Chapter 1

A Survey
of Data Flow
Analysis Techniques

Ken Kennedy

1-1. INTRODUCTION

High-level programming languages are valuable programming tools
because they permit the specification of algorithms in notations more natural
for expressing the abstract concepts involved. Thus, freed from attending to
. numerous machine-dependent implementation details, the programmer can
produce correct, reliable code more easily. Why then aren’t such languages
universally used for programming? The usual answer is that the resulting
programs are inefficient. That is, the code generated by a high-level language
is less efficient than the code a good assembly language programmer would
write. The problem is that the generality of programming languages, the very
generality which is such a desirable aid to algorithm specification, prevents
the programmer from making use of specific machine features to improve the
efficiency of the code. Unfortunately, compilers for these languages fail to
take up enough of the slack. Since a major aim of programming languages
is to encourage programming at a more abstract level, there must be an
improvement in the efficiency of object programs produced by compilers.
This is the goal of compiler optimization.

Note that optimization is not intended to compensate for poor pro-
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gramming, but rather to reduce the inefficiencies in code to within “reason-
able” bounds—to a point where the advantages of high-level language
programming outweigh any remaining efficiency penalties. For some lan-
guages, optimizing compilers might well be expected to produce code for
inner loops that would be competitive with loops hand-coded by assembly
language programmers.

This last goal is difficult to achieve because high-level languages, if they
are to be usable, must include general-purpose features flexible enough to
serve many different applications. It is not enough to merely include a grab
bag of specialized features because programmers would find such a grab bag
difficult to learn and use. The assembly language expert can write efficient
code because he or she knows the specific purpose to which each data
structure in a particular program will be put; therefore the language expert
can choose for each structure the machine realization that will be most effi-
cient. By contrast, the high-level language programmer must use one of the
general-purpose data structures provided by the language. In the absence of
better information, the compiler generates code for accesses to these structures
which will be correct for any legal application. Thus it is unable to take advan-
tage of any efficient shortcuts which the specific problem at hand might allow.
If the compiler is to compete with assembly language coding, it must be able
to determine enough of the nature of the program being compiled to safely
take those shortcuts; in other words, it must be able to perform some kind
of global program analysis.

As an example, consider run-time subscript range checking. It is desir-
able to capture all attempts to reference outside the limits of an array because
out-of-bounds references are the sources of many subtle errors. Unfortunately,
range checks are expensive and can result in a significant speed degradation.
Optimization offers a viable alternative to the common but questionable
practice of eliminating all range checks: global program analysis can show
that many range checks are superfluous, while others may be safely moved to
less frequently executed code [Harr77a, Suzu77]. The result will be more
efficient programs without the cost of compromised reliability.

There is a widely held notion that -optimization is intended to compen-
sate for bad programming. Nothing could be further from the truth. In fact,
no currently known technique can compensate for the main component of
bad programming: a poor choice of algorithm. Instead, optimization encour-
ages good programming by making high-level languages more attractive and
by taking care of small matters of efficiency so the programmer is free to
concentrate on the essence of the problem.

A variety of code improvement transformations have been proposed in
the literature; I won’t attempt to discuss them all since they are covered in
two important compendia: The Allen-Cocke catalogue [Alle72a] and the
“Irvine Catalogue” [Stan76]. But as background for the discussion of analysis
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methods, I will mention the most prominent techniques. First, two transfor-
mations are fundamental to optimization in straight-line code.

(a) Redundant subexpression elimination [Cock70a, Fong77]. 1If two
instructions that both compute the expression 4 * B are separated by code
which contains no store into either 4 or B, then the second instruction can be
eliminated if the result of the first is saved.

(b) Constant folding [Cock70b]. If all the inputs to an instruction are
constants whose values are known, the result of the instruction can be
computed at compile time and the instruction replaced by a “load” of the
constant value.

In simple loops, two more transformations can lead to significant
improvements.

(c) Code motion [Cock70a, Cock70b]. Instructions that depend only
upon variables whose values do not change in a loop may be moved out of
the loop, improving performance by reducing the instructions’ frequency of
execution.

(d) Strength reduction [Alle69, Cock77, Fong76, Paig77, Alle79].
Instructions that depend on the loop induction variable cannot be moved out
of the loop, but sometimes they can be replaced by less expensive instructions.
For example, in the loop

I:=1;
while 7 << 100 do

A:=1T%5;

I:=71T-+1
od

the value of 7* 5 can be saved in a temporary 7T whose value is incremented
by 5 on each iteration; I *# 5 can then be replaced by a load from T as shown
below. ‘

I:=1;

T:=35;

while 7 << 100 do

A:=1T;
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I:=1+41;
T:=T+5
od

In effect, the multiplication has been replaced by an addition.

Automatic introduction of instructions at new positions in a program
(2 la code motion) gives rise to two important questions. First, the safety
question asks whether the new instruction can cause an error interrupt that
would not have occurred in the original program. This problem can be illus-
trated by the example in Fig. 1-1. It is easy to see that if a computation of

Pointp
}
2
4
B +—expression;
Compute A/B
Y
3
Compute A/B

Figure 1-1 Safety example

A/B is inserted at point p in block 1, the computation in block 3 becomes
redundant and can be eliminated. But what if the purpose of the branch from
block 2 to block 3 is to prevent an attempt to divide by zero? Moving A/B
to block 1 might well introduce an error interrupt that the programmer has
been careful to avoid.

The question of profitability asks whether we are really moving code to
a region of less frequent execution. Most compilers assume that code inside
a loop is executed more often than code outside the loop, but this assumption
could be wrong if there are several alternative branches within the loop. 1t is
possible to do a fairly complete job of frequency estimation [Cock76], but
few compilers make the attempt since it is not known whether the benefits
will justify the cost.
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Both “constant folding” and “redundant subexpression elimination,”
introduced earlier as local optimizations, can be applied on a global scale as
well. Complementing these are two new global optimizations that “clean up”
after other transformations.

(¢) Variable folding [Lowr69]. Instructions of the form A4 := B
will become useless if B can be substituted for subsequent uses of A.

(f) Dead code elimination [Kenn75c]. If transformations like variable
folding are successful, there will be many instructions whose results are never
ased. Dead code elimination detects and deletes such instructions.

An extremely important class of transformations is intended to improve
the efficiency of procedure invocation.

(g) Procedure integration [Alle72a]. Under certain circumstances, a
procedure call can be replaced by the body of the procedure being called
(open linkage); in other cases the overhead associated with standard calling
sequences, parameters, and global variables can be reduced by compiling the
procedure with the calling program (semiopen linkage).

Procedure integration is an extremely important optimization because
procedure calls, desirable from the point of view of programming method-
ology, are often unbelievably inefficient in nonoptimizing compilers. Thus
good modular programming is penalized rather than rewarded by most
compilers.

The last three optimizations are classified as “machine-dependent”
because they aim to increase efficiency by taking advantage of special features
of the target machine.

(h) Register allocation [Beat74]. This optimization seeks to eliminate
load and store instructions by assigning variables to CPU registers whenever
" possible.

(i) Instruction scheduling [Seth70, Beat72]. The proper arrangement
of instructions often leads to improved performance. Different machines give
rise to different scheduling criteria: on a machine with pipelined arithmetic
units the goal is to achieve maximum parallelism, while on simpler machines
the goal is to minimize register usage.

(j) Detection of parallelism [Schn75]. For vector machines it is desir-
able to detect inherently parallel operations and code them as vector instruc-
tions.

This list is by no means complete, but it gives the flavor of some typical
optimizing transformations. For those interested in reading further, an
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excellent introductory treatment of optimization appears in [Aho77], and
Knuth’s famous empirical study [Knut71] demonstrates the utility of various
optimization techniques.

1-2. OPTIMIZATION IN BASIC BLOCKS

One of the first steps in analyzing a program for the purpose of code
improvement is to subdivide the program into basic blocks, which are simply
sequences of consecutive instructions that are always executed from start to
finish. In other words, a basic block may only be entered at the first instruc-
tion and left at the last. Fig. 1-2 shows how a PL/I program would be parti-
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Figure 1-2 A PL/l program fragment partitioned into basic blocks

tioned into basic blocks. Of course, in a compiler the partitioning is usually
performed on some intermediate code representation of the program.

The subdivision process itself is fairly straightforward. I present a
method adapted from [Aho77] that identifies a set of leader instructions,
instructions which begin basic blocks, and then constructs a block by
appending to its leader all subsequent instructions up to, but not including,
the next leader. The algorithm is informally specified in an Algol-like high-
level language which admits set theoretic notation.

Algorithm BB : Basic Block Partition

Input: A program PROG in which instructions are numbered in
sequence from 1 to | PROG/|. INST(7) denotes the ith instruction.
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Output:
1. The set LEADERS of initial block instructions.
2. WV x € LEADERS, the set BLOCK(x) of all instructions in the
block beginning at x.
Method:
begin

LEADERS := {1}; ¢ first instruction in PROG ¢

for i := 1 to | PROG| do
if INST(i) is a branch

then add the index of each potential target to LEADERS

fi

od;

TODO := LEADERS;

while TODO == ¢ do
x := element of TODO with smallest index;
TODO := TODO — {x};
BLOCK(x) := {x};
for i :— x + 1 to {PROG} while i ¢ LEADERS do

BLOCK(x) := BLOCK(x) U {i}

od

od

end

Once the program is subdivided into blocks, each block can be optimized
using local techniques. In this section 1 will describe the value numbering
scheme of Cocke and Schwartz [Cock70b], which performs redundant expres-
sion elimination and constant folding in straight-line code. As a side effect,
the method can also compute some of the information used by the global
analysis methods treated later.

Suppose the source language version of a basic block under considera-
tion is as follows:

A:= 4
K:=1IxJ+ 5
L:=5xA4A%xK
M:=1T
B:=M=xJ+ Ix A
This might be transformed into the intermediate code in Table 1-1.

Table 1-1. Intermediate code example.

71: = C4 75: C5 % A 79: M= J
T2: I %J 76: T6 x K T10: I A

73: T2 + C5 T77: L:=T76 7T11: 79+ 710

T4: K:=T73 78: M:=1 712: B:=T11
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Each triple in this code represents a simple operation; operands may be
variables, constants (c.g., C4), or the results of previous operations (e.g., 72).

The main data structure of the value numbering method is a hash-coded
table of available expressions which is used to help uncover redundant
subexpressions. As each triple is treated in sequence from the start of a block,
the table is searched for a previous instance of the same expression. If a
match is found, the new triple may be eliminated if all subsequent references
to it are replaced by references to the previous triple.

For the method to work, there must be some way to determine when
two operands are identical. This is provided by a system of value numbers
in which each distinct value created or used within the block receives a unique
identifying number. Two entities have the same value number only if, based
upon information from the block alone, their values are provably identical.
For example, after scanning the first instruction in Table 1-1,

Ti: A:= C4

variable 4 and constant C4 would have the same value number. The “current”
value number associated with a variable (or constant) is kept in the symbol
table entry for that variable; the value number for the result of a triple is
kept in the table of available computations and as an auxiliary field of the
triple itself. The hash function for entry to the available expression table is
based on the value numbers of the operands and a special code for the
operator.

Constant folding is handled via an auxiliary bit in each symbol table
entry, indicating whether the current value is a constant, and a bit in each
triple, indicating whether the result is a constant. Also required is a table of
constants, indexed by value number, which contains the actual run-time
values of constants.

Algorithm VN, presented in a high-level mixture of English and Algol,
embodies the ideas discussed so far. Note that an instruction is assumed to
be the value of a structured variable with an operator field OP, some auxiliary
information, and two operands L and R (left and right, respectively).

Algorithm VN : Value Numbering in a Basic Block

Input:
1. A basic block of triples.
2. A symbol table SYMTAB.
Output: An improved basic block, after redundant subexpression elimi-
nation and constant folding.
Intermediate.
1. Table of available expressions AVAILTAB.
2. Table of constants CONSTVAL.
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Method:
begin
while there is another instruction do
INSTR := the next instruction;
OPERATOR := OP of INSTR;
if OPERATOR = store then
find r, the value number of R of INSTR
(this may assign a new value number);
if r represents a constant value then
so indicate in the SYMTAB entry for L of INSTR
fi

else ¢ an expression ¢
find value numbers /., for L of INSTR and R of INSTR

(this may assign new value numbers);
if / and r represent constant values then
compute the value x of the result by applying OPERA-
- TOR to CONSTVAL(/) and CONSTVAL(r);
enter the new constant x in CONSTVAL, assigning a new
value number in the process;
delete INSTR ’
else ¢ check for availability ¢
look up the triple {/,operator,r) in AVAILTAB, setting
FOUND := true if successful;
if FOUND then
record the fact that any reference to this triple is to be
subsumed by a reference to the previous one (a
pointer to which is contained in AVAIL);
delete INSTR ;
else ¢ not available ¢
enter {l,operator,r> in AVAILTAB, assigning a new
value number to the result
fi
fi
fi
od
end

Consider the application of this algorithm to the example intermediate code
from Table 1-1.

In processing triples 1 through 4, nothing unusual takes place. Value
numbers are assigned to variables 4, 7, J, and K and to constants C4 and CS.
The results of triples 72 and 7T'3 are recorded as available. The information
collected up to this point is displayed in Fig. 1-3.




Result

I ?
Name Value # Constant? value # Constant?
1 ca 1 ves T1 1 yes
2 A 1 yes T2 4 no
3 I 2 no 73 6 no
4 J 3 no T4 6 no
5 C5 5 yes
6 K 6 no
SYMTAB Auxiliary fields of
triples
Left Right Result Original
Value # Value value # op value # value # instr.
1 4 2 * 3 4 T2
5 5 4 + 5 6 T3
CONSTVAL AVAILTAB

Figure 1-3 Information collected up to instruction 5

At instruction 5, the algorithm looks up C5 and 4 and discovers that
they are both constant. The resulting C20 may be computed from values in
CONSTVAL; it receives a new value number (7) and is . recorded in
CONSTVAL. Finally, triple 5 is deleted. In the next step, triple 6 will be
modified to use C20 in place of T'S5.

Figure 1-4 displays the information collected by the algorithm up to
instruction 9. At this point it discovers that operands M and J have value
numbers 2 and 3, respectively, and that there is a previous computation (7°2)
of the product of these values. Therefore triple 9 can be deleted and subse-

quent references to it replaced by references to T2. The final optimized code
is shown in Table 1-2.

Table 1-2 Final optimized code

T1: A:=C4 7T6: C20x K T10: /1 *x A
7T2: I =J 77: L:=T6 711: 72+ T10
73: T2 + C5 7T8: M:=/ T12: B:=T11

74: K:=T3

It is especially interesting that instruction 9 is discovered to be identical to
I * J even though an alias is used for 1.

The method I have described is an elementary prototype of more sophis-
ticated versions which can also handle array references and structured vari-
ables [Cock70b, Aho77, Kenn78].

14



Result

?
Name Value # Constant? value # Constant?
1 ca 1 yves T1 1 yes
2 A 1 yes T2 4 no
3 I 2 no T3 6 no
4 J 3 no T4 6 no
3 Cc5 5 ves 75* 7 yves { deleted)
6 K 6 no
7 c20 7 yes
8 L 8 no
9 M 2 no
SYMTAB Auxiliary fields of
triples
Left Right Result Original
Value # Value value # oF value # wvalue # instruction
1 4 2 * 3 4 T2
5 5 4 + 5 6 73
7 20 7 * 6 8 76
CONSTVAL AVAILTAB

Figure 1-4 Information collected up to instruction 9

An important side effect of this or any other basic block analysis routine
is that it can be modified to compute certain sets which are useful in deter-
mining global information. For example, the final version of the available
computations table can be used to determine the set of expressions which are
“available on exit” from the block. In the next section we turn to the problem
of performing global analysis once we have such sets for each basic block.

1-3. GLOBAL DATA FLOW ANALYSIS

While analysis within basic blocks can lead to substantial improvements
in a program, larger gains may be achieved by going a step further and gath-
ering information on a global scale. For example, suppose the expression
A * Bin block b is not eliminated by local methods; that is, there is no earlier
computation of 4 * B in b. Suppose also that neither 4 nor B is redefined
in b prior to the computation of 4 * B. If we can prove that, no matter what
control path is to be taken at run-time, 4 * B will always be computed before
control reaches b, then we can still eliminate the computation in b. Estab-
lishing facts like this requires an analysis of control flow in the program that
is thorough enough to yield useful information about data relationships.

In essence, the problem is this: Given control flow structure, we must
discern the nature of the data flow (which definitions of program quantities

15
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can affect which uses) within the program. The questions about data flow fall
into two classes:

1. Those which, given a point in the program, ask what can happen
before control reaches that point (i.e., what definitions can affect
computations at that point);

2. Those which, given a point in the program, ask what can happen
after control leaves that point (i.e., what uses can be affected by
computations at that point).

Class 1 problems are usually called forward flow problems, while class 2
problems are backward flow problems. The gathering of information to solve
problems of either class is accomplished in two phases. Once the program is
subdivided into basic blocks, possible block-to-block transfers are noted and
program loops are found. This phase is known as control flow analysis.
Next the information about how uses and definitions relate to one another is
gleaned in the global data flow analysis phase. The construction of data flow
information is difficult because most nontrivial programs have complex
control flow graphs; nevertheless, a number of solution methods exist. In
this chapter I shall outline a few of the most important.

The control flow of a program may be represented as a directed graph
G = (N, E, n,) where N is the set of nodes, E is the set of edges, and n, is the
program entry node. In this model, nodes represent basic blocks and edges
represent possible block-to-block transfers. Figure 1-5 shows the control
flow graph corresponding to the PL/I program in Fig. 1-2.

Two special notations will be used frequently in discussmg'control flow

- -

’ ~
" o ,l Dummy program entry

()
. e Exit
(3)
o@iso
(s)

Figure 1-6 Control flow graph for Fig. 1-2
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graphs. The successor set S(x) for a node x is defined as
S(x) ={y € N|(x,)) € E}
and the predecessor set P(x) is
' P(x) ={y € N|(y,x) € E}

A simple path in G is a sequence of nodes (ny, n5, . - -, n,) such that all nodes
are distinct and (n,, n,,,) € E, 1 <i<k. A simple cycle is a simple path
except that n, = n,.

We shall use as examples two problems which are typical of class 1 and
2 data flow problems.

(a) Available expression analysis. 'We say that an expression is defined
at a point if the value of that expression is computed there. An expression is
said to be killed by a redefinition of one of its argument variables. In these
terms an expression is available at point p in G if every path leading to p
contains a prior definition of that expression which is not subsequently killed.
Let AVAIL(d) be the set of expressions available on entry to block 6. We
define a system of equations for AVAIL(b), b € N, in terms of sets which
can be computed from local information. Let NKILL(b) be the set of expres-
sions which are not killed in block b and DEF(b) be the set of expressions
which are defined in b without being subsequently killed in b, i.e., the set of
expressions which are always available on exit from b. These definitions lead
directly to the system of equations:

AVAIL(®) = () (DEF(x) U (AVAIL(x) N NKILL(x))) (1-1)

Solution of this system will provide the desired global information.

(b) Live variable analysis. A path in G = (N, E, n,) is said to be
X-clear if that path contains no assignment to the variable X. The variable X
is live at point p in G if there exists an X-clear path from p to a use of X.
Let LIVE(d) be the set of variables which are live on entry to block b. Once
again we seek a system of equations for the live sets in terms of local sets.
Let IN(b) be the set of variables which are live on entry to b because of a use
within b, and let THRU(b) be the set of variables which are redefined in b.
The following system of equations is the result:

LIVE(b) = IN(®) U \J (THRU(®) N LIVE(x)) (1-2)

Similar equation systems can be developed for most data flow analysis prob-
lems. In fact, Kildall [Kild73], Kam and Ullman [Kam76], Graham and
Wegman [Grah76], and Tarjan [Tarj75b] all formalized their treatment of
data flow analysis by providing axioms for “acceptable” equation systems,
thus unifying their methods. To show that a particular problem can be handled
by a standard algorithm, one need only show that the sets of quantities and
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rules for combining the sets at control flow junctions satisfy the required
axioms. This approach simplifies the discussion of data flow methods. Curi-
ously, it has also contributed to the classification of the algorithms by ranges
of applicability [Kam76, Fong77]. Fast solution methods to these problems
have taken a number of forms. Nine such methods are surveyed here, four
in detail.

1-3.1. Iterative Techniques

Perhaps the simplest approach to data flow analysis is to iterate through
the nodes of the graph applying the appropriate equations until no changes
take place. Such a method has been studied by Hecht and Ullman [Hech76,
Ullm73] and subsequently by Kennedy [Kenn76]. Here is the iterative
algorithm for live variable analysis.

Algorithm IT: Iterative Live Analysis

Input: IN(b), THRU(®), Vb € N.
Output: LIVE(b), Vb € N.
Method:

begin
for all b € N do LIVE(D) := IN(b) od;
change := true;
while change do
change := false;
for all » € N do
oldlive := LIVE(b);
LIVE®) := IN(b) U GLS)(M (THRU(b) N LIVE(x));

if LIVE(bd) == oldlive then change := true fi
od
od
end

If n = | N|, this algorithm requires O(n?) extended (or “bit vector”) steps for
the entire computation. Kildall [Kild73] has described a very general form of
the iterative algorithm using lattice theory, while Kam and Ullman [Kam76}
have shown that there exist optimization problems for which the iterative
algorithm does not converge rapidly—for example, constant propagation.

1-3.2. Nested Strongly Connected Regions

A somewhat structured approach to data flow is based upon the loop
organization in the program. This method proceeds from local to global
analysis by first extending data flow information to inner loops, then effec-
tively collapsing these loops to single nodes before continuing to the next
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level. Many optimizations such as code motion can be performed in stages
using this method with code being “bubbled” outward to less frequently
executed regions. This is the technique originally used by Allen [Alle69].
The difficulty is that it is not always easy to find a suitable collection of nested
strongly connected regions. The accepted way of locating such a collection
was first devised by Earnest, Balke, and Anderson [Earn72]; it involves the
application of two ordering algorithms on the nodes of the control flow graph.
Earnest [Earn74] continued this work by presenting a number of optimization
algorithms which used nested regions. Beatty [Beat74] has developed an
elegant register assignment algorithm using this method.

1-3.3. Imterval Analysis

A simpler way to partition the control flow graph into regions was devel-
oped by Cocke and Allen [Alle70, Alle71, Cock70a, Alle76]. An interval in
G is defined to be a set 7 of blocks with the following properties:

1. There is a node A € I, called the head of I, which is contained in
every control flow from a block outside 7 to a block within 7; i.e.,
I is a single-entry region.

2. [is connected. (This property is trivial if G is connected.)

3. I — {h} is cycle-free; i.e., all cycles within 7 must contain A.

Given a node 4 in some graph G, the following algorithm, due to Allen
and Cocke [Alle76], constructs MAXI(#), the maximal interval with head A.
In presenting the algorithm, I use the notation S[M], where M is a set of
nodes, to mean

L) S()

xeM

that is, the set of successors of nodes in M.

Algorithm MIl: Maximum Interval Construction.

Input: The specified head A.
Output: MAXI(h).

Method:
begin
I:= {h};
while 3 x € (S[i] — I) such that P(x) = 1
do
I:= 171U {x}
od;
MAXI(h) := 1
end
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As we shall see, the order in which Algorithm MI adds nodes to an interval 7
is important, so it is usually given a name: interval order. Interval order is a
total ordering on 7 which preserves the partial order generated by the subgraph
I — {h}. The significance is that if nodes of 7 are processed in interval order,
a particular node x(3= #) will be treated only after every node in P(x) has been
processed. Similarly, if 7 is processed in reverse interval order, every node in
S(x) N I will be treated before x is. These order-of-processing observations
are crucial to data flow algorithms based on intervals.

Using Algorithm MI as a subprogram, the following algorithm, also
due to Allen and Cocke [Alle76], partitions a flow graph into a set of disjoint
intervals. Algorithm IP is based upon the observation that any node which
is the successor of some node in interval 7, but which is not in 7 itself, must be
the head of some other interval J.

Algorithm IP: Interval Partition.

Input: A flow graph G = (N, E, n,).
Output: A set INTS(G) of disjoint intervals which form a partition of G.
Auxiliary:

A set H of potential interval heads.

A set DONE of heads for which intervals have been computed.
Method:

begin ¢ the program entry n, is a head ¢
H := {n,};
DONE := ¢;
while H = ¢ do
x := an arbitrary node in H;
find MAXI(x) using Algorithm MI;
INTS(G) := INTS(G) U {(MAXI(x)};
¢ add new heads ¢
H:= H U (S[MAXI(x)] — MAXI(x) — DONE)
od
end

As an example, consider the flow graph displayed in Fig. 1-6. When Algorithm
IP is applied to this graph, it identifies nodes 1, 2, and 5 as interval heads;
the corresponding intervals are {1}, {2, 3, 4} and {5, 6, 7}.

For a given flow graph G, the derived flow graph I(G) is defined as fol-
lows:

1. The nodes of I(G) are the intervals in INTS(G).

2. 1IfJ, K are two intervals, there is an edge from J to K in I(G) if and
only if there exist nodes n, € Jand ny € K such that n, is a succes-
sor of n, in G. Note that n, must be the head of XK.

3. The initial node of I(G) is MAXI(n,).




Figure 1-6 A flow graph with intervals

The sequence (G,, Gy, ..., G,) is called the derived sequence for G if
G = G,, G, = I(G), Gp—y 7= G, and I(G,,) = G,,. G, is called the derived
graph of order i and G, is the limit flow graph of G. A flow graph is said to
be reducible if and only if its limit flow graph is the trivial flow graph, a single
node with no edge; otherwise, the flow graph is nonreducible [Alle70, Alle76,
Cock70b].

Figure 1-7 shows the rest of the derived sequence for the example in
Fig. 1-6.

In this example, the graph is reducible; however, that will not always be

Gz= [(61)

G, = I(G)

Figure 1-7 Derived sequence for Fig. 1-6
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the case, as Fig. 1-8 demonstrates. If we apply Algorithm IP to this graph,
the result will be the same graph—each node is an interval unto itself.

© s &)
Figure 1-8 A nonreducible graph

As it happens, the data flow analysis algorithms based on intervals
work only for reducible graphs, so nonreducibility could present a serious
obstacle. However, we are able to ignore this problem for two reasons. First,
three empirical studies have shown that flow graphs arising from actual
computer programs are almost always reducible, i.e., more than 959 of the
time [Alle72, Knut71, Kenn77]. Second, any nonreducible graph can be trans-
formed to a reducible one by a process known as node splitting [Cock70b].
Figure 1-9 shows a split version of Fig. 1-8; the new graph, semantically
identical to the old one, has been made reducible through the use of an exact
copy of node 3.

Figure 1-9 Split version of Fig. 1-8

Thus, secure in the knowledge that node splitting can always be applied
in those rare cases where a graph fails to reduce, we can concentrate on finding
fast data flow algorithms for reducible flow graphs.

Like all approaches which are based upon a program’s control flow
structure, the interval partition gives rise to a two-pass algorithm for data
flow analysis. I will discuss the method as it applies to live analysis, treating
each pass separately.
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(a) Pass 1: local to global. During the first pass, local quantities IN
and THRU are computed for larger and larger regions of the program.
The heart of this pass is Algorithm I1 below, which computes IN and THRU
for an interval from their values for blocks in the interval. Note that a second
parameter has been added to THRU to indicate a particular successor; this
permits handling of THRU for composite regions like intervals.

Algorithm 11: Interval Pass 1.

Input:
1. An interval /1.
2. IN(x), Vx € I; THRU(x, ), Vx € I, Vy € S(x).

Output: IN(I); THRU(, J), VJ  S).

Auxiliary: For each x € I, PATH(x), the set of variables 4 for which
there is a clear path (not containing a store into 4) from the entry of
I to the entry of x.

Method:

begin
IN() := IN(h);
PATH(A) := Q ¢ Q = set of all variables ¢
for all x € I — {h} in interval order do

PATH(x) := LJ( (PATH(») N THRU(y,x));
IN(D) := IN(T) U (PATH(x) N IN(x))
od;

¢ let h; denote the head of J ¢
for J such that 4, € S[/] do
THRU{,J):= |J (@PATH(») n THRU(»,A;))

yGP(hJ) nrI
od
end

If Gy, G, . . ., G, is the derived sequence (where G, = G), pass 1 consists of
applying Algorithm Il to each interval in G,, then to each interval in G,,
and so on until it has been applied to the single interval in G,,_,. At this point,
IN and THRU sets will have been computed for each node in the derived
sequence of graphs.

(b) Pass 2: global to local. During the second pass, LIVE is computed
for smaller and smaller regions of the program. Let x* denote the single node
in G,,. Pass 2 begins with the assignment

LIVE(x*) := IN(x*)

This is clearly correct since x* has no successors. The remainder of the
pass consists of repeated application of Algorithm 12, which computes LIVE
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sets for each node in an interval 7, given correct live sets for the entry to 7
and to each successor J of I. This precondition is assured by the order in which
12 is applied: first to the interval x*, then to each interval in G,,_,, and so on
(backwards through the derived sequence) until LIVE sets have been com-
puted for every node in the original graph G.

The algorithm itself is based on the observation that if nodes of 7 — {4}
are treated in reverse interval order, the live analysis equation (1-2) can always
be applied because the correct LIVE set for each successor of a given node
x € I — {h} will have been previously computed. To see this, suppose we are
processing nodes of 7 — {4} and we arrive at node x. A successor y of x can
be one of three things:

1. y is another node in 7 — {A}, in which case LIVE(y) has already
been computed because nodes are being treated in reverse interval
order,

2. yis the head of 7, in which case LIVE([) can be used for LIVE(y),

3. y is the head of some successor interval J, in which case LIVE(J)
can be used.

Algorithm I2 is a direct encoding of these insights.

Algorithm 12: Interval Pass 2.

Input:
1. An interval 7 with head A.
2. IN(x), Vx € I, THRU(x, ), Vx € I, Yy € S(x).
3. LIVE(Z); LIVE(/), VJ € S{).
Output: L1IVE(x), Vx € I.
Method:
begin
LIVE(h) := LIVE({);
for all J « S(J) do
LIVE(head of J) := LIVE(W)
od
for all x € I — {h} in reverse interval order do
LIVE(x) := IN(x) U yngm (THRU(x,y) N LIVE(y))

od
end

Although interval analysis has been shown to require fewer bit vector
operations than the iterative method in many cases [Kenn76], it is still O(n?)
in the worst case, and in practical implementations the elegantly simple
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iterative method may prove faster. The main advantage of the interval
approach is that it constructs a representation of the program control flow
structure which can be used for other optimizations [Cock70a]. Allen, Cocke,
Schwartz, Kennedy, Aho, and Ullman [Alle70, Cock70a, Alle76, Cock70Db,
Kenn71a, Kenn76, Aho73] have applied interval analysis in the solution of
data flow problems. Allen and Cocke [Alle70, Cock70a] first used intervals to
solve class 1 (forward) problems, while Kennedy [Kenn71, Kenn76] indicated
the interval solution for class 2 (backward) problems. :

1-3.4. T1-T2 Analysis

In search of better theoretical results and faster algorithms, Ullman
[Ullm73] introduced two transformations on program graphs. Transformation
T'1 collapses a self-loop to a single node, while transformation 72 collapses
a sequence of two nodes to a single node if the second has the first as its only
predecessor. When 7'l and T2 are repeatedly applied to a control flow graph,
the graph is often reduced to a single node. Hecht and Ullman [Hech72] have
shown that the reducible flow graphs in the T'1-T2 sense are exactly the inter-
val-reducible graphs. This result has led to a number of useful characteriza-
tions of flow graph reducibility [Hech72, Hech74]. :

T'1-T2 analysis also allowed Ullman [Ullm73] to design an algorithm
which uses balanced “3-2” trees to perform available expression computation
in O(n log n) extended steps. Ullman’s method can be extended to many other
class 1 problems; however it is not known whether it can be adapted to class
2 problems.

1-3.5. Node Listings

A variation of the iterative method for data flow analysis builds an
intermediate representation of the control flow called a node listing [Kenn75b],
which is then used to solve the data flow equations. I here describe the node
listing method for live analysis.

In the solution of the live analysis problem we are concerned with how
operations in one block can effect “}iveness” on entry to another. Thus we
are interested in propagating information from every block in the program to
every other block. Thus it is natural to consider the paths along which this
information is propagated. A node listing for control flow graph G =
(N, E, n,) is defined to be a sequence

I=(n1,n25'-"nm)

of nodes from N (nodes may be repeated) such that every simple path in G
is a subsequence of /. That is, if

(xh X2 ¢« xk)
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is a simple path in G, then there exist indices

jlsts LI ] :.ik
SUCh thatji <jl'+l9 1 g i < k, and x, _— nj‘, 1 g ig k.
For any control flow graph there exists a node listing of length << n?
where n = | N| since

l=m,,n,, ..., R, A, 0y, ..., 0 ..., ,...,0M1,)

with 7 repetitions of (n,, . . ., n,) is certainly such a listing. A node listing is
minimal if there is no shorter listing for G.

The utility of this concept is demonstrated by the following algorithm
which, given a node listing, computes the live sets in a manner similar to the
Hecht-Ullman iterative method.

Algorithm NL: Node Listing Live Analysis.

Input: IN(b), THRU(D), Vb € N.
Output: LIVE(b), Vb € N.

Method:
begin
for all b € N do LIVE()) := IN(b) od;
for i := |nodelist| to 1 by —1 do

b := nodelist[i];
LIVE() := IN(b) U ij(b) (THRU(b) N LIVE(x))

od
end

The node listing concept is introduced in [Kenn75b}; in [Aho76] Aho and
Ullman show that for reducible flow graphs an O(n log n) length node listing
can be found in O log n) time. Combining this method with Algorithm NL
produces an O(n log n) algorithm to solve either class 1 or class 2 data flow
problems. Markowsky and Tarjan [Mark75] have shown that O(n log n) is
a lower bound of the node listing algorithm; i.e., no better worst-case bound
can be found, although there are linear listings for a large class of graphs
[Kenn75b]. '

1-3.6. Path Compression

Another O(n log n) data flow analysis algorithm was discovered by
Graham and Wegman [Grah76]. It is based on three transformations which
are similar to Ullman’s 7T'1 and 72. The Graham-Wegman transformations
are depicted in Fig. 1-10. Transformation 7, removes a self loop; 7, com-
presses a two-step path to a one-step path, eliminating the middle node when-
ever it has no other successors (7,b); T, eliminates a successor of the entry




T11 A@ —_—
]
T,a: —
¥
X
Tob: —
75 —
-
A Y
=) )
’
~

Figure 1-10 Graham-Wegman path compression transformations

node that has no successors of its own. For technical reasons, application of
T, requires that the node with the loop have a unique predecessor. An
example reduction using these transformations is shown in Fig. 1-11. Graham
and Wegman have shown that any graph reducible in the interval sense will
be reduced by T',-T;.

Data flow analysis using the path compression transformations is
similar to interval analysis. The method I present here differs from the one
originally published by Graham and Wegman in that it easily handles
backward as well as forward analysis.

Given a flow graph, the first step is to construct a “parse,” i.e., a list
of transformations which will reduce the graph to a single node. The complex-
ity analysis is very sensitive to the order in which transformations are applied.
Graham and Wegman use a clever algorithm to choose a parse that reduces
loops from the inside out and minimizes the number of T, transformations.
Since T, transformations are the most expensive, this strategy achieves a
good time bound.

Once available, the parse is employed in a two-pass algorithm which
computes IN and THRU for composite regions of increasing size in a pass
through the reduction sequence, then computes LIVE for each node as it
appears in the reverse reduction sequence (or production sequence). This
process is embodied in Algorithm P2, which applies a set of associated
computations at each reduction or production. Each transformation in the
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Figure 1-11 Sample Graham-Wegman reduction

parse is really a pair <{¢, >, where ¢ is a transformation number and 7 is a
mapping from the nodes in the production to nodes of the graph being

reduced ; in other words, i specifies the region of application for transforma-
tion 7. Such a pair is called a transformation instance.

Algorithm P2: Two-pass Live Flow Analysis
Input:
1. A graph G = (N, E, ny).
2. IN(x), Vx € N; THRU(x, »), Vx € N, YVy € S(x).

3. A list PARSE, consisting of transformation instances <{¢, 7> which
reduce G.

Output: LIVE(x), Vx € N.
Method:
begin
¢ pass 1 ¢
for i:— 1 to | PARSE| do
{t,p> := PARSE[i];
apply the reduction computations associated with 7 to the
nodes specified by 7.

28
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od;
LIVE(n,) := IN(n,);
¢ pass 2 ¢
for i := |PARSE|to 1 by —1 do
{t,m> := PARSE[i];
apply the production computations associated with 7 to the
nodes specified by 7.
od
end

All that remains is to specify the computations associated with each transfor-
mation. Figure 1-12 shows the computations of IN and THRU performed
during the reduction pass. Note that path compression emphasizes edges
rather than nodes, so the THRU sets being constructed are for composite
edges. For notational convenience, we define THRU of a nonexistent edge to
be the empty set. Figure 1-13 shows the production computations; an initial
LIVE set for each node is determined when the node first appears as the result
of some production. This live set is then revised as new exit edges are added
by T,a productions. :

In practice, path compression is very fast indeed; in fact, it operates in
linear time for an extremely large subclass of the reducible flow graphs. Its
only disadvantage is that, although classified as a “structured” method, the
structure it uncovers seems unnatural because it is based on edges rather than
nodes. Nevertheless, path compression is an excellent algorithm from both
the theoretical and practical standpoints.

1-3.7. Balanced Path Compression

In 1975, Tarjan devised an algorithm [Tarj75a] which combined ele-
ments of the node listing approach with a stronger form of path compression
using a balanced tree data structure he had introduced in [Tarj75b)]. The
result is a very fast algorithm with running time O(no(n, 1)), where « is related
to a functional inverse of Ackermann’s function. Thus for all practical
purposes the algorithm is asymptotically linear; unfortunately it seems very
complex, so until there is some experience with an implementation, one
cannot tell whether it is suitable for inclusion in a compiler. Tarjan’s algorithm
can be used to solve a variety of class 1 problems, but it is not yet clear that
it can be adapted to class 2 problems.

1-3.8. Graph Grammars
In an attempt to further simplify the problem of data flow analysis,

Farrow, Kennedy, and Zucconi [Farr76] studied further restrictions on the
class of acceptable graphs, restrictions stronger than the traditional notion of
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Figure 1-12 Reduction computations

reducibility. They introduced the Semi-Structured Flow Graph (SSFG)
grammar, depicted informally in Fig. 1-14, and studied the class of flow
graphs generated by that grammar. The set of rules in Fig. 1-12 was chosen
because it seems to include most of the control structures proposed as exten-
sions of the basic Bohm and Jacopini set for structured programming
[B6hm66]. For example, the SSFG grammar can generate the double-exit
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LIVE(x) := IN(x)
T,b

LIVE(y) := IN(y) U (THRU(y, z) N LIVE(2))

f\w%

LIVE(y) = LIVE(y) U (THRU(y, z}) N LIVE(Z2))

——-\

Figure 1-13 Production computations

loop used by Ashcroft and Manna [Ashc71] to demonstrate a limitation of the
Bshm-Jacopini control structures (see Fig. 1-15).

The major problem with using SSFG or any other graph grammar for
data flow analysis is that of graph parsing, constructing a parse foran arbitrary
graph. For the SSFG rules, an important step toward the fast parsing
algorithm was a proof that corresponding SSFG reductions can be applied in
any order without affecting the result. In other words, reducibility of a given
graph is not sensitive to the order in which reductions are applied. Farrow,
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Figure 1-14 SSFG grammar
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Figure 1-15 Derivation of the Ashcroft-Manna counterexample

Kennedy, and Zucconi established this result by proving, via a long graphical
argument, that the SSFG reductions have the Finite Church-Rosser property
[Aho72, Seth74]. As a result of this property, they were able to devise a
parsing algorithm which applies reductions in a disciplined way and avoids
wandering around the graph.

I present the parsing algorithm in two parts. First, Algorithm CO
(collapse) finds all the reductions which apply at a particular node x. If it

discovers at least one reduction, it sets a success flag to true and returns the
reduction list.

Algorithm CO: Collapse
Input: A graph I"' and a node xin I'.

Output :
1. A flag SUCCESS indicating whether or not a reduction has been
found.

33
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2. A list of reductions P, (possibly empty).
3. A modified graph I'”.
Method:

begin P, := €; SUCCESS := false;
reducing :— true; I'' :=1T";
while reducing do
for each production P in Gggpc do
if right-hand-side(P) is isomorphic to a region R in I
headed by x
then
apply P! to reduce R to a single node x’, forming a new
version of I’ ; add the production P to P, along with some
auxiliary information;
x:= x;
SUCCESS := true;
goto reduced
fi
od;
reducing :— false;
reduced:
skip
od
end

The SSFG parsing algorithm assumes a list L of nodes of the program
in straight order, a fairly obvious order for nodes of the flow graph [Earn72,
Hech75], and produces a parse P;.. The basic scheme is to take each node
from L in sequence and try a collapse. Whenever a collapse succeeds, the
algorithm backs up to a predecessor, indicated by a “link,” to try further
collapses; otherwise it moves on to the next node on L. This disciplined
backup is the key to a linear time bound.

Algorithm PA: SSFG Parse

Input:
1. A graphT.
2. A list L of nodes of T in straight order.
QOutput:
1. A list P of reductions.
2. An answer to the question, “Is I' in the language generated by

kL)

GSSFG *
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Method:

begin _
L = the list of unvisited nodes (straight order);
x ;= the entry of I'';
Pr = €;
remove x from L;
while x 7= null do
perform a collapse at node x;
¢ collapse produces I'", P, and the flag SUCCESS ¢
make x the unique linked predecessor of all unvisited succes-
sors of x in I'’;
append P, to Pr;
I:=17";
if SUCCESS ¢ at least one reduction ¢
and x is linked to a predecessor

then x := linked predecessor of x
elif L — € then x := null
else x:=hd L;L:=tlL
fi
od;

if ' is now a single computation node

then the graph is SSFG and P, is a valid parse
else the graph is not SSFG

fi

end

The operation of this algorithm is demonstrated by the example in Fig. 1-16.
In this figure, links are indicated by dotted lines. Nodes are numbered in
straight order. The steps are as follows:

1.

An unsuccessful collapse is attempted at node 1. A link to 1 is
inserted in 2.

A collapse at node 2 discovers a “decision sequence 1” involving
node 4. Links to 2 are inserted in nodes 3 and 10 [Fig. 1-16(b)].

A backup leads to another unsuccessful collapse at 1.

A collapse at node 3 discovers a long sequence of reductions: two
“decision sequence 1” reductions [Fig. 1-16(c)}, a “double-exit loop”
and a “decision sequence 1” [Fig. 1-16(d)], a “conditional” and a
“decision sequence 2” [Fig. 1-16(e)]. A link to 3 is inserted in 10,
but not in 2 (it has been visited).
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Figure 1-16 An example parse
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5. After a backup, a collapse at node 2 discovers 2 “double-exit loop,”
a “conditional,” and a “sequence” [Fig. 1-16(f)].

6. After one more backup, a collapse at node 1 produces the final
“sequence” reduction.

It has been shown that this algorithm, in time linear in the number of
blocks in the original program, either produces a parse for I' or reports that
T is not reducible. If the graph is reducible, the length of its parse must also
be linear in the size of the original graph.

With the parse in hand, we can apply the same two-pass algorithm used
by path compression (Algorithm P2) to perform data flow analysis. Space
does not permit me to specify the computations associated with each of the
nine transformations in the SSFG grammar ; instead, I have selected two rules,
“sequence” and “double-exit loop,” as examples. Reduction computations
for these rules are shown in Fig. 1-17 and production computations in Fig.

(b)

Sequence

IN(x) := IN(x) U (THRU(x, y) N IN(y))
THRU(x, z) := THRU(x, y} N THRU(y, 2)

(i)

Double-exit
loop

z w IN{(x) := IN{x) U (THRU(x, y) N IN(y))
THRU(x, z) := THRU(x, 2)
THRU(x, w) := THRU(x, y) N THRU(y, w)

Figure 1-17 Sample reduction computations

1-18. As with path compression, a correct LIVE set is determined for each
node when it first appears as the result of some production. Since there is a
fixed number of operations associated with each transformation in the parse,
the linear parse length implies that the entire computation takes linear time.

An important byproduct of the method is the parse itself, which can be

i



Sequence

P4

LIVE(y) := IN(y) U (THRU(y, z) N LIVE(z))

Double-exit
loop

z w

LIVE(y) := IN(y) U (THRU(y, x) N LIVE(x))
U (THRU(y.w) N LIVE (w))

Figure 1-18 Sample production computations

used for many different data flow problems and which provides a convenient
representation of the structure of the program. Because it uncovers loops and
other control constructs, this representation can be used to perform opti-
mizations like code motion and strength reduction. The structure discovered
by the SSFG parse is more natural than that discovered by the interval method
or the Graham-Wegman technique, because the SSFG grammar is based
upon control structures arising from good programming practice.

The main drawback of the graph grammar approach is its limited range
of applicability. In order to find out how much of a drawback that is, Kennedy
and Zucconi conducted a followup study in which they analyzed 500
FORTRAN subroutines taken from running programs used by several
departments in the School of Natural Sciences at Rice University. All these
programs were written before the emphasis on structured programming, yet
94 7; were Cocke-Allen-reducible and, of these, 88 % were SSFG-reducible.
In other words, 88 % of the programs for which most other methods work can
be reduced and hence analyzed by the SSFG method [Kenn77].

As a final note I would point out that the Graham-Wegman algorithm
is also linear on all the SSFG-reducible graphs. It is gratifying to observe
that well-structured programs can produce benefits other than the obvious
ones—e.g., faster compilation speeds. In a sense, programs that are easier for
humans to understand are also easier for compilers to understand.
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1-3.9. High-Level Data Flow Analysis

The methods surveyed thus far are designed to work with a low-level
version of the program. One might well ask if it is possible to perform the
same analysis on a high-level representation such as the parse tree. The answer
is yes. This approach, often called high-level data flow analysis, is similar to
the graph grammar method, except no complicated graph-parsing algorithm
is required. For simplicity, I will illustrate the method by considering a lan-
guage which contains no escape or goto statements. Consider the simple gram-
mar fragment below.

{ programn)> ::= begin {statement) end

{statement’> ::= {assignment >

{statement ::= {statement ) ; {statement)>

{statement> ::= if {condition)> then {statement else {statement ) i

{statement> ::= while {condition)> do {statement> od

Although this grammar is clearly ambiguous, we can nevertheless write
a parser which resolves the ambiguity in some sensible way, say by grouping
from left to right. 4

The parse tree for a program generated by this grammar will have a
{ program’> node as its root and a number of {statement’> nodes as nontermi-
nals in the tree. Data flow analysis can be applied to such a tree in the familiar
two-pass fashion. The first pass propagates IN and THRU sets associated
with {statement ) nonterminals up toward the root ;the second pass propagates
LIVE sets down toward the leaves. To specify the entire procedure within this
framework, one need only specify the computations that can occur at each
{statement)> node: for pass 1, how to compute IN and THRU for a {state-
ment> given IN and THRU for its parts, and for pass 2, how to compute
LIVE for subparts of a {statement) given LIVE for the {statement’) along
with IN and THRU for the parts, as determined on pass 1. These specifi-
cations must be given for each rule of the grammar.

As an illustration, consider the computations associated with the sample
grammar given earlier. For compactness, 1 will specify these computations
using the shorthand notations S for {statement), C for {condition>, P for
 program>, and A for <{assignment>; I will use subscripts to distinguish
different occurrences of the same nonterminal in a single rule. Each nonter-
minal S will have a number of associated attributes: IN, THRU, LIVE, and
LIVEOUT (the set of variables live on exit) for the region that S represents.
The specification is completed by associating with each rule of the grammar
semantic equations, which show how to compute the various attributes. To
apply the semantic equations at a particular node while traversing the parse
‘tree, set up a correspondence between the node and its sons on the one hand
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and the nonterminals of the production that applies at the node on the other.
Then the semantic equations associated with the rule can be used to compute
attributes for the tree nodes.

Here is the complete specification for the sample grammar.

1. P := begin S end

¢ no computations on pass 1 ¢
¢ pass 2 computations ¢
LIVE(S) := IN(S);
LIVEOUT(S) := ¢;

2. Su:= A4

¢ pass 1 ¢

IN(S) := IN(A4);

THRU(S) := THRU(A4);

¢ pass 2 ¢ _

LIVE(A) := IN(4) U (THRU(A) N LIVEOUT(S));
3. Sou=S5:;S,

¢ pass 1 ¢

IN(S,) := IN(S;) U (THRU(S,;) N IN(S,));
THRU(S,) := THRU(S,;) " THRU(S,);

¢ pass 2 ¢

LIVEOUT(S,) := LIVEOUT(S,);

LIVE(S;) := IN(S;) U (THRU(S,) N LIVEOUT(S)));
LIVEOUT(S,) := LIVE(S,);

LIVE(S,) := IN(S;) U (THRUC(S,) N LIVEOUT(S)));

4. S, ::=if C then S, else S, fi

¢ pass 1 ¢

IN(S,) := IN(C) U (THRU(C) N (IN(S,) U IN(S,)):
THRU(S,) := THRU(C) N (THRU(S,) U THRU(S,));
¢ pass 2 ¢

LIVEOUT(S,) := LIVEOUT(S,) := LIVEOUT(S,);
LIVE(S,) := IN(S,) U (THRU(S;) N LIVEOUT(S),));
LIVE(S,) := IN(S,) U (THRU(S,) N LIVEOUT(S,));
LIVEOUT(C) := LIVE(S;) U LIVE(S,);

LIVE(C) := IN(C) U (THRU(C) N LIVEOUT(C));

5. S, ::= while C do S, od

¢ pass 1 ¢
IN(S,) := IN(C) U (THRU(C) N IN(S,)):
THRU(S,) := THRU(C);

¢ pass 2 ¢
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LIVEOUT(C) := LIVEOUT(S,) U IN(S,)
U (THRU(S,) N IN(O));
LIVE(C) := IN(C) U (THRU(C) N IN(C));
LIVEOUT(S,) := LIVE(C);
LIVE(S,) := IN(S,;) U (THRU(S,) N LIVEOUT(S,));

The high-level approach, described here via an attributed grammar
[Knut68], has several advantages. First, because the computations at each
node of the parse tree are selected from a finite set and because the tree is
traversed exactly twice, the total amount of processing is linear in the number
of nodes of the parse tree. However, the constant of proportionality depends
on the richness of the set of control structures—the richer the language, the
more complex the data flow analysis.

Second, the method lends itself to convenient updating of data flow
when sections of the parse tree are modified by optimization. If the leaf of
some subtree is changed, new values of IN and THRU can be propagated
upward to the first nonterminal where these sets are unchanged; then the
computation of modified LIVE sets can be propagated back toward the leaves.
This process limits the updating in response to a change to the region where
the change actually makes a difference. ,

Finally, the first pass of high-level analysis can be performed as a part
of the parse itself. Whenever a composite control structure is recognized, the
IN and THRU sets for the region it represents are computed from IN and
THRU for its parts according to the semantic equations above.

Various formulations of high-level data flow analysis have been pro-
posed [Wulf75, Neel75, Jaza75b]. Particularly notable is its use in the
BLISS/11 compiler at Carnegie-Mellon [Wulf75]. T he name “high-level
data flow analysis” was coined by Rosen in his detailed treatment of the
method [Rose77]. Rosen’s approach generalizes to more complicated control
structures by using flexible semantic equations that can be applied in
different situations.

1-3.10. Summary Table

Table 1-3 summarizes the characteristics of the algorithms I have
described. The column labeled “Speed” shows the asymptotic complexity of
each method. In the “Simple” column, “S” indicates an easy-to-program
method, “C” indicates a complicated method, and “M” indicates average
difficulty. A “yes” under “Structure” says that the method uses a model of
the program loop structure in its computation, i.e., that the algorithm attempts
to discover the structure of the program. A “yes” in the “Both ways” column
indicates that the algorithm works in the given time on both forward and
backward data flow problems. The last column shows the class of graphs
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for which each algorithm was analyzed (in most cases this is also the class
to which the algorithm is applicable).

Table 1-3 Summary of data flow methods

Both Graph

Method Speed Simple ? Structure ? ways ? class
Iterative nz S no ves all
Interval nz M yes ves reducible
Bal. tree nlogn C yes no reducible
Path comp. nlogn M semi yes reducible
Node list nlogn M no yes reducible
Bal. path not(n, n) C no ? reducible
Grammar n M ves yes L(grammar)
High-level n S yes yes parse trees

1-3.11. Interprocedural Analysis

The foregoing material has said nothing about the effect of procedure
calls on data flow analysis. Usually calls within blocks are treated as complex
instructions which may affect the values of many variables. It is the function
of interprocedural data flow analysis [Alle74] to construct summary information
for a procedure: which variables are used and which are redefined as the result
of a call. For example, interprocedural analysis might construct IN and
THRU sets for the procedure call to support live analysis.

Interprocedural analysis is important because, in its absence, extremely
conservative assumptions must be made. For example, in live analysis, it
must be assumed that a procedure uses every variable it has access to; in
availability analysis it must be assumed that it kills every expression it can and
defines no new ones. Broad assumptions like these quickly dilute the power
of data flow analysis. '

Interprocedural analysis is a complex process, particularly for languages
with complex scoping rules [Bart78]. It usually entails constructing a call
graph and summary information for a single activation of each procedure in
the graph, then taking a transitive closure on the graph. Since it is treated
elsewhere in this volume, I will not discuss it in detail, but the reader should
be aware that it is an essential part of any system for global data flow analysis.

1-4. USE-DEFINITION CHAINS

For data flow analysis problems which are more complex than the ones
examined previously, data interconnections may be expressed in a pure form
which directly links instructions that produce values to instructions that use
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them. These links are called use-definition chains. For the purposes of this
exposition, I will assume that these chains are realized in the following forms:

1. For each instruction i and input variable V, DEFS(V, i) is the set
of instructions which may be the most recent defining instructions
for ¥ at run time. In other words, DEFS(V, i) contains the set of
instructions which may compute the value of ¥ used by i.

2. For each instruction / and output variable V, USES(V, i) is the set
of instructions which may use the value of ¥ computed by i at
run time. These sets are related as follows:

x € DEFS(A4,y) = y € USES(4,x).

I will postpone, for the moment, a discussion of how use-definition
chains are used in favor of a discussion of how to compute the sets DEFS
and USES. Suppose we are considering an instruction y and an input variable
A. If there is a defining instruction x earlier in the same block, then this is
the only possible member of DEFS(A, y). Otherwise, we must discover which
instructions in the program compute values that can “reach” the beginning
of the block; every such instruction that has A4 as its output variable should
be in DEFS(A, y). Thus the problem is reduced to computing, for each block
b in the program, the set REACHES(d) of pointers to instructions that com-
pute values which are available on entry to 4. Let DEFOUT(y, x) be the set
of instructions in block y which produce values that are still available on
entry to successor x, and let NKILL(y, x) be the set of instructions whose
output variables are not redefined in passing through block y to block x.
Then the following system of equations holds.

REACHES(n,) = ¢
REACHES(x) = U (DEFOUT(y, x) U (REACHES(y) (1-3)

yEP(x)

M NKILL(y, x)))

This is exactly the kind of system which can be solved by any of the data flow
analysis methods described in Section 1-3.

Once DEFS is available, USES can be produced by simple inversion.
The informal algorithm below can be used for this purpose.

Algorithm US: USES Computation

Inpur: DEFS.
Output: USES.
Method:

begin
USES(*) := ¢;
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for each instruction 7 in the program do
for each input variable 4 of instruction i do
for each instruction j in DEFS(4,i) do
USES(output(j),j) := USES(output(j),j) U {i}
od
od
od
end

To illustrate the usefulness of these chains, I present an application to
dead code elimination. The usual method for eliminating dead code is to first
find and mark all instructions which are “useful” in some sense. This is done
by starting with a set of critical instructions, instructions which are useful
by definition. For example, you might declare all output instructions to be
critical. Once every instruction in the critical set is marked, the method pro-
ceeds to mark any instruction that defines a variable used by at least one
marked instruction, continuing until no more instructions can be marked.
The use-definition chains help in the location of instructions which can com-
pute some input of a marked instruction. To manage the process, Algorithm
MK below uses a workpile of instructions ready to be marked.

Algorithm MK : Mark Useful Instructions

Input:
1. Use-definition chains, DEFS(v, 7).
2. Set of critical instructions CRIT.
Output: For each instruction 7, MARK(?) = true iff i/ is useful.

Method:

begin
MARKC(*) := false;
PILE := CRIT;
while PILE = ¢ do
X := an arbitrary element of PILE;
PILE := PILE — {x};
MARK(x) := true;
for each y € DEFS(A4,x) do
if " MARK()») then
PILE := PILE uU {y}
fi
od
od
end
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All that remains after application of the marking algorithm is to remove any
unmarked instructions as useless.

While Algorithm MK demonstrates a fairly powerful application of
use-definition chains, it only uses chains in one direction. We shall next
consider the problem of global constant folding, whose solution requires
simultaneous use of chains in both directions. This is because each constant
instruction discovered may lead to more folding at the use points of its
output variables, and testing an instruction for constant inputs implies an
examination of the defining points of those inputs. Put another way, each time
an instruction is replaced by a constant, the folding algorithm must recheck
all uses of its output variable to see if the using instruction might also be
eliminated. Such a check necessarily involves looking at other definitions
which can reach the use. The situation is depicted in Fig. 1-19.

Other uses of same variable

New - - -

constant
instruction

use-def
chains
DEFS

Use of new constant

Figure 1-19 The need for two types of chains in constant folding

The method implied by the above observation is realized in Algorithm
CP. Like Algorithm MK, it uses a workpile to control iterations. A number
of set-theoretic notations are used in the informal specification; these have
the obvious meanings. The algorithm also uses a subroutine COMPUTE to
evaluate constant instructions.

Algorithm CP: Constant Propagation

Input:
1. A program PROG containing instructions of the usual type.
2. A flag CONST(a, i) for each instruction { and input or output
variable 4 of i. Initially, CONST(A, i) is true only if 4 represents a
constant denotation.
3. The chains USES and DEFS.
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Output:
1. The modified CONST flags.
2. The mapping VAL(A, i) which provides the run-time constant
value of variable A4 at instruction i; VAL(A, i) is defined only if
CONST(A, i) is true.

Method:

begin ¢ start with the trivially constant instructions ¢
PILE := {x € PROG|(VY 4 € inputs(x)]| CONST(A4,x))};
while PILE == ¢ do
x := an arbitrary element of PILE;
PILE := PILE — {x};
B := output(x);
for each i € USES(B,x) do
¢ check for constant inputs ¢
conB := true;
for each y € DEFS(B, i) — {x} while conB do
if CONST(A,y) and VAL(B,y) = VAL(B,x)
then conB :— true
else conB := false
fi
od;
¢ test the exit condition ¢
if conB then
CONST(B,i) := true;
VAL(B,i) := VAL(B,x);
¢ is the instruction now constant? ¢
if (VA € inputs(i) | CONST(A4,i)) then
C := output(i);
CONST(C,i) := true;
VAL(C, i) := COMPUTE();
PILE := PILE U {i}
fi
fi
aod
od
end

Although termination and correctness of Algorithm CP are subtle,
the interested reader will not find it difficult to establish them. The algorithm
is interesting because it serves as a model for many other optimization
algorithms. One such will be seen in Section 1-6.




1-5. SYMBOLIC INTERPRETATION

The analysis methods presented so far can only solve restricted classes
of data flow problems. The algorithms of Section 1-3 work only for problems
which ask whether or not a single event may (or must) have happened before
control reaches some point (in the forward case) or may happen later (in
the backward case). They are not effective for questions about sequences
of events along control flow paths. Use-definition chain methods are more
general, but they too can be imprecise because information is gathered by
jumping between uses and definitions rather than by following individual
execution paths [Kap178b].

The most precise method for gathering global data flow information is
symbolic interpretation [Wegb75, King76]. As implied by the name, symbolic
interpretation entails executing the program with symbolic values for all
variables whose values are indeterminate at compile time. For example, if
the value of N in a given FORTRAN program is always 5 but the value of M
is read in as data, M would be assigned a symbolic value «. Then after
executing the statement

L= N*M
L will have the (partially) symbolic value 5o.

It should be easy to see that the value numbering method of Section 1-2
is just symbolic interpretation restricted to straight-line code. As in value
numbering, the compiler can uncover useful facts about the relationships
among values of program variables at point p by executing the program
symbolically up to that point. But there is, of course, a hitch. At conditional
transfers of control, the truth value of the condition may depend on symbolic
values; that is, it may not be possible to determine at compile time which
way control will go at run time. In such cases, interpretation must proceed
down both paths. But this leads to problems at points where control paths
join. If X has value & on one path and f on another, its value after they join
must be expressed as “either « or £.” In loops, value conjunctions of arbitrary
length can be built, as the example in Fig. 1-20 shows.

Suppose we assign X the value a at block 1; then interpreting around
the loop shows that its value at block 2 can be either & or 5a. Another
interpretation adds 25« to the list of alternatives. Clearly, there are infinitely
many possible values. Since symbolic interpretation attempts to prove every-
thing it can about a program, it terminates only when it has enumerated all
possible values of the properties it is keeping track of, so interpretation would
not terminate on this example.

The problem is solved by restricting the application of symbolic inter-
pretation to determining properties from a well-founded property set [Wegb75].
Simply put, if we take two properties from a well-founded set, their conjunc-
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Figure 1-20 A loop for symbolic interpretation

tion (“either property a« or property £°) can be approximated by another
property in the set, say y; furthermore, after finitely many such approxima-
tions a limiting property will be reached. For example, suppose we are
optimizing a language in which variables may dynamically take on values of
three different types: real, integer, and character. Suppose also that the special
atomic type undefined is used for uninitialized variables. By adding three
more types—number, atom, and inconsistent—we can characterize our knowl-
edge of variable types with the well-founded property set shown in Fig. 1-21.

Atom

1

Number

Character / \ Undefined

N

Inconsistent

Figure 1-21 A well-founded property set for variable types

In this diagram, arcs lead from more specific to less specific information.
To determine the result of a disjunction of two distinct types, locate the types
in the diagram and find the first type which can be reached from both by
following arrows. Thus the disjunction “real or integer” yields number, while
“real or undefined” yields atom.

Since the disjunction of a type with itself produces the same type, a
stable upper bound must be reached in this set after at most three distinct
disjunctions. Thus a symbolic interpreter which terminates only when a steady
state is reached will always terminate using this set. In general, symbolic

48




SEC. 1-5 |/ SYMBOLIC INTERPRETATION 49

interpretation is guaranteed to terminate when determining properties from
a well-founded set on a finite program [Wegb75].

To convey the flavor of this method, I will include an adaptation of
Wegbreit’s simplest interpretation scheme. (More complicated versions, which
unroll loops, will not be described.) First we assume a very simple model in
which there are only two types of statements, simple and conditional. A simple
statement x has a single successor given by nexz(x), while a conditional y
has two successors: next()), taken when the condition is true, and nexzz(y),
taken when it is false.

Assume we are dealing with a well-founded property set P which has
a property conjunction or join operation V such that, for p,, p, € P, p, V p,
is the approximation of “either p, or p,.” Furthermore, assume there is a
least general property, denoted by 0, such that for any property p € P,
p V 0 = p. In Fig. 1-20, “type = inconsistent™ is 0.

Finally, the execution of an elementary statement may change the
property which holds after that statement. Let outprop(x, p) be the property
which holds after simple statement x is executed, given that property p holds
initially. Similar functions outprop(x, p) and outpropz(x, p) give the resultant
properties on the true and false branches, respectively, of a conditional.

Algorithm Si: Symbolic Interpretation

Input:
1. A program PROG consisting of instructions with successor fields
next or nexty and nexty.
2. A well-formed property set P with join operation V and minimal
element 0.
3. The semantic mappings outprop, outpropy, and outpropg.
Output: For each statement x € P, PROP[x], the most specific property
provably true on entry to x (within the given framework).
Method:

begin
for each x €« PROG do
PROP[x]:= 0
od;
let x, := the program entry statement;
PILE := {{x4,0>};
while PILE = ¢ do
let z be an arbitrary element in PILE;
PILE := PILE — {z};
<xsp> =z,
oldp := PROP[x];
PROP[x] := PROP|[x] V p;
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while x == exit statement and o/dp = PROP[x] de
if x is a simple statement then
P := outprop(x,PROP[x]);

x := next[x];
else ¢ a conditional; save the false branch ¢
Yr := nextg[x];

PILE := PILE U {{yg,outprops(x,PROP[x])>};
¢ follow the true branch ¢
P == outprop(x,PROP[x]);
x := nextiix]

fi;

oldp := PROP[x];

PROP[x] := PROP[x] V p

od
od
end

Using the well-foundedness of P, it is not too difficult to show that this
algorithm terminates. Some unnecessary iterations can be avoided by using
a more sophisticated structure for PILE so that the two pairs <{x, p,;> and
<{x, p,> are automatically combined into <{x, p, V p,> when the second is
added to a PILE already occupied by the first. The more complicated versions
of Algorithm SI that unroll loops for more precision are straightforward
extensions [Wegb75, King76].

If symbolic interpretation is so good, why isn’t it used exclusively?
The main reason is efficiency. Most problems involve property sets much
richer than the one in Fig. 1-20. For example, instead of specifying the type
of a single variable, a property might specify the types of all program vari-
ables. Such property sets give rise to numerous iterations before a steady state
is reached. Thus symbolic interpretation is rarely used in compilers. However
its suitability for complex problems makes it an important tool for optimiza-
tion research and program verification [King76, Cous77a, Suzu77, Cous78].

1-6. OPTIMIZATION
OF VERY-HIGH-LEVEL LANGUAGES

I shall conclude this survey with a discussion of some current work on
optimization for very-high-level languages, focusing on the SETL project
at New York University. SETL is a language based on the theory of sets
[Schw75d, Kenn75a]. It has a standard set of fundamental data types (real,
integer, character, bit, and strings of characters or bits) along with two
structured types (sets and tuples). It derives its power from its fundamental
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view of data as sets and mappings (sets of ordered pairs). An introductory
treatment of the language may be found in [Kenn75a].

The SETL implementation identifies two classes of objects, long and
short. Both items use a root word for their representation. As shown in Fig.
1-22, the first few bits of the root word identify the object type and the rest
are used for actual data, in the case of a short object, or control information
and a pointer in the case of a long object. A long object’s data is contained in
an extended representing block stored elsewhere and pointed to by the root
word.

Short object | Type Data

Long object | Type | Control information i

\

Pointer to
longer structure

Figure 1-22 Object representation in SETL

Currently, SETL uses representing blocks organized as arrays for tuples
and hash tables for sets. Individual entries in these blocks are root words for
the individual members.

The general unoptimized implementation scheme is as follows. Code is
translated into a series of calls to SETL run-time library routines. Each
routine implements one SETL primitive in its most general form. In par-
ticular, since SETL does not have type declarations, type tests must be made
at run time. Consider the primitive

S €q 5,

which tests for equality between objects of any type. Even after it is discovered
that s, and s, are both sets, the test is a complex one involving another
primitive, the membership test

sieqs, =(Vx € s,|lx e s;)&(Vy € sy e sy)

The strategy of the SETL optimizer is to use special knowledge of the
program, gleaned through global analysis, to replace as many expensive
library calls as possible by in-line code stubs, which assume the most common
case and test for exceptions, calling the library only when necessary. As an
example, consider the expression x + y. In the general case, x and y could
be sets, integers, tuples, reals, strings, etc. But suppose a global analysis of
types determines that x and y are both integers; then the situation is greatly
simplified, although we still don’t know whether they are long or shortintegers
(}ong integers require multiword storage). The code stub assumes, as the most
likely case, that both are short integers. It then has the following flavor.
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Stub: add x and y as short integers;
execute a fast test for overflow or type error;
if test positive then call library routine
else record results fi
Thus with the aid of global type analysis, the optimizer is able to effect a
substantial efficiency gain.

This example leads us naturally to consider the nature of global type
analysis. Type analysis was the subject of Tenenbaum’s Ph.D. thesis [Tene74b]
and has been subsequently studied by Jones and Muchnick [Jone76] and
Kaplan and Ullman [Kapl77a]. The first step in type analysis is to define an
algebra of type symbols which is built up from:

1. A number of atomic type symbols:

I (integer), R (real), UD (undefined), NS (set of arbitrary elements),
G (general), Z (error), etc.

2. Alternation of types:
= tl'tZI‘ . oltk
3. Set formation:
L= {tl}
4. Tuple formation (fixed length):
t =<1, 8, ...ty
5. Tuple formation (indefinite length):

t = [z,]

Next we define the rules for determining the output type of an operation
given the input types. This is encoded in a transition function F which, for
each operation op and input types ¢, #,, . . . , ¢, of the operands, produces

tO = Fop(t19 t2’ L ] t,,)
where 7, is the output type (or at least the best approximation to it within

the algebra). Finally an operation \/, which allows alternation of types at
merging paths, is defined; i.e.,

k
= \/ti
=1

is the type of an object which has types ¢,, . . ., f; on k merging paths.
With these definitions, global type determination can be carried out by
a direct analog of the use-definition chain algorithm for constant propagation.
Although this is the same problem we solved by symbolic interpretation in
the last section, use-definition chains permit a more efficient implementation.
The workpile is initialized to a set of instructions with clearly defined (or
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constant) types. Thereafter an instruction is examined whenever a refinement
of one of its input types is detected.

Algorithm TA: Type Analysis

Input:
1. A program PROG.
2. A mapping TYPE, such that TYPE(4A, x) is the best initial estimate
of the type of variable 4 at x (for most variables this is ‘UD”).
3. The sets DEFS and USES.

Output: For each instruction x and input or output variable A,
TYPE(A, x), a conservative approximation to the most specific
type information provably true at x.

Method:

begin
PILE := {x € PROG|(V 4 € inputs(x)| TYPE(a,x) = ‘UD")};
while PILE == ¢ do
x := an arbitrary element in PILE;
PILE := PILE — {x};
B := output(x);
for each i € USES(b,x) do
¢ recompute type ¢
oldtype .= TYPE(b,i);
TYPE(B,i) := \/ TYPE(B,y);

YEDEFS(B,i)
if TYPE(B,i) %« oldtype then
¢ a type refinement ¢
TYPE(output(i),i) := F.p« applied to the input types of i;
PILE := PILE U {i}
fi
od
od
end

In his dissertation, Tenenbaum showed how the above type analysis
could be enhanced by a backward pass which elicits type information from
uses and propagates it back to definition points [Tene74b]. Kaplan and
Ullman extended this idea to incorporate multiple passes in both directions
[Kapl77a]. It is clear that symbolic interpretation could also be used for type
analysis to produce more specific results. I will not have space to treat the
numerous other SETL optimizations here. I refer the interested reader to a
series of papers [Schw74a, Schw75a, Schw75b, Schw75c, Dewa77] which lay
out most of the methods used by that project; several of these involve auto-
matic or semiautomatic data structure choice. A number of papers treat
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further SETL optimizations [Fong76, Paig77, Fong77]. In general, the opti-

mization of very-high-level languages should prove a fruitful area for new
research and for further application of established techniques.
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