary bit in each symbol table
entry, indicating whether the current value is a constant, and a bit in each
triple, indicating whether the result is a constant. Also required is a table of
constants, indexed by value number, which contains the actual run-time
values of constants.

Algorithm VN, presented in a high-level mixture of English and Algol,
embodies the ideas discussed so far. Note that an instruction is assumed to
be the value of a structured variable with an operator field OP, some auxiliary
information, and two operands L and R (left and right, respectively).

Algorithm VN : Value Numbering in a Basic Block

Input:
1. A basic block of triples.
2. A symbol table SYMTAB.
Output: An improved basic block, after redundant subexpression elimi-
nation and constant folding.
Intermediate.
1. Table of available expressions AVAILTAB.
2. Table of constants CONSTVAL.

SEC. 1-2 / OPTIMIZATION IN BASIC BLOCKS 13

Method:
begin
while there is another instruction do
INSTR := the next instruction;
OPERATOR := OP of INSTR;
if OPERATOR = store then
find r, the value number of R of INSTR
(this may assign a new value number);
if r represents a constant value then
so indicate in the SYMTAB entry for L of INSTR
fi

else ¢ an expression ¢
find value numbers /., for L of INSTR and R of INSTR

(this may assign new value numbers);
if / and r represent constant values then
compute the value x of the result by applying OPERA-
- TOR to CONSTVAL(/) and CONSTVAL(r);
enter the new constant x in CONSTVAL, assigning a new
value number in the process;
delete INSTR ’
else ¢ check for availability ¢
look up the triple {/,operator,r) in AVAILTAB, setting
FOUND := true if successful;
if FOUND then
record the fact that any reference to this triple is to be
subsumed by a reference to the previous one (a
pointer to which is contained in AVAIL);
delete INSTR ;
else ¢ not available ¢
enter {l,operator,r> in AVAILTAB, assigning a new
value number to the result
fi
fi
fi
od
end

Consider the application of this algorithm to the example intermediate code
from Table 1-1.

In processing triples 1 through 4, nothing unusual takes place. Value
numbers are assigned to variables 4, 7, J, and K and to constants C4 and CS.
The results of triples 72 and 7T'3 are recorded as available. The information
collected up to this point is displayed in Fig. 1-3.

Result

I ?
Name Value # Constant? value # Constant?
1 ca 1 ves T1 1 yes
2 A 1 yes T2 4 no
3 I 2 no 73 6 no
4 J 3 no T4 6 no
5 C5 5 yes
6 K 6 no
SYMTAB Auxiliary fields of
triples
Left Right Result Original
Value # Value value # op value # value # instr.
1 4 2 * 3 4 T2
5 5 4 + 5 6 T3
CONSTVAL AVAILTAB

Figure 1-3 Information collected up to instruction 5

At instruction 5, the algorithm looks up C5 and 4 and discovers that
they are both constant. The resulting C20 may be computed from values in
CONSTVAL; it receives a new value number (7) and is . recorded in
CONSTVAL. Finally, triple 5 is deleted. In the next step, triple 6 will be
modified to use C20 in place of T'S5.

Figure 1-4 displays the information collected by the algorithm up to
instruction 9. At this point it discovers that operands M and J have value
numbers 2 and 3, respectively, and that there is a previous computation (7°2)
of the product of these values. Therefore triple 9 can be deleted and subse-

quent references to it replaced by references to T2. The final optimized code
is shown in Table 1-2.

Table 1-2 Final optimized code

T1: A:=C4 7T6: C20x K T10: /1 *x A
7T2: I =J 77: L:=T6 711: 72+ T10
73: T2 + C5 7T8: M:=/ T12: B:=T11

74: K:=T3

It is especially interesting that instruction 9 is discovered to be identical to
I * J even though an alias is used for 1.

The method I have described is an elementary prototype of more sophis-
ticated versions which can also handle array references and structured vari-
ables [Cock70b, Aho77, Kenn78].

14

Result

?
Name Value # Constant? value # Constant?
1 ca 1 yves T1 1 yes
2 A 1 yes T2 4 no
3 I 2 no T3 6 no
4 J 3 no T4 6 no
3 Cc5 5 ves 75* 7 yves { deleted)
6 K 6 no
7 c20 7 yes
8 L 8 no
9 M 2 no
SYMTAB Auxiliary fields of
triples
Left Right Result Original
Value # Value value # oF value # wvalue # instruction
1 4 2 * 3 4 T2
5 5 4 + 5 6 73
7 20 7 * 6 8 76
CONSTVAL AVAILTAB

Figure 1-4 Information collected up to instruction 9

An important side effect of this or any other basic block analysis routine
is that it can be modified to compute certain sets which are useful in deter-
mining global information. For example, the final version of the available
computations table can be used to determine the set of expressions which are
“available on exit” from the block. In the next section we turn to the problem
of performing global analysis once we have such sets for each basic block.

1-3. GLOBAL DATA FLOW ANALYSIS

While analysis within basic blocks can lead to substantial improvements
in a program, larger gains may be achieved by going a step further and gath-
ering information on a global scale. For example, suppose the expression
A * Bin block b is not eliminated by local methods; that is, there is no earlier
computation of 4 * B in b. Suppose also that neither 4 nor B is redefined
in b prior to the computation of 4 * B. If we can prove that, no matter what
control path is to be taken at run-time, 4 * B will always be computed before
control reaches b, then we can still eliminate the computation in b. Estab-
lishing facts like this requires an analysis of control flow in the program that
is thorough enough to yield useful information about data relationships.

In essence, the problem is this: Given control flow structure, we must
discern the nature of the data flow (which definitions of program quantities

15

16 A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES /[CHAP. 1

can affect which uses) within the program. The questions about data flow fall
into two classes:

1. Those which, given a point in the program, ask what can happen
before control reaches that point (i.e., what definitions can affect
computations at that point);

2. Those which, given a point in the program, ask what can happen
after control leaves that point (i.e., what uses can be affected by
computations at that point).

Class 1 problems are usually called forward flow problems, while class 2
problems are backward flow problems. The gathering of information to solve
problems of either class is accomplished in two phases. Once the program is
subdivided into basic blocks, possible block-to-block transfers are noted and
program loops are found. This phase is known as control flow analysis.
Next the information about how uses and definitions relate to one another is
gleaned in the global data flow analysis phase. The construction of data flow
information is difficult because most nontrivial programs have complex
control flow graphs; nevertheless, a number of solution methods exist. In
this chapter I shall outline a few of the most important.

The control flow of a program may be represented as a directed graph
G = (N, E, n,) where N is the set of nodes, E is the set of edges, and n, is the
program entry node. In this model, nodes represent basic blocks and edges
represent possible block-to-block transfers. Figure 1-5 shows the control
flow graph corresponding to the PL/I program in Fig. 1-2.

Two special notations will be used frequently in discussmg'control flow

- -

’ ~
" o ,l Dummy program entry

()
. e Exit
(3)
o@iso
(s)

Figure 1-6 Control flow graph for Fig. 1-2

SEC. 1-3 /| GLOBAL DATA FLOW ANALYSIS 17

graphs. The successor set S(x) for a node x is defined as
S(x) ={y € N|(x,)) € E}
and the predecessor set P(x) is
' P(x) ={y € N|(y,x) € E}

A simple path in G is a sequence of nodes (ny, n5, . - -, n,) such that all nodes
are distinct and (n,, n,,,) € E, 1 <i<k. A simple cycle is a simple path
except that n, = n,.

We shall use as examples two problems which are typical of class 1 and
2 data flow problems.

(a) Available expression analysis. 'We say that an expression is defined
at a point if the value of that expression is computed there. An expression is
said to be killed by a redefinition of one of its argument variables. In these
terms an expression is available at point p in G if every path leading to p
contains a prior definition of that expression which is not subsequently killed.
Let AVAIL(d) be the set of expressions available on entry to block 6. We
define a system of equations for AVAIL(b), b € N, in terms of sets which
can be computed from local information. Let NKILL(b) be the set of expres-
sions which are not killed in block b and DEF(b) be the set of expressions
which are defined in b without being subsequently killed in b, i.e., the set of
expressions which are always available on exit from b. These definitions lead
directly to the system of equations:

AVAIL(®) = () (DEF(x) U (AVAIL(x) N NKILL(x))) (1-1)

Solution of this system will provide the desired global information.

(b) Live variable analysis. A path in G = (N, E, n,) is said to be
X-clear if that path contains no assignment to the variable X. The variable X
is live at point p in G if there exists an X-clear path from p to a use of X.
Let LIVE(d) be the set of variables which are live on entry to block b. Once
again we seek a system of equations for the live sets in terms of local sets.
Let IN(b) be the set of variables which are live on entry to b because of a use
within b, and let THRU(b) be the set of variables which are redefined in b.
The following system of equations is the result:

LIVE(b) = IN(®) U \J (THRU(®) N LIVE(x)) (1-2)

Similar equation systems can be developed for most data flow analysis prob-
lems. In fact, Kildall [Kild73], Kam and Ullman [Kam76], Graham and
Wegman [Grah76], and Tarjan [Tarj75b] all formalized their treatment of
data flow analysis by providing axioms for “acceptable” equation systems,
thus unifying their methods. To show that a particular problem can be handled
by a standard algorithm, one need only show that the sets of quantities and

18 A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES / CHAP. 1

rules for combining the sets at control flow junctions satisfy the required
axioms. This approach simplifies the discussion of data flow methods. Curi-
ously, it has also contributed to the classification of the algorithms by ranges
of applicability [Kam76, Fong77]. Fast solution methods to these problems
have taken a number of forms. Nine such methods are surveyed here, four
in detail.

1-3.1. Iterative Techniques

Perhaps the simplest approach to data flow analysis is to iterate through
the nodes of the graph applying the appropriate equations until no changes
take place. Such a method has been studied by Hecht and Ullman [Hech76,
Ullm73] and subsequently by Kennedy [Kenn76]. Here is the iterative
algorithm for live variable analysis.

Algorithm IT: Iterative Live Analysis

Input: IN(b), THRU(®), Vb € N.
Output: LIVE(b), Vb € N.
Method:

begin
for all b € N do LIVE(D) := IN(b) od;
change := true;
while change do
change := false;
for all » € N do
oldlive := LIVE(b);
LIVE®) := IN(b) U GLS)(M (THRU(b) N LIVE(x));

if LIVE(bd) == oldlive then change := true fi
od
od
end

If n = | N|, this algorithm requires O(n?) extended (or “bit vector”) steps for
the entire computation. Kildall [Kild73] has described a very general form of
the iterative algorithm using lattice theory, while Kam and Ullman [Kam76}
have shown that there exist optimization problems for which the iterative
algorithm does not converge rapidly—for example, constant propagation.

1-3.2. Nested Strongly Connected Regions

A somewhat structured approach to data flow is based upon the loop
organization in the program. This method proceeds from local to global
analysis by first extending data flow information to inner loops, then effec-
tively collapsing these loops to single nodes before continuing to the next

SEC. 1-3 / GLOBAL DATA FLOW ANALYSIS 19

level. Many optimizations such as code motion can be performed in stages
using this method with code being “bubbled” outward to less frequently
executed regions. This is the technique originally used by Allen [Alle69].
The difficulty is that it is not always easy to find a suitable collection of nested
strongly connected regions. The accepted way of locating such a collection
was first devised by Earnest, Balke, and Anderson [Earn72]; it involves the
application of two ordering algorithms on the nodes of the control flow graph.
Earnest [Earn74] continued this work by presenting a number of optimization
algorithms which used nested regions. Beatty [Beat74] has developed an
elegant register assignment algorithm using this method.

1-3.3. Imterval Analysis

A simpler way to partition the control flow graph into regions was devel-
oped by Cocke and Allen [Alle70, Alle71, Cock70a, Alle76]. An interval in
G is defined to be a set 7 of blocks with the following properties:

1. There is a node A € I, called the head of I, which is contained in
every control flow from a block outside 7 to a block within 7; i.e.,
I is a single-entry region.

2. [is connected. (This property is trivial if G is connected.)

3. I — {h} is cycle-free; i.e., all cycles within 7 must contain A.

Given a node 4 in some graph G, the following algorithm, due to Allen
and Cocke [Alle76], constructs MAXI(#), the maximal interval with head A.
In presenting the algorithm, I use the notation S[M], where M is a set of
nodes, to mean

L) S()

xeM

that is, the set of successors of nodes in M.

Algorithm MIl: Maximum Interval Construction.

Input: The specified head A.
Output: MAXI(h).

Method:
begin
I:= {h};
while 3 x € (S[i] — I) such that P(x) = 1
do
I:= 171U {x}
od;
MAXI(h) := 1
end

20 A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES |/ CHAP. 1

As we shall see, the order in which Algorithm MI adds nodes to an interval 7
is important, so it is usually given a name: interval order. Interval order is a
total ordering on 7 which preserves the partial order generated by the subgraph
I — {h}. The significance is that if nodes of 7 are processed in interval order,
a particular node x(3= #) will be treated only after every node in P(x) has been
processed. Similarly, if 7 is processed in reverse interval order, every node in
S(x) N I will be treated before x is. These order-of-processing observations
are crucial to data flow algorithms based on intervals.

Using Algorithm MI as a subprogram, the following algorithm, also
due to Allen and Cocke [Alle76], partitions a flow graph into a set of disjoint
intervals. Algorithm IP is based upon the observation that any node which
is the successor of some node in interval 7, but which is not in 7 itself, must be
the head of some other interval J.

Algorithm IP: Interval Partition.

Input: A flow graph G = (N, E, n,).
Output: A set INTS(G) of disjoint intervals which form a partition of G.
Auxiliary:

A set H of potential interval heads.

A set DONE of heads for which intervals have been computed.
Method:

begin ¢ the program entry n, is a head ¢
H := {n,};
DONE := ¢;
while H = ¢ do
x := an arbitrary node in H;
find MAXI(x) using Algorithm MI;
INTS(G) := INTS(G) U {(MAXI(x)};
¢ add new heads ¢
H:= H U (S[MAXI(x)] — MAXI(x) — DONE)
od
end

As an example, consider the flow graph displayed in Fig. 1-6. When Algorithm
IP is applied to this graph, it identifies nodes 1, 2, and 5 as interval heads;
the corresponding intervals are {1}, {2, 3, 4} and {5, 6, 7}.

For a given flow graph G, the derived flow graph I(G) is defined as fol-
lows:

1. The nodes of I(G) are the intervals in INTS(G).

2. 1IfJ, K are two intervals, there is an edge from J to K in I(G) if and
only if there exist nodes n, € Jand ny € K such that n, is a succes-
sor of n, in G. Note that n, must be the head of XK.

3. The initial node of I(G) is MAXI(n,).

Figure 1-6 A flow graph with intervals

The sequence (G,, Gy, ..., G,) is called the derived sequence for G if
G = G,, G, = I(G), Gp—y 7= G, and I(G,,) = G,,. G, is called the derived
graph of order i and G, is the limit flow graph of G. A flow graph is said to
be reducible if and only if its limit flow graph is the trivial flow graph, a single
node with no edge; otherwise, the flow graph is nonreducible [Alle70, Alle76,
Cock70b].

Figure 1-7 shows the rest of the derived sequence for the example in
Fig. 1-6.

In this example, the graph is reducible; however, that will not always be

Gz= [(61)

G, = I(G)

Figure 1-7 Derived sequence for Fig. 1-6

21

22 A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES | cCcHAP. 1

the case, as Fig. 1-8 demonstrates. If we apply Algorithm IP to this graph,
the result will be the same graph—each node is an interval unto itself.

© s &)
Figure 1-8 A nonreducible graph

As it happens, the data flow analysis algorithms based on intervals
work only for reducible graphs, so nonreducibility could present a serious
obstacle. However, we are able to ignore this problem for two reasons. First,
three empirical studies have shown that flow graphs arising from actual
computer programs are almost always reducible, i.e., more than 959 of the
time [Alle72, Knut71, Kenn77]. Second, any nonreducible graph can be trans-
formed to a reducible one by a process known as node splitting [Cock70b].
Figure 1-9 shows a split version of Fig. 1-8; the new graph, semantically
identical to the old one, has been made reducible through the use of an exact
copy of node 3.

Figure 1-9 Split version of Fig. 1-8

Thus, secure in the knowledge that node splitting can always be applied
in those rare cases where a graph fails to reduce, we can concentrate on finding
fast data flow algorithms for reducible flow graphs.

Like all approaches which are based upon a program’s control flow
structure, the interval partition gives rise to a two-pass algorithm for data
flow analysis. I will discuss the method as it applies to live analysis, treating
each pass separately.

SEC. 1-3 |/ GLOBAL DATA FLOW ANALYSIS 23

(a) Pass 1: local to global. During the first pass, local quantities IN
and THRU are computed for larger and larger regions of the program.
The heart of this pass is Algorithm I1 below, which computes IN and THRU
for an interval from their values for blocks in the interval. Note that a second
parameter has been added to THRU to indicate a particular successor; this
permits handling of THRU for composite regions like intervals.

Algorithm 11: Interval Pass 1.

Input:
1. An interval /1.
2. IN(x), Vx € I; THRU(x,), Vx € I, Vy € S(x).

Output: IN(I); THRU(, J), VJ S).

Auxiliary: For each x € I, PATH(x), the set of variables 4 for which
there is a clear path (not containing a store into 4) from the entry of
I to the entry of x.

Method:

begin
IN() := IN(h);
PATH(A) := Q ¢ Q = set of all variables ¢
for all x € I — {h} in interval order do

PATH(x) := LJ((PATH(») N THRU(y,x));
IN(D) := IN(T) U (PATH(x) N IN(x))
od;

¢ let h; denote the head of J ¢
for J such that 4, € S[/] do
THRU{,J):= |J (@PATH(») n THRU(»,A;))

yGP(hJ) nrI
od
end

If Gy, G, . . ., G, is the derived sequence (where G, = G), pass 1 consists of
applying Algorithm Il to each interval in G,, then to each interval in G,,
and so on until it has been applied to the single interval in G,,_,. At this point,
IN and THRU sets will have been computed for each node in the derived
sequence of graphs.

(b) Pass 2: global to local. During the second pass, LIVE is computed
for smaller and smaller regions of the program. Let x* denote the single node
in G,,. Pass 2 begins with the assignment

LIVE(x*) := IN(x*)

This is clearly correct since x* has no successors. The remainder of the
pass consists of repeated application of Algorithm 12, which computes LIVE

24 A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES [/ CHAP. 1

sets for each node in an interval 7, given correct live sets for the entry to 7
and to each successor J of I. This precondition is assured by the order in which
12 is applied: first to the interval x*, then to each interval in G,,_,, and so on
(backwards through the derived sequence) until LIVE sets have been com-
puted for every node in the original graph G.

The algorithm itself is based on the observation that if nodes of 7 — {4}
are treated in reverse interval order, the live analysis equation (1-2) can always
be applied because the correct LIVE set for each successor of a given node
x € I — {h} will have been previously computed. To see this, suppose we are
processing nodes of 7 — {4} and we arrive at node x. A successor y of x can
be one of three things:

1. y is another node in 7 — {A}, in which case LIVE(y) has already
been computed because nodes are being treated in reverse interval
order,

2. yis the head of 7, in which case LIVE([) can be used for LIVE(y),

3. y is the head of some successor interval J, in which case LIVE(J)
can be used.

Algorithm I2 is a direct encoding of these insights.

Algorithm 12: Interval Pass 2.

Input:
1. An interval 7 with head A.
2. IN(x), Vx € I, THRU(x,), Vx € I, Yy € S(x).
3. LIVE(Z); LIVE(/), VJ € S{).
Output: L1IVE(x), Vx € I.
Method:
begin
LIVE(h) := LIVE({);
for all J « S(J) do
LIVE(head of J) := LIVE(W)
od
for all x € I — {h} in reverse interval order do
LIVE(x) := IN(x) U yngm (THRU(x,y) N LIVE(y))

od
end

Although interval analysis has been shown to require fewer bit vector
operations than the iterative method in many cases [Kenn76], it is still O(n?)
in the worst case, and in practical implementations the elegantly simple

SEC. 1-3 |/ GLOBAL DATA FLOW ANALYSIS 25

iterative method may prove faster. The main advantage of the interval
approach is that it constructs a representation of the program control flow
structure which can be used for other optimizations [Cock70a]. Allen, Cocke,
Schwartz, Kennedy, Aho, and Ullman [Alle70, Cock70a, Alle76, Cock70Db,
Kenn71a, Kenn76, Aho73] have applied interval analysis in the solution of
data flow problems. Allen and Cocke [Alle70, Cock70a] first used intervals to
solve class 1 (forward) problems, while Kennedy [Kenn71, Kenn76] indicated
the interval solution for class 2 (backward) problems. :

1-3.4. T1-T2 Analysis

In search of better theoretical results and faster algorithms, Ullman
[Ullm73] introduced two transformations on program graphs. Transformation
T'1 collapses a self-loop to a single node, while transformation 72 collapses
a sequence of two nodes to a single node if the second has the first as its only
predecessor. When 7'l and T2 are repeatedly applied to a control flow graph,
the graph is often reduced to a single node. Hecht and Ullman [Hech72] have
shown that the reducible flow graphs in the T'1-T2 sense are exactly the inter-
val-reducible graphs. This result has led to a number of useful characteriza-
tions of flow graph reducibility [Hech72, Hech74]. :

T'1-T2 analysis also allowed Ullman [Ullm73] to design an algorithm
which uses balanced “3-2” trees to perform available expression computation
in O(n log n) extended steps. Ullman’s method can be extended to many other
class 1 problems; however it is not known whether it can be adapted to class
2 problems.

1-3.5. Node Listings

A variation of the iterative method for data flow analysis builds an
intermediate representation of the control flow called a node listing [Kenn75b],
which is then used to solve the data flow equations. I here describe the node
listing method for live analysis.

In the solution of the live analysis problem we are concerned with how
operations in one block can effect “}iveness” on entry to another. Thus we
are interested in propagating information from every block in the program to
every other block. Thus it is natural to consider the paths along which this
information is propagated. A node listing for control flow graph G =
(N, E, n,) is defined to be a sequence

I=(n1,n25'-"nm)

of nodes from N (nodes may be repeated) such that every simple path in G
is a subsequence of /. That is, if

(xh X2 ¢« xk)

26 A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES / CHAP. 1

is a simple path in G, then there exist indices

jlsts LI] :.ik
SUCh thatji <jl'+l9 1 g i < k, and x, _— nj‘, 1 g ig k.
For any control flow graph there exists a node listing of length << n?
where n = | N| since

l=m,,n,, ..., R, A, 0y, ..., 0 ..., ,...,0M1,)

with 7 repetitions of (n,, . . ., n,) is certainly such a listing. A node listing is
minimal if there is no shorter listing for G.

The utility of this concept is demonstrated by the following algorithm
which, given a node listing, computes the live sets in a manner similar to the
Hecht-Ullman iterative method.

Algorithm NL: Node Listing Live Analysis.

Input: IN(b), THRU(D), Vb € N.
Output: LIVE(b), Vb € N.

Method:
begin
for all b € N do LIVE()) := IN(b) od;
for i := |nodelist| to 1 by —1 do

b := nodelist[i];
LIVE() := IN(b) U ij(b) (THRU(b) N LIVE(x))

od
end

The node listing concept is introduced in [Kenn75b}; in [Aho76] Aho and
Ullman show that for reducible flow graphs an O(n log n) length node listing
can be found in O log n) time. Combining this method with Algorithm NL
produces an O(n log n) algorithm to solve either class 1 or class 2 data flow
problems. Markowsky and Tarjan [Mark75] have shown that O(n log n) is
a lower bound of the node listing algorithm; i.e., no better worst-case bound
can be found, although there are linear listings for a large class of graphs
[Kenn75b]. '

1-3.6. Path Compression

Another O(n log n) data flow analysis algorithm was discovered by
Graham and Wegman [Grah76]. It is based on three transformations which
are similar to Ullman’s 7T'1 and 72. The Graham-Wegman transformations
are depicted in Fig. 1-10. Transformation 7, removes a self loop; 7, com-
presses a two-step path to a one-step path, eliminating the middle node when-
ever it has no other successors (7,b); T, eliminates a successor of the entry

T11 A@ —_—
]
T,a: —
¥
X
Tob: —
75 —
-
A Y
=))
’
~

Figure 1-10 Graham-Wegman path compression transformations

node that has no successors of its own. For technical reasons, application of
T, requires that the node with the loop have a unique predecessor. An
example reduction using these transformations is shown in Fig. 1-11. Graham
and Wegman have shown that any graph reducible in the interval sense will
be reduced by T',-T;.

Data flow analysis using the path compression transformations is
similar to interval analysis. The method I present here differs from the one
originally published by Graham and Wegman in that it easily handles
backward as well as forward analysis.

Given a flow graph, the first step is to construct a “parse,” i.e., a list
of transformations which will reduce the graph to a single node. The complex-
ity analysis is very sensitive to the order in which transformations are applied.
Graham and Wegman use a clever algorithm to choose a parse that reduces
loops from the inside out and minimizes the number of T, transformations.
Since T, transformations are the most expensive, this strategy achieves a
good time bound.

Once available, the parse is employed in a two-pass algorithm which
computes IN and THRU for composite regions of increasing size in a pass
through the reduction sequence, then computes LIVE for each node as it
appears in the reverse reduction sequence (or production sequence). This
process is embodied in Algorithm P2, which applies a set of associated
computations at each reduction or production. Each transformation in the

27

T,(121) . Ty

7,(123)

—_—
—— —

7,(013) T3

Figure 1-11 Sample Graham-Wegman reduction

parse is really a pair <{¢, >, where ¢ is a transformation number and 7 is a
mapping from the nodes in the production to nodes of the graph being

reduced ; in other words, i specifies the region of application for transforma-
tion 7. Such a pair is called a transformation instance.

Algorithm P2: Two-pass Live Flow Analysis
Input:
1. A graph G = (N, E, ny).
2. IN(x), Vx € N; THRU(x, »), Vx € N, YVy € S(x).

3. A list PARSE, consisting of transformation instances <{¢, 7> which
reduce G.

Output: LIVE(x), Vx € N.
Method:
begin
¢ pass 1 ¢
for i:— 1 to | PARSE| do
{t,p> := PARSE[i];
apply the reduction computations associated with 7 to the
nodes specified by 7.

28

SEC. 1-3 / GLOBAL DATA FLOW ANALYSIS 29

od;
LIVE(n,) := IN(n,);
¢ pass 2 ¢
for i := |PARSE|to 1 by —1 do
{t,m> := PARSE[i];
apply the production computations associated with 7 to the
nodes specified by 7.
od
end

All that remains is to specify the computations associated with each transfor-
mation. Figure 1-12 shows the computations of IN and THRU performed
during the reduction pass. Note that path compression emphasizes edges
rather than nodes, so the THRU sets being constructed are for composite
edges. For notational convenience, we define THRU of a nonexistent edge to
be the empty set. Figure 1-13 shows the production computations; an initial
LIVE set for each node is determined when the node first appears as the result
of some production. This live set is then revised as new exit edges are added
by T,a productions. :

In practice, path compression is very fast indeed; in fact, it operates in
linear time for an extremely large subclass of the reducible flow graphs. Its
only disadvantage is that, although classified as a “structured” method, the
structure it uncovers seems unnatural because it is based on edges rather than
nodes. Nevertheless, path compression is an excellent algorithm from both
the theoretical and practical standpoints.

1-3.7. Balanced Path Compression

In 1975, Tarjan devised an algorithm [Tarj75a] which combined ele-
ments of the node listing approach with a stronger form of path compression
using a balanced tree data structure he had introduced in [Tarj75b)]. The
result is a very fast algorithm with running time O(no(n, 1)), where « is related
to a functional inverse of Ackermann’s function. Thus for all practical
purposes the algorithm is asymptotically linear; unfortunately it seems very
complex, so until there is some experience with an implementation, one
cannot tell whether it is suitable for inclusion in a compiler. Tarjan’s algorithm
can be used to solve a variety of class 1 problems, but it is not yet clear that
it can be adapted to class 2 problems.

1-3.8. Graph Grammars
In an attempt to further simplify the problem of data flow analysis,

Farrow, Kennedy, and Zucconi [Farr76] studied further restrictions on the
class of acceptable graphs, restrictions stronger than the traditional notion of

—— —_—
—~
)
!
7, _- .

No computation ~
IN{ng) : = IN{ng) U (THRU (ng,x) N IN{(x))
-

24
THRU(x, z) := THRU(x, z) U (THRU (x, y) N THRU{(y, 2))

/
\

Tob
IN(x) := IN(x) U (THRU(x, y) N IN(y))
THRU(x, z) : = THRU(x, z) U (THRU(x, y) N THRU(y, 2))

-— s
- ‘\

Figure 1-12 Reduction computations

reducibility. They introduced the Semi-Structured Flow Graph (SSFG)
grammar, depicted informally in Fig. 1-14, and studied the class of flow
graphs generated by that grammar. The set of rules in Fig. 1-12 was chosen
because it seems to include most of the control structures proposed as exten-
sions of the basic Bohm and Jacopini set for structured programming
[B6hm66]. For example, the SSFG grammar can generate the double-exit

30

n

LIVE(x) := IN(x)
T,b

LIVE(y) := IN(y) U (THRU(y, z) N LIVE(2))

f\w%

LIVE(y) = LIVE(y) U (THRU(y, z}) N LIVE(Z2))

——-\

Figure 1-13 Production computations

loop used by Ashcroft and Manna [Ashc71] to demonstrate a limitation of the
Bshm-Jacopini control structures (see Fig. 1-15).

The major problem with using SSFG or any other graph grammar for
data flow analysis is that of graph parsing, constructing a parse foran arbitrary
graph. For the SSFG rules, an important step toward the fast parsing
algorithm was a proof that corresponding SSFG reductions can be applied in
any order without affecting the result. In other words, reducibility of a given
graph is not sensitive to the order in which reductions are applied. Farrow,

31

(a) Basic block (b} Sequence

I e

y

(c) Conditional (d) Loop
(e) Decision block (f) Decision sequence 1

_. <

(g) Decision sequence 2 (h) Double decision

<2

(i} Double-exit loop

Figure 1-14 SSFG grammar

32

Decision

O Loop sequence 2
B —i. ————-
Double
decision

Decision ‘Basic
sequence 1 block *
e —_—_—
Decision
block A

"

Figure 1-15 Derivation of the Ashcroft-Manna counterexample

Kennedy, and Zucconi established this result by proving, via a long graphical
argument, that the SSFG reductions have the Finite Church-Rosser property
[Aho72, Seth74]. As a result of this property, they were able to devise a
parsing algorithm which applies reductions in a disciplined way and avoids
wandering around the graph.

I present the parsing algorithm in two parts. First, Algorithm CO
(collapse) finds all the reductions which apply at a particular node x. If it

discovers at least one reduction, it sets a success flag to true and returns the
reduction list.

Algorithm CO: Collapse
Input: A graph I"' and a node xin I'.

Output :
1. A flag SUCCESS indicating whether or not a reduction has been
found.

33

k,,m i

34 A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES / CHAP. 1

2. A list of reductions P, (possibly empty).
3. A modified graph I'”.
Method:

begin P, := €; SUCCESS := false;
reducing :— true; I'' :=1T";
while reducing do
for each production P in Gggpc do
if right-hand-side(P) is isomorphic to a region R in I
headed by x
then
apply P! to reduce R to a single node x’, forming a new
version of I’ ; add the production P to P, along with some
auxiliary information;
x:= x;
SUCCESS := true;
goto reduced
fi
od;
reducing :— false;
reduced:
skip
od
end

The SSFG parsing algorithm assumes a list L of nodes of the program
in straight order, a fairly obvious order for nodes of the flow graph [Earn72,
Hech75], and produces a parse P;.. The basic scheme is to take each node
from L in sequence and try a collapse. Whenever a collapse succeeds, the
algorithm backs up to a predecessor, indicated by a “link,” to try further
collapses; otherwise it moves on to the next node on L. This disciplined
backup is the key to a linear time bound.

Algorithm PA: SSFG Parse

Input:
1. A graphT.
2. A list L of nodes of T in straight order.
QOutput:
1. A list P of reductions.
2. An answer to the question, “Is I' in the language generated by

kL)

GSSFG *

Sgc. 1-3 /| GLOBAL DATA FLOW ANALYSIS 35

Method:

begin _
L = the list of unvisited nodes (straight order);
x ;= the entry of I'';
Pr = €;
remove x from L;
while x 7= null do
perform a collapse at node x;
¢ collapse produces I'", P, and the flag SUCCESS ¢
make x the unique linked predecessor of all unvisited succes-
sors of x in I'’;
append P, to Pr;
I:=17";
if SUCCESS ¢ at least one reduction ¢
and x is linked to a predecessor

then x := linked predecessor of x
elif L — € then x := null
else x:=hd L;L:=tlL
fi
od;

if ' is now a single computation node

then the graph is SSFG and P, is a valid parse
else the graph is not SSFG

fi

end

The operation of this algorithm is demonstrated by the example in Fig. 1-16.
In this figure, links are indicated by dotted lines. Nodes are numbered in
straight order. The steps are as follows:

1.

An unsuccessful collapse is attempted at node 1. A link to 1 is
inserted in 2.

A collapse at node 2 discovers a “decision sequence 1” involving
node 4. Links to 2 are inserted in nodes 3 and 10 [Fig. 1-16(b)].

A backup leads to another unsuccessful collapse at 1.

A collapse at node 3 discovers a long sequence of reductions: two
“decision sequence 1” reductions [Fig. 1-16(c)}, a “double-exit loop”
and a “decision sequence 1” [Fig. 1-16(d)], a “conditional” and a
“decision sequence 2” [Fig. 1-16(e)]. A link to 3 is inserted in 10,
but not in 2 (it has been visited).

Collapse (1)
(fail)

Collapse (2)
————————-—

Collapse (1)
(fail)

’———---——--—\

(a) | (b)

Collapse (3):

(d) {e)
a Collapse (1)
— = ©
@
(f) _ (g)

Figure 1-16 An example parse

Sgc. 1-3 /| GLOBAL DATA FLOW ANALYSIS 37

5. After a backup, a collapse at node 2 discovers 2 “double-exit loop,”
a “conditional,” and a “sequence” [Fig. 1-16(f)].

6. After one more backup, a collapse at node 1 produces the final
“sequence” reduction.

It has been shown that this algorithm, in time linear in the number of
blocks in the original program, either produces a parse for I' or reports that
T is not reducible. If the graph is reducible, the length of its parse must also
be linear in the size of the original graph.

With the parse in hand, we can apply the same two-pass algorithm used
by path compression (Algorithm P2) to perform data flow analysis. Space
does not permit me to specify the computations associated with each of the
nine transformations in the SSFG grammar ; instead, I have selected two rules,
“sequence” and “double-exit loop,” as examples. Reduction computations
for these rules are shown in Fig. 1-17 and production computations in Fig.

(b)

Sequence

IN(x) := IN(x) U (THRU(x, y) N IN(y))
THRU(x, z) := THRU(x, y} N THRU(y, 2)

(i)

Double-exit
loop

z w IN{(x) := IN{x) U (THRU(x, y) N IN(y))
THRU(x, z) := THRU(x, 2)
THRU(x, w) := THRU(x, y) N THRU(y, w)

Figure 1-17 Sample reduction computations

1-18. As with path compression, a correct LIVE set is determined for each
node when it first appears as the result of some production. Since there is a
fixed number of operations associated with each transformation in the parse,
the linear parse length implies that the entire computation takes linear time.

An important byproduct of the method is the parse itself, which can be

i

Sequence

P4

LIVE(y) := IN(y) U (THRU(y, z) N LIVE(z))

Double-exit
loop

z w

LIVE(y) := IN(y) U (THRU(y, x) N LIVE(x))
U (THRU(y.w) N LIVE (w))

Figure 1-18 Sample production computations

used for many different data flow problems and which provides a convenient
representation of the structure of the program. Because it uncovers loops and
other control constructs, this representation can be used to perform opti-
mizations like code motion and strength reduction. The structure discovered
by the SSFG parse is more natural than that discovered by the interval method
or the Graham-Wegman technique, because the SSFG grammar is based
upon control structures arising from good programming practice.

The main drawback of the graph grammar approach is its limited range
of applicability. In order to find out how much of a drawback that is, Kennedy
and Zucconi conducted a followup study in which they analyzed 500
FORTRAN subroutines taken from running programs used by several
departments in the School of Natural Sciences at Rice University. All these
programs were written before the emphasis on structured programming, yet
94 7; were Cocke-Allen-reducible and, of these, 88 % were SSFG-reducible.
In other words, 88 % of the programs for which most other methods work can
be reduced and hence analyzed by the SSFG method [Kenn77].

As a final note I would point out that the Graham-Wegman algorithm
is also linear on all the SSFG-reducible graphs. It is gratifying to observe
that well-structured programs can produce benefits other than the obvious
ones—e.g., faster compilation speeds. In a sense, programs that are easier for
humans to understand are also easier for compilers to understand.

38

1-3.9. High-Level Data Flow Analysis

The methods surveyed thus far are designed to work with a low-level
version of the program. One might well ask if it is possible to perform the
same analysis on a high-level representation such as the parse tree. The answer
is yes. This approach, often called high-level data flow analysis, is similar to
the graph grammar method, except no complicated graph-parsing algorithm
is required. For simplicity, I will illustrate the method by considering a lan-
guage which contains no escape or goto statements. Consider the simple gram-
mar fragment below.

{ programn)> ::= begin {statement) end

{statement’> ::= {assignment >

{statement ::= {statement) ; {statement)>

{statement> ::= if {condition)> then {statement else {statement) i

{statement> ::= while {condition)> do {statement> od

Although this grammar is clearly ambiguous, we can nevertheless write
a parser which resolves the ambiguity in some sensible way, say by grouping
from left to right. 4

The parse tree for a program generated by this grammar will have a
{ program’> node as its root and a number of {statement’> nodes as nontermi-
nals in the tree. Data flow analysis can be applied to such a tree in the familiar
two-pass fashion. The first pass propagates IN and THRU sets associated
with {statement) nonterminals up toward the root ;the second pass propagates
LIVE sets down toward the leaves. To specify the entire procedure within this
framework, one need only specify the computations that can occur at each
{statement)> node: for pass 1, how to compute IN and THRU for a {state-
ment> given IN and THRU for its parts, and for pass 2, how to compute
LIVE for subparts of a {statement) given LIVE for the {statement’) along
with IN and THRU for the parts, as determined on pass 1. These specifi-
cations must be given for each rule of the grammar.

As an illustration, consider the computations associated with the sample
grammar given earlier. For compactness, 1 will specify these computations
using the shorthand notations S for {statement), C for {condition>, P for
 program>, and A for <{assignment>; I will use subscripts to distinguish
different occurrences of the same nonterminal in a single rule. Each nonter-
minal S will have a number of associated attributes: IN, THRU, LIVE, and
LIVEOUT (the set of variables live on exit) for the region that S represents.
The specification is completed by associating with each rule of the grammar
semantic equations, which show how to compute the various attributes. To
apply the semantic equations at a particular node while traversing the parse
‘tree, set up a correspondence between the node and its sons on the one hand

39

40 A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES / CHAP. 1

and the nonterminals of the production that applies at the node on the other.
Then the semantic equations associated with the rule can be used to compute
attributes for the tree nodes.

Here is the complete specification for the sample grammar.

1. P := begin S end

¢ no computations on pass 1 ¢
¢ pass 2 computations ¢
LIVE(S) := IN(S);
LIVEOUT(S) := ¢;

2. Su:= A4

¢ pass 1 ¢

IN(S) := IN(A4);

THRU(S) := THRU(A4);

¢ pass 2 ¢ _

LIVE(A) := IN(4) U (THRU(A) N LIVEOUT(S));
3. Sou=S5:;S,

¢ pass 1 ¢

IN(S,) := IN(S;) U (THRU(S,;) N IN(S,));
THRU(S,) := THRU(S,;) " THRU(S,);

¢ pass 2 ¢

LIVEOUT(S,) := LIVEOUT(S,);

LIVE(S;) := IN(S;) U (THRU(S,) N LIVEOUT(S)));
LIVEOUT(S,) := LIVE(S,);

LIVE(S,) := IN(S;) U (THRUC(S,) N LIVEOUT(S)));

4. S, ::=if C then S, else S, fi

¢ pass 1 ¢

IN(S,) := IN(C) U (THRU(C) N (IN(S,) U IN(S,)):
THRU(S,) := THRU(C) N (THRU(S,) U THRU(S,));
¢ pass 2 ¢

LIVEOUT(S,) := LIVEOUT(S,) := LIVEOUT(S,);
LIVE(S,) := IN(S,) U (THRU(S;) N LIVEOUT(S),));
LIVE(S,) := IN(S,) U (THRU(S,) N LIVEOUT(S,));
LIVEOUT(C) := LIVE(S;) U LIVE(S,);

LIVE(C) := IN(C) U (THRU(C) N LIVEOUT(C));

5. S, ::= while C do S, od

¢ pass 1 ¢
IN(S,) := IN(C) U (THRU(C) N IN(S,)):
THRU(S,) := THRU(C);

¢ pass 2 ¢

SEC. 1-3 /| GLOBAL DATA FLOW ANALYSIS 41

LIVEOUT(C) := LIVEOUT(S,) U IN(S,)
U (THRU(S,) N IN(O));
LIVE(C) := IN(C) U (THRU(C) N IN(C));
LIVEOUT(S,) := LIVE(C);
LIVE(S,) := IN(S,;) U (THRU(S,) N LIVEOUT(S,));

The high-level approach, described here via an attributed grammar
[Knut68], has several advantages. First, because the computations at each
node of the parse tree are selected from a finite set and because the tree is
traversed exactly twice, the total amount of processing is linear in the number
of nodes of the parse tree. However, the constant of proportionality depends
on the richness of the set of control structures—the richer the language, the
more complex the data flow analysis.

Second, the method lends itself to convenient updating of data flow
when sections of the parse tree are modified by optimization. If the leaf of
some subtree is changed, new values of IN and THRU can be propagated
upward to the first nonterminal where these sets are unchanged; then the
computation of modified LIVE sets can be propagated back toward the leaves.
This process limits the updating in response to a change to the region where
the change actually makes a difference. ,

Finally, the first pass of high-level analysis can be performed as a part
of the parse itself. Whenever a composite control structure is recognized, the
IN and THRU sets for the region it represents are computed from IN and
THRU for its parts according to the semantic equations above.

Various formulations of high-level data flow analysis have been pro-
posed [Wulf75, Neel75, Jaza75b]. Particularly notable is its use in the
BLISS/11 compiler at Carnegie-Mellon [Wulf75]. T he name “high-level
data flow analysis” was coined by Rosen in his detailed treatment of the
method [Rose77]. Rosen’s approach generalizes to more complicated control
structures by using flexible semantic equations that can be applied in
different situations.

1-3.10. Summary Table

Table 1-3 summarizes the characteristics of the algorithms I have
described. The column labeled “Speed” shows the asymptotic complexity of
each method. In the “Simple” column, “S” indicates an easy-to-program
method, “C” indicates a complicated method, and “M” indicates average
difficulty. A “yes” under “Structure” says that the method uses a model of
the program loop structure in its computation, i.e., that the algorithm attempts
to discover the structure of the program. A “yes” in the “Both ways” column
indicates that the algorithm works in the given time on both forward and
backward data flow problems. The last column shows the class of graphs

42 A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES / CHAP. 1

for which each algorithm was analyzed (in most cases this is also the class
to which the algorithm is applicable).

Table 1-3 Summary of data flow methods

Both Graph

Method Speed Simple ? Structure ? ways ? class
Iterative nz S no ves all
Interval nz M yes ves reducible
Bal. tree nlogn C yes no reducible
Path comp. nlogn M semi yes reducible
Node list nlogn M no yes reducible
Bal. path not(n, n) C no ? reducible
Grammar n M ves yes L(grammar)
High-level n S yes yes parse trees

1-3.11. Interprocedural Analysis

The foregoing material has said nothing about the effect of procedure
calls on data flow analysis. Usually calls within blocks are treated as complex
instructions which may affect the values of many variables. It is the function
of interprocedural data flow analysis [Alle74] to construct summary information
for a procedure: which variables are used and which are redefined as the result
of a call. For example, interprocedural analysis might construct IN and
THRU sets for the procedure call to support live analysis.

Interprocedural analysis is important because, in its absence, extremely
conservative assumptions must be made. For example, in live analysis, it
must be assumed that a procedure uses every variable it has access to; in
availability analysis it must be assumed that it kills every expression it can and
defines no new ones. Broad assumptions like these quickly dilute the power
of data flow analysis. '

Interprocedural analysis is a complex process, particularly for languages
with complex scoping rules [Bart78]. It usually entails constructing a call
graph and summary information for a single activation of each procedure in
the graph, then taking a transitive closure on the graph. Since it is treated
elsewhere in this volume, I will not discuss it in detail, but the reader should
be aware that it is an essential part of any system for global data flow analysis.

1-4. USE-DEFINITION CHAINS

For data flow analysis problems which are more complex than the ones
examined previously, data interconnections may be expressed in a pure form
which directly links instructions that produce values to instructions that use

SEC. 1-4 |/ USE-DEFINITION CHAINS 43

them. These links are called use-definition chains. For the purposes of this
exposition, I will assume that these chains are realized in the following forms:

1. For each instruction i and input variable V, DEFS(V, i) is the set
of instructions which may be the most recent defining instructions
for ¥ at run time. In other words, DEFS(V, i) contains the set of
instructions which may compute the value of ¥ used by i.

2. For each instruction / and output variable V, USES(V, i) is the set
of instructions which may use the value of ¥ computed by i at
run time. These sets are related as follows:

x € DEFS(A4,y) = y € USES(4,x).

I will postpone, for the moment, a discussion of how use-definition
chains are used in favor of a discussion of how to compute the sets DEFS
and USES. Suppose we are considering an instruction y and an input variable
A. If there is a defining instruction x earlier in the same block, then this is
the only possible member of DEFS(A, y). Otherwise, we must discover which
instructions in the program compute values that can “reach” the beginning
of the block; every such instruction that has A4 as its output variable should
be in DEFS(A, y). Thus the problem is reduced to computing, for each block
b in the program, the set REACHES(d) of pointers to instructions that com-
pute values which are available on entry to 4. Let DEFOUT(y, x) be the set
of instructions in block y which produce values that are still available on
entry to successor x, and let NKILL(y, x) be the set of instructions whose
output variables are not redefined in passing through block y to block x.
Then the following system of equations holds.

REACHES(n,) = ¢
REACHES(x) = U (DEFOUT(y, x) U (REACHES(y) (1-3)

yEP(x)

M NKILL(y, x)))

This is exactly the kind of system which can be solved by any of the data flow
analysis methods described in Section 1-3.

Once DEFS is available, USES can be produced by simple inversion.
The informal algorithm below can be used for this purpose.

Algorithm US: USES Computation

Inpur: DEFS.
Output: USES.
Method:

begin
USES(*) := ¢;

44 A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES / CHAP. 1

for each instruction 7 in the program do
for each input variable 4 of instruction i do
for each instruction j in DEFS(4,i) do
USES(output(j),j) := USES(output(j),j) U {i}
od
od
od
end

To illustrate the usefulness of these chains, I present an application to
dead code elimination. The usual method for eliminating dead code is to first
find and mark all instructions which are “useful” in some sense. This is done
by starting with a set of critical instructions, instructions which are useful
by definition. For example, you might declare all output instructions to be
critical. Once every instruction in the critical set is marked, the method pro-
ceeds to mark any instruction that defines a variable used by at least one
marked instruction, continuing until no more instructions can be marked.
The use-definition chains help in the location of instructions which can com-
pute some input of a marked instruction. To manage the process, Algorithm
MK below uses a workpile of instructions ready to be marked.

Algorithm MK : Mark Useful Instructions

Input:
1. Use-definition chains, DEFS(v, 7).
2. Set of critical instructions CRIT.
Output: For each instruction 7, MARK(?) = true iff i/ is useful.

Method:

begin
MARKC(*) := false;
PILE := CRIT;
while PILE = ¢ do
X := an arbitrary element of PILE;
PILE := PILE — {x};
MARK(x) := true;
for each y € DEFS(A4,x) do
if " MARK()») then
PILE := PILE uU {y}
fi
od
od
end

SEC. 1-4 |/ USE-DEFINITION CHAINS 45

All that remains after application of the marking algorithm is to remove any
unmarked instructions as useless.

While Algorithm MK demonstrates a fairly powerful application of
use-definition chains, it only uses chains in one direction. We shall next
consider the problem of global constant folding, whose solution requires
simultaneous use of chains in both directions. This is because each constant
instruction discovered may lead to more folding at the use points of its
output variables, and testing an instruction for constant inputs implies an
examination of the defining points of those inputs. Put another way, each time
an instruction is replaced by a constant, the folding algorithm must recheck
all uses of its output variable to see if the using instruction might also be
eliminated. Such a check necessarily involves looking at other definitions
which can reach the use. The situation is depicted in Fig. 1-19.

Other uses of same variable

New - - -

constant
instruction

use-def
chains
DEFS

Use of new constant

Figure 1-19 The need for two types of chains in constant folding

The method implied by the above observation is realized in Algorithm
CP. Like Algorithm MK, it uses a workpile to control iterations. A number
of set-theoretic notations are used in the informal specification; these have
the obvious meanings. The algorithm also uses a subroutine COMPUTE to
evaluate constant instructions.

Algorithm CP: Constant Propagation

Input:
1. A program PROG containing instructions of the usual type.
2. A flag CONST(a, i) for each instruction { and input or output
variable 4 of i. Initially, CONST(A, i) is true only if 4 represents a
constant denotation.
3. The chains USES and DEFS.

46 A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES / CHAP. 1

Output:
1. The modified CONST flags.
2. The mapping VAL(A, i) which provides the run-time constant
value of variable A4 at instruction i; VAL(A, i) is defined only if
CONST(A, i) is true.

Method:

begin ¢ start with the trivially constant instructions ¢
PILE := {x € PROG|(VY 4 € inputs(x)]| CONST(A4,x))};
while PILE == ¢ do
x := an arbitrary element of PILE;
PILE := PILE — {x};
B := output(x);
for each i € USES(B,x) do
¢ check for constant inputs ¢
conB := true;
for each y € DEFS(B, i) — {x} while conB do
if CONST(A,y) and VAL(B,y) = VAL(B,x)
then conB :— true
else conB := false
fi
od;
¢ test the exit condition ¢
if conB then
CONST(B,i) := true;
VAL(B,i) := VAL(B,x);
¢ is the instruction now constant? ¢
if (VA € inputs(i) | CONST(A4,i)) then
C := output(i);
CONST(C,i) := true;
VAL(C, i) := COMPUTE();
PILE := PILE U {i}
fi
fi
aod
od
end

Although termination and correctness of Algorithm CP are subtle,
the interested reader will not find it difficult to establish them. The algorithm
is interesting because it serves as a model for many other optimization
algorithms. One such will be seen in Section 1-6.

1-5. SYMBOLIC INTERPRETATION

The analysis methods presented so far can only solve restricted classes
of data flow problems. The algorithms of Section 1-3 work only for problems
which ask whether or not a single event may (or must) have happened before
control reaches some point (in the forward case) or may happen later (in
the backward case). They are not effective for questions about sequences
of events along control flow paths. Use-definition chain methods are more
general, but they too can be imprecise because information is gathered by
jumping between uses and definitions rather than by following individual
execution paths [Kap178b].

The most precise method for gathering global data flow information is
symbolic interpretation [Wegb75, King76]. As implied by the name, symbolic
interpretation entails executing the program with symbolic values for all
variables whose values are indeterminate at compile time. For example, if
the value of N in a given FORTRAN program is always 5 but the value of M
is read in as data, M would be assigned a symbolic value «. Then after
executing the statement

L= N*M
L will have the (partially) symbolic value 5o.

It should be easy to see that the value numbering method of Section 1-2
is just symbolic interpretation restricted to straight-line code. As in value
numbering, the compiler can uncover useful facts about the relationships
among values of program variables at point p by executing the program
symbolically up to that point. But there is, of course, a hitch. At conditional
transfers of control, the truth value of the condition may depend on symbolic
values; that is, it may not be possible to determine at compile time which
way control will go at run time. In such cases, interpretation must proceed
down both paths. But this leads to problems at points where control paths
join. If X has value & on one path and f on another, its value after they join
must be expressed as “either « or £.” In loops, value conjunctions of arbitrary
length can be built, as the example in Fig. 1-20 shows.

Suppose we assign X the value a at block 1; then interpreting around
the loop shows that its value at block 2 can be either & or 5a. Another
interpretation adds 25« to the list of alternatives. Clearly, there are infinitely
many possible values. Since symbolic interpretation attempts to prove every-
thing it can about a program, it terminates only when it has enumerated all
possible values of the properties it is keeping track of, so interpretation would
not terminate on this example.

The problem is solved by restricting the application of symbolic inter-
pretation to determining properties from a well-founded property set [Wegb75].
Simply put, if we take two properties from a well-founded set, their conjunc-

47

}

readX 1

False)Cé True
l ~

Figure 1-20 A loop for symbolic interpretation

tion (“either property a« or property £°) can be approximated by another
property in the set, say y; furthermore, after finitely many such approxima-
tions a limiting property will be reached. For example, suppose we are
optimizing a language in which variables may dynamically take on values of
three different types: real, integer, and character. Suppose also that the special
atomic type undefined is used for uninitialized variables. By adding three
more types—number, atom, and inconsistent—we can characterize our knowl-
edge of variable types with the well-founded property set shown in Fig. 1-21.

Atom

1

Number

Character / \ Undefined

N

Inconsistent

Figure 1-21 A well-founded property set for variable types

In this diagram, arcs lead from more specific to less specific information.
To determine the result of a disjunction of two distinct types, locate the types
in the diagram and find the first type which can be reached from both by
following arrows. Thus the disjunction “real or integer” yields number, while
“real or undefined” yields atom.

Since the disjunction of a type with itself produces the same type, a
stable upper bound must be reached in this set after at most three distinct
disjunctions. Thus a symbolic interpreter which terminates only when a steady
state is reached will always terminate using this set. In general, symbolic

48

SEC. 1-5 |/ SYMBOLIC INTERPRETATION 49

interpretation is guaranteed to terminate when determining properties from
a well-founded set on a finite program [Wegb75].

To convey the flavor of this method, I will include an adaptation of
Wegbreit’s simplest interpretation scheme. (More complicated versions, which
unroll loops, will not be described.) First we assume a very simple model in
which there are only two types of statements, simple and conditional. A simple
statement x has a single successor given by nexz(x), while a conditional y
has two successors: next()), taken when the condition is true, and nexzz(y),
taken when it is false.

Assume we are dealing with a well-founded property set P which has
a property conjunction or join operation V such that, for p,, p, € P, p, V p,
is the approximation of “either p, or p,.” Furthermore, assume there is a
least general property, denoted by 0, such that for any property p € P,
p V 0 = p. In Fig. 1-20, “type = inconsistent™ is 0.

Finally, the execution of an elementary statement may change the
property which holds after that statement. Let outprop(x, p) be the property
which holds after simple statement x is executed, given that property p holds
initially. Similar functions outprop(x, p) and outpropz(x, p) give the resultant
properties on the true and false branches, respectively, of a conditional.

Algorithm Si: Symbolic Interpretation

Input:
1. A program PROG consisting of instructions with successor fields
next or nexty and nexty.
2. A well-formed property set P with join operation V and minimal
element 0.
3. The semantic mappings outprop, outpropy, and outpropg.
Output: For each statement x € P, PROP[x], the most specific property
provably true on entry to x (within the given framework).
Method:

begin
for each x €« PROG do
PROP[x]:= 0
od;
let x, := the program entry statement;
PILE := {{x4,0>};
while PILE = ¢ do
let z be an arbitrary element in PILE;
PILE := PILE — {z};
<xsp> =z,
oldp := PROP[x];
PROP[x] := PROP|[x] V p;

50 A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES / CHAP. 1

while x == exit statement and o/dp = PROP[x] de
if x is a simple statement then
P := outprop(x,PROP[x]);

x := next[x];
else ¢ a conditional; save the false branch ¢
Yr := nextg[x];

PILE := PILE U {{yg,outprops(x,PROP[x])>};
¢ follow the true branch ¢
P == outprop(x,PROP[x]);
x := nextiix]

fi;

oldp := PROP[x];

PROP[x] := PROP[x] V p

od
od
end

Using the well-foundedness of P, it is not too difficult to show that this
algorithm terminates. Some unnecessary iterations can be avoided by using
a more sophisticated structure for PILE so that the two pairs <{x, p,;> and
<{x, p,> are automatically combined into <{x, p, V p,> when the second is
added to a PILE already occupied by the first. The more complicated versions
of Algorithm SI that unroll loops for more precision are straightforward
extensions [Wegb75, King76].

If symbolic interpretation is so good, why isn’t it used exclusively?
The main reason is efficiency. Most problems involve property sets much
richer than the one in Fig. 1-20. For example, instead of specifying the type
of a single variable, a property might specify the types of all program vari-
ables. Such property sets give rise to numerous iterations before a steady state
is reached. Thus symbolic interpretation is rarely used in compilers. However
its suitability for complex problems makes it an important tool for optimiza-
tion research and program verification [King76, Cous77a, Suzu77, Cous78].

1-6. OPTIMIZATION
OF VERY-HIGH-LEVEL LANGUAGES

I shall conclude this survey with a discussion of some current work on
optimization for very-high-level languages, focusing on the SETL project
at New York University. SETL is a language based on the theory of sets
[Schw75d, Kenn75a]. It has a standard set of fundamental data types (real,
integer, character, bit, and strings of characters or bits) along with two
structured types (sets and tuples). It derives its power from its fundamental

SEC. 1-6 |/ OPTIMIZATION OF VERY-HIGH-LEVEL LANGUAGES 51

view of data as sets and mappings (sets of ordered pairs). An introductory
treatment of the language may be found in [Kenn75a].

The SETL implementation identifies two classes of objects, long and
short. Both items use a root word for their representation. As shown in Fig.
1-22, the first few bits of the root word identify the object type and the rest
are used for actual data, in the case of a short object, or control information
and a pointer in the case of a long object. A long object’s data is contained in
an extended representing block stored elsewhere and pointed to by the root
word.

Short object | Type Data

Long object | Type | Control information i

\

Pointer to
longer structure

Figure 1-22 Object representation in SETL

Currently, SETL uses representing blocks organized as arrays for tuples
and hash tables for sets. Individual entries in these blocks are root words for
the individual members.

The general unoptimized implementation scheme is as follows. Code is
translated into a series of calls to SETL run-time library routines. Each
routine implements one SETL primitive in its most general form. In par-
ticular, since SETL does not have type declarations, type tests must be made
at run time. Consider the primitive

S €q 5,

which tests for equality between objects of any type. Even after it is discovered
that s, and s, are both sets, the test is a complex one involving another
primitive, the membership test

sieqs, =(Vx € s,|lx e s;)&(Vy € sy e sy)

The strategy of the SETL optimizer is to use special knowledge of the
program, gleaned through global analysis, to replace as many expensive
library calls as possible by in-line code stubs, which assume the most common
case and test for exceptions, calling the library only when necessary. As an
example, consider the expression x + y. In the general case, x and y could
be sets, integers, tuples, reals, strings, etc. But suppose a global analysis of
types determines that x and y are both integers; then the situation is greatly
simplified, although we still don’t know whether they are long or shortintegers
(}ong integers require multiword storage). The code stub assumes, as the most
likely case, that both are short integers. It then has the following flavor.

52 A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES / CHAP. 1

Stub: add x and y as short integers;
execute a fast test for overflow or type error;
if test positive then call library routine
else record results fi
Thus with the aid of global type analysis, the optimizer is able to effect a
substantial efficiency gain.

This example leads us naturally to consider the nature of global type
analysis. Type analysis was the subject of Tenenbaum’s Ph.D. thesis [Tene74b]
and has been subsequently studied by Jones and Muchnick [Jone76] and
Kaplan and Ullman [Kapl77a]. The first step in type analysis is to define an
algebra of type symbols which is built up from:

1. A number of atomic type symbols:

I (integer), R (real), UD (undefined), NS (set of arbitrary elements),
G (general), Z (error), etc.

2. Alternation of types:
= tl'tZI‘ . oltk
3. Set formation:
L= {tl}
4. Tuple formation (fixed length):
t =<1, 8, ...ty
5. Tuple formation (indefinite length):

t = [z,]

Next we define the rules for determining the output type of an operation
given the input types. This is encoded in a transition function F which, for
each operation op and input types ¢, #,, . . . , ¢, of the operands, produces

tO = Fop(t19 t2’ L] t,,)
where 7, is the output type (or at least the best approximation to it within

the algebra). Finally an operation \/, which allows alternation of types at
merging paths, is defined; i.e.,

k
= \/ti
=1

is the type of an object which has types ¢,, . . ., f; on k merging paths.
With these definitions, global type determination can be carried out by
a direct analog of the use-definition chain algorithm for constant propagation.
Although this is the same problem we solved by symbolic interpretation in
the last section, use-definition chains permit a more efficient implementation.
The workpile is initialized to a set of instructions with clearly defined (or

SEC. 1-6 | OPTIMIZATION OF VERY-HIGH-LEVEL LANGUAGES 53

constant) types. Thereafter an instruction is examined whenever a refinement
of one of its input types is detected.

Algorithm TA: Type Analysis

Input:
1. A program PROG.
2. A mapping TYPE, such that TYPE(4A, x) is the best initial estimate
of the type of variable 4 at x (for most variables this is ‘UD”).
3. The sets DEFS and USES.

Output: For each instruction x and input or output variable A,
TYPE(A, x), a conservative approximation to the most specific
type information provably true at x.

Method:

begin
PILE := {x € PROG|(V 4 € inputs(x)| TYPE(a,x) = ‘UD")};
while PILE == ¢ do
x := an arbitrary element in PILE;
PILE := PILE — {x};
B := output(x);
for each i € USES(b,x) do
¢ recompute type ¢
oldtype .= TYPE(b,i);
TYPE(B,i) := \/ TYPE(B,y);

YEDEFS(B,i)
if TYPE(B,i) %« oldtype then
¢ a type refinement ¢
TYPE(output(i),i) := F.p« applied to the input types of i;
PILE := PILE U {i}
fi
od
od
end

In his dissertation, Tenenbaum showed how the above type analysis
could be enhanced by a backward pass which elicits type information from
uses and propagates it back to definition points [Tene74b]. Kaplan and
Ullman extended this idea to incorporate multiple passes in both directions
[Kapl77a]. It is clear that symbolic interpretation could also be used for type
analysis to produce more specific results. I will not have space to treat the
numerous other SETL optimizations here. I refer the interested reader to a
series of papers [Schw74a, Schw75a, Schw75b, Schw75c, Dewa77] which lay
out most of the methods used by that project; several of these involve auto-
matic or semiautomatic data structure choice. A number of papers treat

54 A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES |/ CHAP. 1

further SETL optimizations [Fong76, Paig77, Fong77]. In general, the opti-

mization of very-high-level languages should prove a fruitful area for new
research and for further application of established techniques.

ACKNOWLEDGMENT

I am grateful to Barry Rosen for several suggestions which substantially
improved this chapter.

Aho72

Aho73

Aho74

Aho76

Aho77

Alfo77

Alle69

Alle70

Alle71

394

Bibliography

AHO, ALFRED V., RAvi SETHI, and JEFFrReY D. ULLMAN, “Code Optimization
and Finite Church-Rosser Systems,” in Design and Optimization of Com-
pilers, ed. Randall Rustin. Englewood Cliffs, NJ: Prentice-Hall, 1972.

AHO, ALFRED V., and JEFFREY D, ULLMAN, The Theory of Parsing, Transla-
tion, and Compiling: Volume I, Englewood Cliffs, NJ: Prentice-Hall, 1973.

Auo, ALFRED V., JouN HoPCROFT, and Jerrrey D. ULLMAN, The Design and
Analysis of Computer Algorithms. Reading, MA : Addison-Wesley, 1974,

AHO, ALFRED V., and JEFFrRey D. ULLMAN, “Node Listings for Reducible
Flow Graphs,” J. Comput. Syst. Sci., 13, no. 3 (December 1976), 286-299.

AHO, ALFRED V., and JEFFREY D. ULLMAN, Principles of Compiler Design.
Reading, MA: Addison-Wesley, 1977.

ALFORD, M. W., “A Requirements Engineering Methodology for Real-
Time Processing Requirements,” IEEE Trans. Software Eng., SE-3, no. 1
(January 1977), 60-69,

ALLEN, Frances E., “Program Optimization,” in Annual Review of Auto-
matic Programming, 5, 239-307. Elmsford, NY : Pergamon, 1969.

, “Control Flow Analysis,” SIGPLAN Notices, 5, no. 7 (July 1970),
1-19.

———, “A Basis for Program Optimization,” Information Processing 71,
Proc. IFIP Congress 71, Ljubljana, Yugoslavia (August 1971), ed. C. V.
Freiman, pp. 385-390. Amsterdam: North-Holland, 1972.

BIBLIOGRAPHY 395

Alle72a ALLEN, FRANCES E., and Joun Cocke, “A Catalogue of Optimizing Trans-
formations,” in Design and Optimization of Compilers, ed. Randall Rustin,
Englewood Cliffs, NJ: Prentice-Hall, 1972,

, “Graph Theoretic Constructs for Program Control Flow Analysis,”
Research Report RC3923 (July 1972), T.3J. Watson Research Center,
Yorktown Heights, NY.

Alle74 ALLEN, FRANCES E., “Interprocedural Data Flow Analysis,” Information
Processing 74, Proc. IFIP Congress 74, Stockholm, Sweden (August 1974),
ed.J L. Rosenfield, pp. 398-408, Amsterdam: North-Holland, 1974,

Alle76 ALLEN, FRANCEs E., and JouN Cocke, “A Program Data Flow Analysis
Procedure,” Commun, ACM, 19, no. 3 (March 1976), 137-147.

Alle77 ALLEN, FRANCES E., et al, “The Experimental Compiling System Project,”
IBM Research Report RC-6718 (1977), T.J, Watson Research Center,
Yorktown Heights, NY.

Alle81 ALLEN, FRANCES E., JouN CockEe, and KENNETH KENNEDY, “Reduction of
Operator Strength,” this volume.

Ashc71 ASHCROFT, EDWARD, and ZOHAR MANNA, “The Translation of ‘goto’
Programs to ‘whijle’ Programs,” Information Processing 71, Proc. IFIP
Congress 71, Ljubljana, Yugoslavia (August 1971), ed. C. V. Freiman,
pp. 250-255, Amsterdam: North-Holland, 1972,

Babi78a BasicH, W. A, and M. JAZAYERI, “The Method of Attributes for Data Flow
Analysis: Part I. Exhaustive Analysis,” Acta Inf., 10 (1978), 245-264.

Alle72b

Babi78b , “The Method of Attributes for Data Flow Analysis: Part I, Demand
Analysis,” Acta Inf., 10, fasc, 3 (1978), 265-272.

Bake78 BAKER, HENRY G.,Jr., “List Processing in Real Time on a Serial Computer,”
Commun. ACM, 21, no. 4 (April 1978), 280-294.

Balz69 BALzER, R. M., “EXDAMS: Extendable Debugging and Monitoring Sys-

tem,” Proc. AFIPS 1969 Spring Joint Computer Conference, Boston, MA,
34, pp. 567-580. Montvale, NJ: AFIPS Press, 1969,

Bann79 BANNING, 1., “An Efficient Way to Find the Side Effects of Procedure Calls
and Aliases of Variables,” Proc. 6th Ann. ACM Symp. on Principles of
Programming Languages, San Antonio, TX (January 1979), pp. 2941,

Bart77a BARTH, JEFFREY M., “An Interprocedural Data Flow Analysis Algorithm,”
Conf. Rec. 4th ACM Symp. on Principles of Programming Languages, Los
Angeles, CA (January 1977), pp. 119--131.

Bart77b , “Shifting Garbage Collector Overhead to Compile Time,” Conunun.
ACM, 20, no. 7 (July 1977), 513-518.

Bart78 , “A Practical Interprocedural Data Flow Analysis Algorithm,”
Commun. ACM, 21, no. 9 (September 1978), 724736,

Beat72 BeaTTY, J. C,, “An Axiomatic Approach to Code Optimization for Expres-
sions,” J, ACM, 19, no. 4 (October 1972), 613-640.

Beat74 » “Register Assignment Algorithm for Generation of Highly Optimized

Object Code,” IBM J. Res. Dev., 18, no. 1 (January 1974), 20-39,

Bell77 BeL, T.E., D. C, BIXLER, and M. E. Dyer, “An Extendable Approach to
Computer-Aided Software Requirements Engineering,” IEEE Trans.
Software Eng., SE-3, no. 1 (January 1977), 4959,

3%

Berm76

Birk67

Blac77

Boge75

Bohm66
Boll79
Boye75

Brai69

BroA78
Brol78

Brow73
Biich64

Cart77
Chaz69

Chea78
Chea79
ClaE77
ClaE79

ClaL76a

BIBLIOGRAPHY

BERMAN, LeoNARD, and GEORGE MARKOWsKY, “Linear and Non-linear
Approximate Invariants,” IBM RC7241 (February 1976), T. J. Watson
Research Center, Yorktown Heights, NY.

BIRKHOFF, G., Lattice Theory (3rd ed.), Vol. 25. Providence, RI: AMS
Colloquium Publications, 1967.

BLack, R. K. E., “Effects of Modern Programming Practice on Software
Development Costs,” Proceedings Fall Compcon 77 (September 1977),
pp. 250-253.

BoGeN, R., MACSYMA Reference Manual, The Mathlab Group, Project
MAC, Massachusetts Institute of Technology, 1975.

Bo6HM, C., and G. Jacorint, “Flow Diagrams, Turing Machines and Lan-
guages with Only Two Formation Rules,” Commun ACM, 9, no. 5 (May
1966), 366-371.

BOLLACKER, L. A., “Detecting Unexecutable Paths Through Program Flow
Graphs,” unpublished Master’s thesis, Department of Computer Science,
University of Colorado, Boulder, CO, 1979,

BoYER, R. S., B. Erspas, and K. N. Levitt, “SELECT—A Formal System
for Testing and Debugging Programs by Symbolic Execution,” Proc.
Int. Conf, Reliable Software, Los Angeles, CA (April 1975), pp. 234-244.

BRAINERD, W. S., “Tree Generating Regular Systems,” Inf. Control, 14, no.
2 (February 1969), 217-231.

BRrROWN, ALLEN L., Jr., personal communication (August 1978).

Brown, J. R., “Programming Practices for Increased Software Quality,”
in Software Quality Management. New York: Petrocelli Books, 1978.

Brown, W. S., Altran User Manual 1 (1973), Bell Telephone Laboratory.

- . BUcHi, J.R., “Regular Canonical Systems,” Archiv. F, Math. Logik und

Grund., 6, nos. 3-4 (April 1964), 91-111,

CARTER, J. L., “A Case Study of a New Code Generation Technique for
Compilers,” Commun. ACM, 20, no. 12 (December 1977), 914-920.

. CHAZAN, D., and W, MIRANKER, “Chaotic Relaxation,” Linear Algebra and

Its Applications, 2, no. 2 (April 1969), 199-222,

CHEATHAM, THOMAS E., Jr., and D. WASHINGTON, “Program Loop Analysis
by Solving First Order Recurrence Relations,” TR-13-78, Harvard
University Center for Research in Computing Technology, 1978.

CHEATHAM, THoMAS E., JR., G. H. HALLOWAY, and J. A. TOwWNLEY, “Sym-
bolic Evaluation and the Analysis of Programs,” to appear in JIEEE
Trans. Software Eng.

CLARKE, E. M., Jr., “Program Invariants as Fixed Points,” Proc, 18th Ann.
Symp. on Foundations of Computer Science, Providence, RI (October-
November 1977), pp. 18-29.

, “Synthesis of Resource Invariants for Concurrent Programs,”
Conf. Rec. 6th ACM Symp. on Principles of Programming Languages, San
Antonio, TX (January 1979), pp. 211-221.

CLARKE, LORI A., “A System to Generate Test Data and Symbolically
Execute Programs,” IEEE Trans. Software Eng., SE-2, no. 3 (September
1976), 215-222.

BIBLIOGRAPHY 397

ClaL76b

ClaL78

ClaS77

Cocké9

Cock70a

Cock70b

Cock76

Cock77

Cock78

Cous77a

Cous77b

Cous77c

Cous77d

Cous77e

Cous77f

Cous78

» “Test Data Generation and Symbolic Execution of Programs as an
Aid to Program Validation,” thesis, Department of Computer Science,
University of Colorado, 1976,

» “Automatic Test Data Selection Techniques,” Infotech State of the
Art Report on Software Testing (September 1978).

CLARK, S. W., and C, C. GREEN, “An Empirical Study of List Structure in
LISP,” Commun, ACM, 20, no. 2 (February 1977), 78-87.

Cocke, Jonn, and R. E. MILLER, “Some Analysis Techniques for Optimizing

Computer Programs,” Proc. 2nd Int. Conf. on System Sciences, Hawaii,
1969, pp. 143-146.

CockE, JonN, “Global Common Subexpressions Elimination,” SIGPLAN
Notices, 5, no. 7 (July 1970), 20-24.

Compilers; Preliminary Notes. New York: Courant Institute of Mathe-
matical Sciences, New York University, 1970,

CockE, Jonn, and K. KeNNEDY, “Profitability Computations on Program
Flow Graphs,” Comput, Mazh, Appl., 2, no, 2 (1976), 145-159,

» “An Algorithm for Reduction of Operator Strength,” Commun,
ACM, 20, no. 11 (November 1977), 850-856,

CockE, JouN, and Perer W.-MARKSTEIN, “Strength Reduction for Division
and Modulo with Application to Accessing a Multilevel Store,” IBM
Research Report RC7013 (March 1978), T. J. Watson Research Center,
Yorktown Heights, NY,

Cousor, PATRICK, and RADHIA Cousor, “Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approxi-
mation of Fixpoints,” Conf. Rec. of 4th ACM Symp. on Principles of
Programming Languages, Los Angeles, CA (January 1977), pp. 238-252.

Cousor, PATRICK, “Asynchronous Iterative Methods for Solving a Fixed
Point System of Monotone Equations in a Complete Lattice,” Rapport
de Recherche No. 88 (September 1977), Laboratoire d’Informatique,
Grenoble, France,

Cousor, PATRICK, and RapHIA Cousor, “Automatic Synthesis of Optimal
Invariant Assertions: Mathematical Foundations,” Proc, ACM Symp.,
on Artificial Intelligence and Programming Languages, Rochester, NY,
SIGPLAN Notices, 12, no. 8 (August 1977), 1-12.

, “Constructive Versions of Tarski’s Fixed Point Theorems,” Pacific
J. Math, 82, no, 1 (May 1979), 43-57.

» “Static Determination of Dynamic Properties of Recursive Proce-
dures,” IFIP Working Conf. on Programming Concepts, St, Andrews,
N.B., Canada (August 1977), ed. Erich J. Neuhold. New York: North-
Holland, 1978, pp. 237-277.

» “Static Determination of Dynamic Properties of Generalized Type
Unions,” SIGPLAN Notices, 12, no. 3 (March 1977), 77-94,

Cousor, PATRICK, and N. HALBWACHS, “Automatic Discovery of Linear
Restraints Among Variables of a Program,” Conf. Rec. 5th ACM Symp.,
on Principles of Programming Languages, Tucson, AZ (January 1978),
pp. 84-97.

398

Cous79

Davi73

DeBa75

DeMi77

DeRe74

Dewa77

Dijk76

Donz78a

Donz78b

Earl74

Earn72
Earn74

Elsp72

Elsp??

Enge75

Fair75§

BIBLIOGRAPHY

Cousot, PATRICK, and RADHIA CousoT, “Systematic Design of Program
Analysis Frameworks,” Conf. Rec. 6th ACM Symp. on Principles of
Programming Languages, San Antonio, TX (January 1979), pp. 269-282,

Davis, M., “Hilbert’s Tenth Problem is Unsolvable,” Am. Math, Mon.,
80, no. 3 (March 1973), 233-269.

DE BAKKER, J. W,, and L. G, L. T. MEerTENS, “On the Completeness of the
Inductive Assertion Method,” J. Comput. Syst. Sci., 11, no. 3 (December
1975), 323-357.

Dt MiLro, RICHARD A., RiCHARD J. LipTON, and ALaN J. PERLIS, “Social
Processes and Proofs of Theorems and Programs,” Conf. Rec. 4th ACM
Symp. on Principles of Programming Languages, L.os Angeles, CA (January
1977), pp. 206-214.

DE REMER, F. L., “Transformational Grammars,” in Compiler Construction:
An Advanced Course, Lecture Notes in Computer Science 21, eds. F. L.
Bauer and J. Eickel. New York: Springer-Verlag, 1974, pp. 121-145.

DEwWAR, RoBerT B. K., A. GraND, S, C. Lu, E. SCHONBERG, and J, T,
ScHwARrTZ, “Programming by Refinement as Exemplified by the SETL
Representation Sublanguage,” draft, Department of Computer Science,
New York University, 1977.

DuKSTRA, EDSGER W., A Discipline of Programming. Englewood Cliffs, NJ:
Prentice-Hall, 1976.

DoNzrAU-GOUGE, VERONIQUE, GILLES KAHN, and BERNARD LaANG, “A
Complete Machine-checked Definition of a Simple Programming Lan-
guage Using Denotational Semantics,” Research Report No. 330 (1978),
IRIA Laboria, Rocquencourt, France.

DoNzeau-GOUGE, VERONIQUE, “Ultilisation de la Sémantique Dénotationnelle
pour la Description d’Interprétations Non-standard: Application a la
Validation et 4 I'Optimisation des Programmes,” 3rd Int. Symp. on Pro-
gramming, Dunod, Paris (1978).

EARLEY, J., “High Level Iterators and a Method of Automatically Designing
Data Structure Representation,” Research Report ERL-M416 (February
1974), Computer Science Division, University of California, Berkeley.

EARNEST, C., K. BALKE, and J. ANDERSON, “Analysis of Graphs by Ordering
of Nodes,” J. ACM, 19, no. 1 (January 1972), 2342,

EarNEesT, C,, “Some Topics in Code Optimization,” J. ACM, 21, no. 1
(January 1974), 76-102.

ELspas, B., K. N. LEvITT, R, J. WALDINGER, and A. WAKSMAN, “An Assess-
ment of Techniques for Proving Program Correctness,” ACM Comput.
Surv., 4, no. 2 (June 1972), 97-147.

ELspas, B., M. Green, A. Korsak, and P. WoNg, “Solving Non Linear
Inequalities Associated with Computer Program Paths,” preliminary
draft, Stanford Research Institute, Menlo Park, CA.

ENGELFRIET, JoosT, “Tree Automata and Tree Grammars,” DAIMI Report
FN-10 (April 1975), Department of Computer Science, University of
Aarhus, Denmark.

FAIrLEY, RICHARD E., “An Experimental Program Testing Facility,” Proc.
Ist Nat. Conf. on Software Engineering (1975), pp. 47-55.

BIBLIOGRAPHY 399

Farr75

Floy67

Fong75

Fong76

Fong77

Fosd76

Gabo76

Gall78

Ganz74
Ganz76

Ganz77

Germ78

Gieg78

Gieg79

Gill77

Gins66

Gold72

Farrow, R., K, KENNEDY, and L. Zuccony, “Graph Grammars and Global
Program Flow Analysis,” Proc. 17th Ann. IEEE Symp. on Foundations of
Computer Science, Houston, TX (November 1975).

FLoyp, R. W., “Assigning Meanings to Programs,” Proc. Symp. in Applied
Mathematics of the AMS, ed. J. T. Schwartz, Providence, RI (1967),
19-32.

Fong, AMELIA C., J. KaMm, and Jerrrey D. ULLMAN, “Application of Lattice
Algebra to Loop Optimization,” Conf. Rec. 2nd ACM Symp. on Principles
of Programming Languages, Palo Alto, CA (January 1975), pp. 1-9.

Fong, AMELIA C., and JEFFREY D. ULLmaN, “Induction Variables in Very
High Level Languages,” Conf. Rec. 3rd ACM Symp. on Principles of
Programming Languages, Atlanta, GA (January 1976), pp. 104-112,

Fong, AMELIA C., “Generalized Common Subexpressions in Very High
Level Languages,” Conf. Rec. 4th ACM Symp. on Principles of Programming
Languages, Los Angeles, CA (January 1977), pp. 48-57.

Fospick, L.D., and L.J. OsteERweLL, “Data Flow Analysis in Software
Reliability,” Comput. Surv., 8, no. 3 (September 1976), 305-330,

Gasow, H. N.,S. N, MAHESHWARI, and L. J, OSTERWEIL, “On TwoProblems
in the Generation of Program Test Paths,” IEEE Trans. Software Eng.,
SE-2, no. 3 (September 1976), 227-231.

GALLIER, J. H., “Semantics and Correctness of Nondeterministic Flowchart
Programs with Recursive Procedures,” 5th Int, Colloquium on Automata,
Languages & Programming, Udine, Italy (1978).

GANZINGER, HARALD, “Modifizierte Attributierte Grammatiken,” Report
No. 7420 (1974), Abt. Mathematik, Technische Universitit Miinchen.

, “MUGI-Manual,” Report No. 7608 (1976), Institut fiir Informatik,
Technische Universitit Miinchen.

GANZINGER, HARALD, KNUT RIPKEN, and REINHARD WILHELM, “Automatic
Generation of Optimizing Multipass Compilers,” Information Processing
77, Proc. IFIP Congress 77, Toronto (August 1977), ed. B. Gilchrist, pp.
535-540. New York: North-Holland, 1977.

GERMAN, S., “Automating Proofs of the Absence of Common Runtime
Errors,” Conf, Rec, 5th ACM Symp. on Principles of Programming Lan-
guages, Tucson, AZ (January 1978), pp. 105-118,

GIEGERICR, R., and R. WILHELM, “Attribute Evaluation,” in State of the Art
and Future Trends in Compilation. Rocquencourt, France: IRIA, 1978.

GIEGERICH, R., “Introduction to the Compiler Generating System MUG2,”
Technical Report (1979), Institiit fiir Informatik, Technische Universitit
Miinchen.

GILLETT, W. D., “Iterative Global Flow Techniques for Detecting Program
Anomalies,” Ph.D. thesis UTUCDCS-R-77-868, (January 1977), University
of Illinois at Urbana-Champaign.

GINSBURG, SEYMOUR, The Mathematical Theory of Context-Free Languages.
New York: McGraw-Hill, 1966.

GOLDSTINE, HERMAN HEINE, The Computer from Pascal to Von Neumann,
Princeton, NJ: Princeton University Press, 1972,

400 BIBLIOGRAPHY

Goto74 Goto, EncHi, Monocopy & Associative Algorithms in an Extended LISP,
Tokyo, Japan: University of Tokyo, May 1974,

Grah76 GraHAM, S. L., and M, WEGMAN, “A Fast and Usually Linear Algorithm
for Global Flow Analysis,” J. ACM, 23, no. 1 (January 1976), 172-202,

Grei75 GREIBACH, SHEILA A., Theory of Program Structures: Schemes, Semantics,

Verification, Lecture Notes in Computer Science 36. New York: Springer-
Verlag, 1975.

Gris70 GRISHMAN, R., “The Debugging System AIDS,” in AFIPS 1970 Spring
Joint Computer Conference, Atlantic City, NJ, AFIPS Conf. Proceedings
36, pp. 59-64. Montvale, NJ: AFIPS Press, 1970,

Hant76 HANTLER, S. L., and J. C. KING, “An Introduction to Proving the Correct-
ness of Programs,” Comp. Surv., 8, no. 3 (September 1976), 331-353.
Hare76 HAReL, DaviD, AMIR PNueLi, and J. Stave, “Completeness Issues for

Inductive Assertions and Hoare’s Method,” Computer Science Technical
Report (1976), Tel Aviv University.

Harr77a HaArrisoN, WiLLiam H., “Compiler Analysis of the Value Ranges for
Variables,” IEEE Trans, Software Eng., SE-3, no. 3 (May 1977), 243-250.

Harr77b » “A New Strategy for Code Generation—The General Purpose
Optimizing Compiler,” Conf. Rec. 4th ACM Symp. on Principles of Pro-
gramming Languages, Los Angeles, CA (January 1977), pp. 29-37.

Hart71 HARTMANIS, J., and J. E. HOPCROFT, “An Overview of the Theory of Com-
putational Complexity,” ACM, 18, no. 3 (July 1971), 444-475.

Hech72 HEecHT, MATTHEW S., and J. D. ULLMAN, “Flow Graph Reducibility,”

o SIAM J. Comput., 1, no. 2 (June 1972), 188-202.

Hech74 - » “Characterizations of Reducible Flow Graphs,” J. ACM, 21, no. 3
(July 1974), 367-375.

Hech75 » “A Simple Algorithm for Global Data Flow Analysis Problems,”

: SIAM J. Comput., 4, no. 4 (December 1975), 519-532.

Hech77 HECHT, MATTHEW S., Flow Analysis of Computer Programs. New York:
Elsevier North-Holland, 1977.

Hewi75 Hewrrr, C.,, and B. SMITH, “Towards a Programming Apprentice,” Proc.
of IEEE Trans. Software Eng., SE-1, no. 1 (March 1975), 26-45.

Hoar69 Hoare, C.A.R., “An Axiomatic Basis for Computer Programming,”
Commun. ACM, 12, no. 10 (October 1969), 576~583,

Hoar77 » “Recursive Data Structures,” Int. J. Comput. Inf. Sci., 4, no. 2
(June 1975), 105-132.

Holl78 HoLLEy, HowARD, personal communication, November 1978.

Howd75 HowbpEN, WiLLiAM E., “Methodology for the Generation of Program Test
Data,” IEEE Trans, Comput. (May 1975), pp. 554-559.

Howd76 » “Reliability of the Path Analysis Testing Strategy,” IEEE Trans.
Software Eng., SE-2, no. 3 (September 1976), 208-215.

Howd77a , “Symbolic Evaluation—Design Techniques, Cost and Effectiveness,”
National Technical Inf, Service PB268517 (1977).

Howd77b » “Symbolic Testing and the DISSECT Symbolic Evaluation System”

IEEE Trans. Software Eng., SE-3, no. 4 (July 1977), 266-278,

BIBLIOGRAPHY 401

Howd?78

Huan75

Huet77

Jaza75a

Jaza75b

Jone76

Jone81
Kam76
Kam77

Kapl78a

Kapl78b

Karr76
Kell76
Kenn71a

Kenn71b

Kenn73a

Kenn73b

Kenn74

» “DISSECT—A Symbolic Evaluation and Program Testing System,”
IEEE Trans. Software Eng., SE-4, no. 1 (January 1978), 70-73.

Huang, J. C., “An Approach to Program Testing,” ACM Comput. Surv.,
7, no. 3 (September 1975), 113-128,

Huer, G., “Confluent Reductions: Abstract Properties and Applications to
Term Rewriting Systems,” Proc. 18th Ann. IEEE Symp. on Foundations of
Computer Science, Providence, RI (October 1977), pp. 30-45.

JAzAYERI, MEHDI, W. F, OGDEN, and W. C. Rounps, “The Intrinsically
Exponential Complexity of the Circularity Problem for Attribute Gram-
mars,” Commun, ACM, 18, no. 12 (December 1975), 697-706.

JAZAYERI, MEHDI, “Live Variable Analysis, Attribute Grammars, and
Program Optimization,” draft (March 1975), Department of Computer
Science, University of North Carolina, Chapel Hill, NC,

Jongs, NeiL D., and STEVEN S. MUCHNICK, “Binding Time Optimization in
Programming Languages: Some Thoughts Toward the Design of an Ideal
Language,” Conf. Rec. 3rd ACM Symp. on Principles of Programming
Languages, Altanta, GA (January 1976), pp. 77-94.

Jones, NeIL D., and STEVEN MUCHNICK, “Flow Analysis and Optimization
of LISP-like Structures,” this volume, chap. 4.

Kawm, J. B, and Jerrrey D. ULLMAN, “Global Data Flow Analysis and
Iterative Algorithms,” J. ACM, 23, no. 1 (January 1976), 158-171.

» “Monotone Data Flow Analysis Frameworks,” Acta Inf., 7, fasy.‘ 3
(1977), 305-317.

KAPLAN, M. A, and Jerrrey D. ULLMAN, “A General Scheme for the
Automatic Inference of Variable Types,” Conf. Rec. 5th ACM Symp. on
Principles of Programming Languages, Tucson, AZ (January 1978), pp.
60-75,

KarLAN, M. A, “Relational Data Flow Analysis,” TR-243 (April 1978),
Department of Electrical Engineering and Computer Science, Princeton
University.

KARR, M., “Affine Relationships Among Variables of a Program,” Acta
Inf., 6, fasc. 2 (April 1976), 133-151.

KELLER, R. M., “Formal Verification of Parallel Programs,” Commun. ACM,
19, no. 7 (July 1976), 371-384.

KENNEDY, KENNETH W., “A Global Flow Analysis Algorithm,” Int. J. of
Comput. Math., sec. A, vol, 3 (December 1971), 5-15.

KenNNEDY, KENNETH W.,, and P. OWENSs, “An Algorithm for Use-Definition
Chaining,” SETL Newsletter 37 (October 1971), Courant Institute of
Mathematical Sciences, New York University.

KenNeDY, KENNETH W., “Global Dead Computation Elimination,” SETL
Newsletter 111 (August 1973), Courant Institute of Mathematical Sciences,
New York University.

, “Variable Subsumption with Constant Folding,” SETL Newsletter

112 (August 1973), Courant Institute of Mathematical Sciences, New

York University.

» “An Algorithm to Compute Compacted Use-Definition Chains,”

SETL Newsletter 122 (February 1974), Courant Institute of Mathematical

Sciences, New York University.

402
Kenn75a

Kenn75b

Kenn75¢

Kenn76

Kenn77

Kenn78
Kenn81

Kild73

King69
King76
Klee52

Knut68
Knut71
Knut74
Ladn75
Land73
Ledg72
Lisk77

Lome75

Lond75

BIBLIOGRAPHY

KEnNeDY, KENNETH W., and J. T. ScHWARTZ, “An Introduction to the Set
Theoretic Language SETL,” Comput. Math, Appl., 1, no. 1 (1975), 97-119.

KenNnNeDY, KENNETH W., “Node Listing Applied to Data Flow Analysis,”
Conf. Rec. 2nd ACM Symp. on Principles of Programming Languages,
Palo Alto, CA (January 1975), pp. 10-21.

, “Use-definition Chains with Applications,” Technical Report 476-
093-9 (April 1975), Department of Mathematical Sciences, Rice University,
Houston, TX.

» A Comparison of Two Algorithms for Global Data Flow Analysis,”
SIAM J, Comput., 5, no. 1 (March 1976), 158-180.

KenNNEDY, KENNETR W., and LinpA Zucconn, “Applications of a Graph
Grammar for Program Control Flow Analysis,” Conf. Rec. 4th ACM
Symp. on Principles of Programming Languages, Los Angeles, CA (January
1977), pp. 72-85.

, “Basic Block Optimization in MODEL,” Draft Report (1978), Los
Alamos Scientific Laboratory, Los Alamos, NM,

KENNEDY, KENNETH W., “A Survey of Compiler Optimization,” this volume,
chap. 1,

KiparL, G. A., “A Unified Approach to Global Program Optimization,”
Conf. Rec. ACM Symp. on Principles of Programming Languages, Boston,
MA (October 1973), pp. 194-206.

KinNg, J., “A Program Verifier,” Ph.D. thesis, Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, PA, 1969.

King, J., “Symbolic Execution and Program Testing,” Commun. ACM, 19,
no. 7 (July 1976), 385-394,

KLEENE, STEPHEN CoLE, Introduction to Metamathematics. New York:

D. Van Nostrand, 1952.
Kn~utH, DoNALD E., “Semantics of Context-free Languages,” Mathematical
Syst. Theory, 2, no. 2 (June 1968), 127-145.

» “An Empirical Study of FORTRAN Programs,” Software Pract.
Exper., 1, no. 2 (April-June 1971), 105-133,

, “Structured Programming with ‘GO TQ’ Statements,” Comput.
Surv., 6, no. 4 (December 1974), 261-302,

LADNER, RICHARD E., “The Circuit Value Problem is Log Space Complete
for P,” SIGACT News, 7, no. 1 (January 1975), 18-20.

LanD, A, H.,, and S. PoweLL, FORTRAN Codes for Mathematical Pro-
gramming. New York: Wiley, 1973.

LEpGARD, HENRY F., “A Model for Type Checking—with an Application to
ALGOL 60,” Commun, ACM, 15, no. 11 (November 1972), 956-966.

Liskov, B. H., A. SNYDER, R. ATKINSON, and C, SCHAFFERT, “Abstraction
Mechanisms in CLU,” Commun. ACM, 20, no. 8 (August 1977), 564-576.

LowMer, D. B,, “Data Flow Analysis in the Presence of Procedure Calls,”
IBM Research Report RC-5728 (1975), T.J. Watson Research Center,
Yorktown Heights, NY.

LonpDon, R.L., “A View of Program Verification,” 1975 Int. Conf. on
Reliable Software, Los Angeles, CA (April 1975), pp. 534-545.

Y

BIBLIOGRAPHY 403

Love77

Lowr69

Mann74

Mark75

Meye73

Mill74

Mill75

Miln76

Mira77

More74

More79

Moss74

Moss78

Naurés

Naur66

Neel75

Oste76

Oste77

Oste81

LovemaN, D. B., “Program Improvement by Source-to-Source Transfor-
mation,” J. ACM, 24, no. 1 (January 1977), 121-14s5.

Lownry, E. S, and C. W. MEDLOCK, “Object Code Optimization,” Commun.
ACM, 12, no. 1 (January 1969), 13-22.

MANNA, ZoHAR, Mathematical Theory of Computation, New York: McGraw-
Hill, 1974,

MAarkowskY, G., and R, E. TARJAN, “Lower Bounds on the Lengths of
Node Sequences in Directed Graphs,” IBM Research Report RC-5477
(July 1975), Thomas J, Watson Research Center, Yorktown Heights, NY,

MEYER, ALBERT, and L. J. STOCKMEYER, “Word Problems Requiring Expo-
nential Time,” Conf. Rec. 5th Annual ACM Symp. on Theory of Computing,
Austin, TX (April-May 1973), pp. 1-9.

Muier, E.F.,, Jr., “RXVP, Fortran Automated Verification System,”

Program Validation Project (October 1974), General Research Corp.,
Santa Barbara, CA.

MILLER, E. F,, Jr.,and R. A, MELTON, “Automated Generation of Test Case
Datasets,” Proc. Int. Conf, Reliable Software, Los Angeles, CA (April
1975), pp. 51-58.

MILNE, ROBERT, and CHRISTOPHER STRACHEY, A Theory of Programming
Language Semantics. London: Chapman and Hall, 1976.

MIRANKER, W, L., “Parallel Methods for Solving Equations,” IBM Research

Report RC-654 (May 1977), Mathematical Sciences Department, T, J,
Watson Research Center, Yorktown Heights, NY,

MoREL, ETIENNE, and CLAUDE RENVOISE, “Design and Implementation of a
Global Optimizer,” thesis, Université de Paris VI, June 1974,

» “Global Optimization by Suppression of Partial Redundancies,”
Commun. ACM, 22, no. 2 (February 1979), 96-103.

Mosses, P. D., “The Mathematical Semantics of ALGOL 60,” Technical
Monograph PRG-12 (January 1974), Programming Research Group,
Oxford University Computing Laboratory.

» “SIS: A Compiler-generator System Using Denotational Semantics,”
DIAMI (1978), University of Aarhus, Aarhus, Denmark.

NAur, P., “Checking of Operand Types in ALGOL Compilers,” BIT, 5
(1965), 151-163.

» “Proof of Algorithms by Generalized Snapshots,” BIT, 6 (1966),
310-316.

Neet, D., and M. AMIRCHAHY, “Removal of Invariant Statements from
Nested-Loops in a Single Effective Compiler Pass,” SIGPLAN Notices,
10, no. 3 (March 1975), 87-96.

OsTeRWEIL, L.J., and L.D. Fospick, “DAVE—A Validation, Error
Detection and Documentation System for FORTRAN Programs,”
Software Pract. Exper., 6, no, 4 (September 1976), 473486,

OSTERWEIL, L. J., “The Detection of Unexecutable Program Paths Through

Static Data Flow Analysis,” Proceedings COMPSAC 77 (1977), pp. 406
413,

, “Using Data Flow Tools in Software Engineering,” this volume,
chap. 8.

Paig77

Parké69

Parn74

Pnue77

Rama75

Rama76

ReiD75

Rei)77

ReiJ78

Reyn68

RicC76

RicD78a

RicD78b

Ripk75

Rose73

Rose77a

Rose77b

BIBLIOGRAPHY

PAIGE, Bos, and J. T. SCHWARTZ, “Expression Continuity and the Formal
Differentiation of Algorithms,” Conf. Rec. 4th ACM Symp. on Principles
of Programming Languages, Los Angeles, CA (January 1977), pp. 58-71,

PArK, Davp, “Fixpoint Induction and Proofs of Program Properties,” in
Machine Intelligence 5, ed. Bernard Meltzer and Donald Michie. New
York: American Elsevier, 1969, pp. 59-78.

ParNAs, D. L., “On the Criteria to be Used in Decomposing Systems into
Modules,” Commun. ACM, 15, no. 12 (December 1972), 10531058,

PNUELL A., “The Temporal Logic of Programs,” Proc. 18th Ann. Symp. on
Foundations of Computer Science, Providence, RI (October-November
1977), pp. 46-57.

RaMAMoOoRTHY, C.V., and S.-B.F. Ho, “Testing Large Software With
Automated Software Evaluation Systems,” IEEE Trans. Software Eng.,
SE-1, no. 1 (March 1975), 46-58.

RAMAMOORTHY, C.V., S.-B.F. Ho, and W.T. CueN, “On Automated
Generation of Program Test Data,” IEEE Trans. Software Eng., SE-2,
no. 4 (December 1976), 293-300,

REIFER, D, J.,, “Automated Aids for Reliable Software,” Proc. 1975 Int.
Conf. on Reliable Software, Los Angeles, CA (April 1975), pp. 131-142.

Rerr, JouN H., and HarrY R, Lewis, “Symbolic Evaluation and the Global
Value Graph,” Conf. Rec. 4th ACM Symp. on Principles of Programming
Languages, Los Angeles, CA (January 1977), pp. 104-118.

RerF, JouN H., “Symbolic Program Analysis in Almost Linear Time,” Conf.
Rec. 5th ACM Symp. on Principles of Programming Languages, Tucson,
AZ (January 1978), pp. 76-83.

ReynoLps, Joun C., “Automatic Computation of Data Set Definitions,”
Proc. of IFIP Congress 68 (August 1968), pp. B69-B73.

RicH, CHARLES, and HOWARD E. SHROBE, Initial Report on A LISP Pro-
grammer’s Apprentice, Technical Report AI-TR-354 (December 1976),
Artificial Intelligence Laboratory, Massachusetts Institute of Technology.

RICHARDSON, D. J., “Theoretical Considerations in Testing Programs by
Demonstrating Consistency with Specifications,” Workshop on Software
Testing and Test Documentation, Florida (December 1978), pp. 19-56.

RICHARDSON, D. J., L. A. CLARKE, and D. L. BENNETT, “SYMPLR, SYm-
bolic Multivariate Polynomial Linearization and Reduction,” TR-78-16
(1978), Department of Computer and Information Science, University of
Massachusetts.

RIPKEN, KNUT, “Generating an Intermediate-code Generator in a Compiler-
Writing System,” 4th Int. Comput. Symp., Antibes, France (June 1975),
ed. E. Gelenbe and D, Potier, pp. 121-127. Amsterdam: North-Holland,
1975.

RoseN, BArrY K., “Tree-Manipulating Systems and Church-Rosser Theo-
rems,” J. ACM, 20, no. 1 (1973), 160-187.

, “Applications of High Level Control Flow,” Conf. Rec. 4th ACM
Symp. on Principles of Programming Languages, Los Angeles, CA (January
1977), pp. 38-47.

, “Arcs in Graphs Are Not Pairs of Nodes,” SIGACT News, 9, no, 3
(Fall 1977), 25-217.

BIBLIOGRAPHY 405

Rose77¢c » “High Level Data Flow Analysis,” Commun. ACM, 20, no. 10
(October 1977), 712-724.

Rose78a » “Monoids for Rapid Data Flow Analysis,” Proc. 5th ACM Symp.
on Principles of Programming Languages, Tucson, AZ (January 1978),
pp. 47-59.

Rose78b » “Monoids for Rapid Data Flow Analysis,” IBM Research Report
RC-7032 (1978), Yorktown Heights. (For a condensation of an earlier
version of this work see Rose78a.)

Rose79 , “Data Flow Analysis for Procedural Languages,” J, ACM, 26, no. 2
(April 1979), 322-344.,

Ross77 Ross, D. T., and K. E. SCHOMAN, JRr., “Structured Analysis for Requirements
Definition,” IEEE Trans. Software Eng., SE-3, no. 1 (January 1977),
6-15.

Scha73 SCHAEFER, MARVIN, A Mathematical Theory of Global Program Optimization.
Englewood Cliffs, NJ: Prentice-Hall, 1973,

Schn73 ScHNECK, P. B,, and E. ANGeL, “A FORTRAN to FORTRAN optimising
compiler,” Comput. J., 16, no. 4 (November 1973), 322-330,

Schn75 SCHNECK, P. B., “Movement of Implicit Parallel and Vector Expressions out
of Program Loops,” SIGPLAN Notices, 10, no. 3 (March 1975),103-106.

Schw67 ScHwARTZ, JacoB T., “Reduction in Strength (or Babbage’s Difference
Engine in Modern Dress),” IBM (1967), Menlo Park, CA. :

Schw74a , “Automatic and Semiautomatic Optimization of SETL,” SIGPLAN
Notices, 9, no. 4 (April 1974), 43-49,

Schw74b , “On Earley’s Method of Iterator Inversion,” SETL Newsletter 138
(1974), Courant Institute of Mathematical Sciences, New York University.

Schw75a , “Automatic Data Structure Choice in a Language of Very High
Level,” Commun. ACM, 18, no, 12 (December 1975), 722-728.

Schw75b , “Optimization of Very High Level Languages I: Value Transmission
and its Corollaries,” J. Comput. Languages, 1 (1975), 161-194.

Schw75¢c , “Optimization of Very High Level Languages II: Deducing Relation-
ships of Inclusion and Membership,” J. Comput. Languages, 1 (1975),
197-218.

Schw75d , On Programming: An Interim Report on the SETL Project, 2nd ed..
New York: Courant Institute of Mathematical Sciences, New York
University, 1975.

Scot77 Scort, DANA, “Course Notes,” Séminaire Avancé de Sémantique (Septem-
ber 1977), Sophia-Antipolis, France.

Seth70 SeTHI, RAvi, and J. D. ULLMAN, “The Generation of Optimal Code for
Arithmetic Expressions,” J. ACM, 17, no. 4 (October 1970), 715-728.

Seth74 SetHI, RAvI, “Testing for the Church-Rosser Property,” J. ACM, 21, no. 4
(October 1974), 671-679; “Errata,” J. ACM, 22, no. 3 (July 1975), 424.

Shar77 SHARIR, M., “Interprocedural Data Flow Analysis,” SETL Newsletter 187
(1977), Courant Institute of Mathematical Sciences, New York University.

Shar78a , “A Few Cautionary Remarks on the Convergence of Iterative Data-

Flow Analysis Algorithms,” SETL Newsletter 208 (1978), Courant Insti-
tute of Mathematical Sciences, New York University.

406

Shar78b

Shar81

Sint72

Spil72

Stan76

Stee76

Step78

Stoc76

Stoy77

Stuc73

Stuc75

Suzu77

Tarj75a

Tarj75b

Tarj76

Tars55

Tayl79

BIBLIOGRAPHY

SHARIR, M., and A. PNEULI, “Two Approaches to Interprocedural Data Flow
Analysis,” Technical Report No. 002 (September 1978), Courant Institute
of Mathematical Sciences, New York University.

, “Two Approaches to Interprocedural Data Flow Analysis,” this
volume, chap. 7.

SINTZOFF, M., “Calculating Properties of Programs by Valuations on
Specific Models,” Proc. ACM Conf. on Proving Assertions about Programs,
New Mexico (1972), pp. 203-207.

SPILLMAN, THoMas C., “Exposing Side-Effects in a PL/I Optimizing Com-
piler,” Information Processing 71, Proc. IFIP Congress 71, Ljubljana,
Yugoslavia (August 1971), ed. C.V. Freiman, 376-381, Amsterdam:
North-Holland, 1972.

StanpisH, T. A, et, al.,, “The Irvine Program Transformation Catalogue,”
Department of Information and Computer Science, University of Cali-
fornia at Irvine, January 1976.

STeELE, GUY LEWIS, JR., “LAMBDA : The Ultimate Declarative,” Al Memo
379 (November 1976), Artificial Intelligence Laboratory, MIT.

STEPHENS, S. A., and L. L. Triep, “A Requirements Expression and Valida-
tion Tool,” Proc. 3rd Int. Conf. on Software Engineering, Atlanta (May 1978).

STOCKMEYER, L.J., “The Polynomial-Time Hierarchy,” Theor. Comput.
Seci., 3, no. 1 (October 1976), 1-22.

SToRY, JoserH E., Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. Cambridge, MA : MIT Press, 1977.

Stucki L. G., “Automatic Generation of Self-Metric Software,” Rec. 1973
IEEE Symp. Software Reliability, pp. 94-100.

Stucky, L. G., and G, L. FosHEE, “New Assertion Concepts for Self-Metric
Software Validation,” Proc. 1975 Int. Conf. Reliable Software, Los Angeles,
CA (April 1975), pp. 59-71.

Suzukr, NoRriHIsA, and KiyOosHI ISHIHATA, “Implementation of Array Bound
Checker,” Conf. Rec. of 4th ACM Symp. on Principles of Programming
Languages, Los Angeles, CA (January 1977), pp. 132-143,

TARJAN, RoBERT ENDRE, “Applications of Path Compression on Balanced
Trees,” Technical Report STAN-75-512 (1975), Computer Science Depart-
ment, Stanford University, Stanford, CA.

, “Solving Path Problems on Directed Graphs,” Technical Report
STAN-CS-75-528 (November 1975), Computer Science Department,
Stanford University, Stanford, CA.

, “Iterative Algorithms for Global Flow Analysis,” in Algorithms and
Complexity, New Directions and Recent Results, ed. J. F. Traub, New
York: Academic Press, 1976, pp. 11-101.

TARSKI A., “A Lattice Theoretical Fixpoint Theorem and Its Applications,”
Pac. J. Math., 5, no. 2 (June 1955), 285-309.

TAYLOR, R, N., and LEON J. OSTERWEIL, “Anomaly Detection in Concurrent
Software by Static Data Flow Analysis,” Technical Report #CU-CS-
152-79 (April 1979), Univ. of Colorado at Boulder, Department of
Computer Sciences.

BIBLIOGRAPHY 407

Teic77

Tene74a

Tene74b

Tenn76

Tenn77

That73

Town76

Ullm73
Ullm75
Wegb75
Wegb77
Wels77

Whit78

Wilh74

Wilh76

Wood79

Wulf71

Wulf75

TEICHROEW, D., and E. A, HersHey III, “PSL/PSA: A Computer-Aided
Technique for Structured Documentation and Analysis of Information
Processing Systems,” IEEE Trans. Software Eng., SE-3, no, 1 (January
1977), 41-48.

TENENBAUM, AARON, “Automatic Type Analysis in a Very High Level
Language,” Ph.D. thesis, Computer Science Department, New York Uni-
versity, October 1974.

, “Type Determination for Very High Level Languages,” Report
NSO-3 (October 1974), Computer Science Department, New York
University.

TENNENT, ROBERT D., “The Denotational Semantics of Programming
Languages,” Commun., ACM, 19, no. 8 (August 1976), 437-453.

., “A Denotational Definition of the Programming Language
PASCAL,” Technical Report 77-47, Department of Computing and Infor-
mation Science, Queen’s University, Kingston, Ontario, Canada, July 1977.

THATCHER, JAMES W., “Tree Automata: An Informal Survey,” in Currents
in the Theory of Computing, ed. Alfred Aho. Englewood Cliffs, NJ:
Prentice-Hall, 1973, pp. 143-172.

TowNLEY, Jupy A., “The Harvard Program Manipulation System,” Tech-
nical Report TR-23-76, Center for Research in Computing Technology,
Harvard University.

ULLMAN, JErFreY D., “Fast Algorithms for the Elimination of Common
Subexpressions,” Acta Inf., 2, fasc. 3 (July 1973), 191-213.

, “A Survey of Data Flow Analysis Techniques,” Proc. 2nd USA-
Japan Comp. Conf., Tokyo, Japan (August 1975).

WEGBREIT, BEN, “Property Extraction in Well-founded Property Sets,”
IEEE Trans. Software Eng., SE-1, no. 3 (September 1975), 270-285.

, “Complexity of Synthesizing Inductive Assertions,” J. ACM, 24,
no. 3 (July 1977), 504-512,

WELsH, J., “Economic Range Checking in PASCAL,” Department of Com-
puter Science, Queen’s University, Belfast, Northern Ireland, October 1977.

WHITE, L. J., and E. I. CoHEN, “A Domain Strategy for Computer Program
Testing,” Workshop on Software Testing and Test Documentation,
Florida (December 1978), pp. 335-354.

WIiLHELM, REINHARD, “Codeoptimicrung Mittels Attributierter Transforma-
tions-grammatiken,” in Lecture Notes in Computer Science 26. New York:
Springer-Verlag, 1974, pp. 257-266.

WILHELM, R., K. RIPKEN, J. CIESINGER, H. GANZINGER, W. LAHNER, and
R. D. NoLLMANN, “Design Evaluation of the Compiler Generating System
MUGI1” Proc. 2nd Int. Conf. on Software Engineering, San Francisco
(October 1976), pp. 571-576.

Woobs, J. L., “Path Selection for Symbolic Execution Systems,” Ph.D.
thesis, University of Massachusetts, August 1979.

WULF, W. A,, D. B. RusseLL, and A. N. HABERMANN, “BLISS: A Language
for Systems Programming,” Commun. ACM, 14, no. 12 (December 1971),
780-790.

Wurr, W., R. K. JounsoN, C.B, WEINSTOCK, S.O. Hosss, and C. M,
GEsCHKE, The Design of an Optimizing Compiler. New York: Elsevier
North-Holland, 1975,

