
W i l l i a m P u g h

A PRACTICAL
ALGORITHM

f o r E x a c t A r r a y
D e p e n d e n c e A n a l y s i s

ndamental anal-
is step in an ad-
',nced optimizing
compiler (as

well as many
other software

tools) is data dependence
analysis f o r arrays. This
means deciding i f two refer-
ences to an array can refer to
the same e lement and i f so,
under what conditions. This

information is used to deter-

mine allowable program

transformations and opti-

mizations. For example, we

can determine that in the

fo l lowing code fragment , no

location o f the array is both

read and written. Once we

also verify that no location is

writ ten more than once, we

know that the writes can be

done in any order.

for i = 1 to 100 do
f o r j -- i to 100 do

A[i, j + 11 = A[100,j]

There has been extensive study
of decision methods for array data
dependences [1, 2, 5, 6, 8, 15, 18,
25]. Much of this work has focused
on approximate methods that are
guaranteed to be fast but only com-
pute exact results in (commonly
occurring) special cases. In other
situations, approximate methods
are conservative. They accurately
report all actual dependences, but
may also report spurious depen-
dences.

Data dependency problems are
equivalent to deciding whether
there exists an integer solution to a
set of linear equalities and inequali-
ties, a form of integer program-
ming. The problem as just shown
would be formulated as an integer
programming problem in the next
example. In this example, iw andjw
refer to the values o f the loop vari-
ables at the time the write is per-
formed and iT and jr refer to the val-
ues of the loop variables at the time
the read is performed.

1 <--iw<--jw < _ I00
1 <-ir<jr < - 100

iw = 100
j ~ + I = L

Convention holds that integer
programming techniques are far
too expensive to be used for de-
pendence analysis, except as a
method of last resort for situations
that cannot be decided by simpler,
special-case methods. We present
evidence that suggests this argu-
ment is wrong. We will describe the
Omega test, which determines
whether there is an integer solution
to an arbitrary set of linear equali-
ties and inequalities. Our experi-
ments that suggest that, for almost
all programs, the average time re-
quired by the Omega test to deter-
mine the direction vectors for an
array pair is less than 500 ~secs on
a 12-MIPS workstation. We also
found that the time required by the
Omega test to analyze a problem is
rarely more than twice the time
required to scan the array sub-
scripts and loop bounds. This
would indicate that the Omega test
is suitable for use in production
compilers.

Conceptually, the Omega test
combines new methods for elimi-
nating equality constraints with an
extension of Fourier-Motzkin vari-
able elimination to integer pro-
gramming. At a more detailed
level, the Omega test also incorpo-
rates several implementation details

102 August 1992/Vol.35, No.8/COMMUNICATIONS OF THE ACM

(described later in this article) that
produce substantial speed improve-
ments in practice.

In teger p rogramming is a NP-
Complete problem, and the Omega
test has exponential worst-case time
complexity. We will show that in
many situations in which other
(polynomial) methods are accurate,
the Omega test has low-order poly-
nomial worst-case time complexity.

Dependence analysis is often
s t ructured as a decision problem:
tests simply answer yes or no. Com-
pilers and other p rogram restruc-
tur ing tools need to know the data
dependence direction vector [24]
and data dependence distance vec-
tor [13, 19] that describe the rela-
tion between the iterations in which
reads and writes of a part icular
array e lement occur. The data de-
pendence distance vector describes
the differences between the values
of the common loop variables be-
tween the first and second access to
the same array element. For exam-
ple, in the following code fragment,
the dependence distance of the
flow dependence is (1,2):

f o r i : = 1 t o n d o
for j : = 1 t o m d o

a(i , j) : = A (i - 1 , j - 2)

Sometimes, dependence distance is
not constant. In these cases, the
dependence direction vector de-
scribes the possible combinations of
signs of dependence distances.

Determining dependence direc-
tion vectors may require an expo-
nential number call to a depen-
dence testing algori thm that only
re turns yes/no. To be competitive, a
dependence analysis method must
be able to short-cut this enumera-
tion process (e.g., [6, 8]). Later we
will show how the Omega test can
be modif ied to project integer pro-
g ramming problems onto a subset
of the variables, ra ther than jus t de-
ciding them. With this knowledge,
we can efficiently produce a set of
constraints that precisely and con-
cisely describes all possible depen-
dency distance vectors. This infor-
mation can be used directly in
deciding the validity of p rogram

transformations, or s tandard direc-
tion and distance vectors can be
quickly computed from it. These
techniques are described in the sec-
tion on dependence direction and
distance vectors.

The Omega Test
The Omega test determines
whether there is an integer solution
to an arbi t rary set of l inear equali-
ties and inequalities, re fer red to as
a problem. The input to the Omega
test is a set of linear equalities
(~'q~_i~_n a i x i = c) and inequalities
(Zl~_i_~, aixi >-- c). To simplify our
presentat ion (and our algorithms),
we define x0 = 1 and use
~'~O~_i<_n a ix i = 0 and E0_~i_~n aixi ~-- 0

as our s tandard representations,
and we use V to denote the set of
indices of the variables being ma-
nipulated (i.e., V = {il0 -< i -< n}).

Normalizing (and Tightening)
Constraints
T h r o u g h o u t this article, we assume
that any constraint we are manipu-
lating has been normalized. A nor-
malized constraint is one in which
all the coefficients are integers and
the greatest common divisor of the
coefficients (not including a0) is 1.

I f the initial constraints involve
rational coefficients, they can be
scaled to obtain integer coefficients
(the algori thms described here do
not produce any noninteger coeffi-
cients).

To normalize a constraint, we
compute the greatest common divi-
sor g of the coefficients al an.
We then divide all the coefficients
by g. I f the constraint is an equality
constraint and g does not evenly
divide a0, the constraint is unsatisfi-
able. I f the constraint is an inequal-
ity constraint, we take the floor
when dividing a0 by g (i.e., we re-
place a0 with Lao/g_]).

Taking floors in the constant
term tightens the inequalities. I f a
problem P has rational but not inte-
ger solutions, t ightening P may
produce a problem without rational
solutions, thus making it easier to
de te rmine that P has no integer so-
lutions.

Equality Constraints
Given a problem involving equality
and inequality constraints, we first
eliminate all the equality con-
straints, p roducing a new problem
of inequality constraints that has
integer solutions if and only if the
original problem had integer solu-
tions. Of course, in the process we
might decide that the problem has
no integer solutions regardless of
the inequality constraints.

Banerjee's General ized Greatest
Common Divisor (GCD) test [5] can
be used to eliminate integer equal-
ity constraints. We found, however,
the following approach better
suited to our needs, since it is some-
what s impler and more appropr ia te
for situations in which addit ional
equalities may be added later.

To eliminate the equality
~ i ~ V aixi = O, we first check if there
exists a j # 0 such that [ajl = 1. I f so,
we eliminate the constraint by solv-
ing for xj and substitute the result
into all o ther constraints.

Otherwise, let k be the index of
the variable with the coefficient that
has the smallest absolute value (k
0)..~nd let m = [ak[+ 1. We define
mod as follows:

a m o d b = a - b L a / b + 1/2_]

We create a new variable ~r and
produce the constraint:

A
mo" = ~ (ai mod m)xi

i ~ V

Note that ak mod m = --sign(ak). We
then solve this constraint for Xk

X k = --sign(ak)mo"

+ ~'~ sign(ak)(ai mod m)xi
i~V-{k}

and substitute the result in all con-
straints. In the original constraint,
this substitution produces:

-laklm + Z (ai
iEV-{k}

+ lakl(aimodm))xi = 0

Since lakl = m - l , this is equal to

COMMUNICATIONS OF THE ACM/August 1992/Vol.35, No.8 103

A

--laklmo" + ~ ((ai - (aimodm))
i~v-{k} / . ~

+ m(aimodm))xl = 0

Since all terms are now divisible by
m, normalizing the constraint pro-
duces:

-Io,l + (o,,m +
iEV-{k} "L ~ J

+ (aimodm))'xi = 0

In the original constraint, the
absolute value o f the coefficient of
tr is the same as the absolute value
of the original coefficient of Xk. For
all o ther variables, the absolute
value of coefficients are reduced to
at most two-thirds o f their previous
value. Therefore , repea ted applica-
tions of this rule will eventually
force a unit coefficient to appea r
and allow us to el iminate the con-
straint. An application of these
methods is shown in Figure I.

F i g u r e ! . Example of elimination of
equality constraints

I n e q u a l i t y C o n s t r a i n t s
The following process is used once
all equality constraints have been
eliminated. We first check to see if
any two inequality constraints di-
recdy contradict one another (e.g.,
the constraints 3x + 5y-> 2 and
3x + 5y -< 0). I f we find a contradic-
tion, we repor t that the problem
has no solutions. We can deal with
equality constraints more efficiently
than inequality constraints. There-
fore, if we find a pair o f tight in-
equalities (such as 6 -< 3x + 2y and
3x + 2y -< 6), we replace them with
the appropr ia te equality constraint
and revert to our methods for deal-
ing with equality constraints. While
checking for contradictory pairs of
constraints, we also el iminate con-
straints that are made r e d u n d a n t by
a single other constraint (e.g., x +
2y-> 0 is made r edundan t by x +
2y > - 5).

I f the problem involves at most
one variable and has passed the
above tests, we repor t that it has in-
teger solutions. Otherwise, we re-
duce the problem to one or more
integer p rog ramming problems in

subst i tu t ion resu l t ing c o n s t r a i n t s

Original problem

X = - 8 o " - 4 y - z - 1

y = o. + 31.

7 x + 1 2 y + 3 1 z = 17

3 x + 5 y + 1 4 z = 7
1 ~ < x ~ < 4 0
- 5 0 ~< y~< 50

-7(7 - 2 y + 3 z = 3
- 2 4 o . - 7 y + 1 1 z = 10
1 ~ < - 8 o ' - 4 y - z - 1 ~< 40
- 5 0 ~<.y~< 50

-3o" - 21" + z = 1
- 3 1 o ' - 2 1 T + 1 1 z = 10
1 ~ < - 1 - 12o" - 1 2 1 . - z ~ < 40
- 5 0 ~ < o . + 3 T ~ < 50

z = 3 o . + 2 T + 1 2 o ' + I " + = - 1
1 ~< - 2 - 1 5 (r - 1 4 T ~< 40
- 5 0 ~< o" + 3T ~< 50

1 . = - 2 o ' - 1 1 ~ < 1 2 + 1 3 o ' ~ < 4 0
- 5 0 ~ < - 3 - 5 o ' ~ < 50

after normalization 0 ~< o" ~< 2

fewer dimensions and repeat the
above process, eventually getting to
problems in one dimension.

Detecting real solutions using
Fourier-Motzkin variable elimina-
tion. Fourier-Motzkin variable
elimination [7] eliminates a variable
f rom a l inear p rog ramming prob-
lem. Intuitively, Fourier-Motzkin
variable el imination finds the n - 1
dimensional shadow cast by an n di-
mensional object.

Consider the dodecahedron in
Figure 2a. We want to calculate the
shadow of the dodecahedron when
it is projected along the z dimension
onto the xy plane (as shown). This
dodecahedron and its shadow can
each be specified by a set o f 12 con-
straints (Figure 2b).

Consider two constraints on z: a
lower b o u n d / 3 -< bz and an u p p e r
bound az <-a (where a and b are
positive integers). We can combine
these constraints to get a/3 <- abz <-
bc~. The constraint a/3-< bce is the
shadow of the intersection o f these
two constraints (shown visually in
Figure 2c). By combining the
shadow of the intersection o f each
pair o f u p p e r and lower bounds on
z (Figures 2d and 2e) , we obtain a
set of constraints that defines the
shadow of the original object.

Since the shadow obtained this
way describes real solutions, we
refer to it as the real shadow of a set
o f constraints. I f there are no inte-
ger points in the r ea l shadow of a
set of constraints, we know that
there are no integer solutions to the
set of constraints.

Note that the set o f constraints
we obtained includes many redun-
dant constraints. Per forming Fou-
r ier-Motzkin variable el imination
can square the number of con-
straints and produce many redun-
dant constraints. Few loop nests,
however, have dodecahedrons for
i terat ion spaces, and in practice the
number o f constraints does not
grow substantially. At tempt ing to
de te rmine which constraints are
r e d u n d a n t so as to remove them
from considerat ion is usually not
cost-effective.

104 August 1992/Vol.35, NO.8/COMMUNICATIONS OF THE ACM

Detecting integer solutions using
Fourier-Motzkin variable elimina-
tion. There may be integer grid
points in the shadow of an object,
even if the object itself contains no
integer points (consider the shadow
of a very thin object). Ideally, we
would like to calculate the integer
shadow of an object: a shadow such
that for every integer point in the
shadow, there is at least one corre-
sponding integer point in the object
above it, and vise-versa. Unfortu-
nately, we cannot always do this.
The i n t ege r shadow of a convex
region may not even be a convex
region. We have, however, devel-
oped new methods that work well
in practice. Our approach can be
(informally) visualized as f inding
the shadow of a t ranslucent object:
thicker parts o f the object cast a
da rker shadow. I f we define dark
shadows appropria te ly , we can guar-
antee that for every integer point in
the d a r k shadow, there is an inte-
ger point in the object above it.

As an example, we reconsider
our previous example of the do-
decahedron, a l though we flatten
the dodecahedron to illustrate the
difficulty of f inding integer shad-
ows. The flattened dodecahedron is
shown in Figure 3a, and the integer
points in the dodecahedron and its
shadow are shown in Figures 3b
and 3c. The re are integer points in
the r ea l shadow that have no inte-
ger point in the object above them.
For every integer point in the d a r k
shadow, however, there is an inte-
ger point in the object above it.

The shadow is clearly dark below
any part of the object that is at least
one unit thick. Since the coeffi-
cients o f the constraints are inte-
gers, however, we can de te rmine a

I = lgure 2. A visual depiction of Fou-
rler-Motzkln variable elimination (a) A
dodecahedron and its shadow (b) The
constraints that specify a dodecahe-
dron and its shadow (c) Finding the
shadow of the intersection of two con-
straints (d) Finding the shadow of the
Intersection of two more constraints
(e) Constraints resulting from the com-
bination of all pairs of upper and lower
bounds (most are redundant)

D

COMMUNICATIONS OF THE ACM/August 1992/Vo1.35, No.8 l O S

_ _ . . _ - - - - - ~

I¢

/

looser def in i t ion o f da rk that will
still gua ran t ee that any in tege r
po in t in the d a r k shadow has an
in teger po in t above it.

To d e t e r m i n e the d a r k shadow,
cons ider the case in which the re is
an in t ege r solut ion to a[3 <- ba, but
the re is no in tege r solut ion to a[3 -<
abz <- ba (i.e., the re is no mul t ip le o f
ab be tween a[3 and ba). Note that a
and b are posit ive integers . In this
case, let i = L[3/bJ. T h e n

a b i < a [3 < b a < a b (i + l)

Since a b (i + 1) - b a > b , a [3 -
abi > a and ab(i + 1) - a b i = a b ,
be~ - a[3 <- ab - a - b. I f b a - a [3 >
ab - a - b + 1 = (a - 1) (b - 1), we
know that the re mus t be an integer

solut ion to z. T h e r e f o r e , the da rk
shadow o f a -> az and bz >>-/3 is:

bc~ - a[3 > (a - 1)(b - 1)

No te that i f a = 1 o r b = 1, the
d a r k shadow and the r e a l shadow
are identical. I f the d a r k and r e a l
shadow are identical, the pro jec t ion
is cal led an exact project ion. Th is
will happen , for example , i f all o f
the coeff ic ients o f z in lower bounds
on z are 1, o r i f all o f the coeff i-
cients o f z in u p p e r b o u n d s on z are
1. For the p rob lems that arise in
d e p e n d e n c e analysis, we can a lmost
always f ind an exact project ion.

We now have a m e t h o d for
check ing for the exis tence o f inte-
ge r solutions to a set o f constraints:

1. We first dec ide which variable to
e l iminate . We choose this variable
to p e r f o r m an exact pro jec t ion if
possible, and to min imize the n u m -
ber o f constraints that resul t f r o m
the combina t ion o f u p p e r and

F i g u r e 3. Checking for integer points
in the dark shadow (a) The shadow cast
by a translucent, flattened dodecahe-
dron (b) View of the integer points in-
side a flattened dodecahedron, and
inside its shadow (c) Overhead view of
Figure 3b, showing that there are inte-
ger points within the flattened do-
decahedron above every integer point
in the dark shadow, but that there is
not necessarily an integer point in the
flattened dodecahedron above every
integer point in the entire shadow (the
real shadow).

106 August 1992/%1.35, No.8/COMMUNICATIONS OF THE ACM

lower bounds. If we are forced to
perform nonexact reductions, we
choose a variable with coefficients
as close to zero as possible.
2. Calculate the rea l and dark
shadows of the set of constraints
along that dimension.
3. If the rea l and dark shadows are
identical, there are integer solu-
tions to the original set of con-
straints if there are integer solu-
tions to the shadow.
4. Otherwise:

(a) If there are no integers to
the real shadow, we know there
are no integer solutions to the
original set of constraints.
(b) If there are integer solutions
to the dark shadow, we know
there are integer solutions to the
original constraints.
(c) Otherwise, we know if an in-
teger solution exists, it must be
closely nestled between an upper
bound and a lower bound.
Therefore we consider a set of
planes that are parallel to a
lower bound and close to a lower
bound. Any integer solution
closely nestled between an upper
bound and a lower bound must
lie on one of these planes. Com-
putationally, we analyze the
problem as follows: We know
that if there exists an integer so-
lution to the original set of con-
straints, there must exist a pair
of constraints a -> az and bz >- [3

on z such that

ab - a - b + a[3 >- ba >- abz >- a[3

We check this by determining
the largest coefficient a of z in
any upper bound on z, and, for
each lower bound bz >-[3 on z,
testing if there are integer solu-
tions to the original problem
combined with bz = [3 + i for
each i such that (ab - a - b)/a >-

i -> 0. While these steps are ex-
pensive and complicated, they
rarely, if ever, need to be used in
practice.

An O m e g a t e s t n i g h t m a r e . To
demonstrate (and show the limita-
tions of) the techniques used, we il-
lustrate the steps performed by the

Omega test on an example de-
signed to force the Omega test to
work very hard for a small prob-
lem. Consider the inequalities P:

27 < -- l l x + 13y <-45
- 1 0 < - 7x - 9y < - 4

There are no exact projections
we can perform, and we would de-
cide to eliminate x since the coeffi-
cients ofx are (slightly) smaller. Fig-
ure 4a shows the constraints in the
original problem, and the unnor-
malized constraints in the rea l and
dark shadows. Since the rea l
shadow has integer solutions but
the dark shadow does not, we check
if there are any integer solutions
close to a lower bound. We do this
by checking if the intersection of
the original set of constraints and
any one of the following constraints
contains an integer point (this is
shown graphically in Figure 4b).
Since there are no such solutions,
we know that no integer solutions
exist.

7x = 9 y - l O + j

L77 - 11 - 7 /
O-<J-< 1-1] = 5

l l x = 27 - 13y + j

O - - J < - [121-1111- 1 1] = 9

The steps performed in this ex-
ample appear complicated and
expensive. This example, however,
was designed to be expensive to re-
solve. We do not expect situations
this difficult to arise frequently in
practice. Also, although many steps
are performed in this process, our
implementation of the Omega test
takes only 4.5 milliseconds on a 12-
MIPS workstation to perform them
all.

Worse nightmares are possible:
on problems with only two variables
and three constraints, the Omega
test can take time proportional to
the absolute value of the coeffi-
cients. While this is a fr ightening
possibility, we do not expect these
situations to arise frequently in
practice.

A decision on better methods for
dealing with Omega test night-

mares will have to wait until more
experience is gained about the type
of nightmares that occur in prac-
tice.

Implementation Details
In implement ing the Omega test we
used several algorithmic ideas and
tricks that substantially improved
our r unn i ng time. We report some
of those ideas here.

Equalities and inequalities are
represented as vectors of coeffi-
cients. The Omega test is crafted so
t h a t the algorithms only need to
deal with integers; no rational
number representation scheme
needs to be used.

Once we have eliminated all the
equality constraints from a prob-
lem, we check for any variables that
have no lower bounds or have no
upper bounds. We refer to such
variables as unbounded variables.
Performing Fourier-Motzkin elimi-
nation on an unbounded variable
simply deletes all the constraints
involving it. We delete all con-
straints involving unbounded vari-
ables. It is then checked to see if
that has produced additional un-
bounded variables. We repeat this
process until no unbounded vari-
ables remain.

Next, we normalize all the con-
straints and then assign hash keys
and constraint keys to them. We
only do this to constraints that have
been modified since the last time
they were normalized. The con-
straint key of a constraint is a
unique tag based on the coefficients
of the variables in the constraint;
two constraints have equal con-
straint keys if and only if they differ
only in their constant term. Con-
straint keys are both negative and
positive, and the key of a constraint
el is the negation of the key of a
constraint e2 if and only if the coef-
ficients of the variables in el are the
negation of the coefficients of the
variables in e2. We refer to this as
opposing keys and opposing con-
straints. Constraint keys are as-
signed to constraints in constant
expected time by recording, in a
hash table, constraint keys previ-

COMMUNICATIONS OF THE ACM/August 1992/Vol.35, No.8 107

ously assigned. We compute a hash
key based on the coefficients of the
constraint as an index into the hash
table (hash keys are not guaranteed
to be unique). Our method for
computing hash keys is designed so
that opposing constraints have op-
posing hash keys, which makes it
easy to assign them opposing con-
straint keys. As constraints are nor-
malized, we enter them into a table
based on their constraint key. This
allows us to check for redundant ,
contradictory or tight constraint

F igure 4. (a) Finding the real and
dark shadow of an Omega test night-
mare (b) Checking Figure 4a for solu-
tions tightly nestled between an upper
and lower bound

2.5

2 .0

1.5

1.0

0 .5

0
0

pairs in constant time per con-
straint.

In the process of normalizing
constraints, we check to see if any
constraints involve more than one
variable. After normalization, if we
found no multivariable constraints,
we know the system must have solu-
tions, and we re turn immediately.

Next, we examine the variables
to decide which variable to elimi-
nate. I f we can perform an exact
projection, we perform the elimina-
tion in place (adding and deleting
constraints from the current prob-
lem). Otherwise, we copy the con-
straints with zero coefficients for
the eliminated variable into two
new problem data structures (for
the rea l shadow and for the dark)

2.5

2.0

1.5

1.0

0.5

0
0

0.5 1,0 1,5 2.0 2.5

0.5 1.0 1,5 2.0 2.5

and then add the constraints pro-
duced for Fourier-Motzkin elimi-
nation. Since the constraints gener-
ated for the real and dark shadow
differ only in their constant terms,
we can share much of the work in
adding these constraints.

N o n l i n e a r Subscr ip ts
Integer programming dependence
analysis methods allow us to prop-
erly handle symbolic constants [9,
16] and some types of m i n and
m a x functions in loop bounds [27]
and conditional assignments [17].

For example, even if we had no
information about the value of n,
we would like to be able to decide
that there are no flow dependences
in the following program:

f o r i = 1 t o n d o
a[i+n] = a[i]

As previous authors have sug-
gested, we can handle loop-invari-
ant symbolic constants by adding
them as additional variables to the
integer programming problem. For
example, the above problem would
generate the following integer pro-
gramming program (involving the
variables i_w, i_r and n):

1 <-i_w, i _ r < - n

i_w + n = i_r

We also can accommodate inte-
ger division and integer remainder
operations, something that does not
appear to have been previously rec-
ognized. Assume an expression e
appears in a program that can be
expressed as e = a ~ v m where m is
a positive integer. To handle this,
we define a new variable or, add the
inequality constraints 0 -< a -
m,7 -< m - 1 and use ,T as the value
of e. Similarly, if e = c~ mod m we
would add the same inequality con-
straint but use a - m~ as the value
of e.

P r o j e c t i o n o f I n t e g e r
P r o g r a m m i n g P r o b l e m s
As described earlier, the Omega
test simply decides if there is a solu-
tion to an integer programming
problem. In this section, we de-
scribe how to adapt the Omega test

108 August 1992/Vo1.35, N o 8 / C O M M U N I C A T I O N S OF T H E A C M

to allow it to be used for symbolic
projection. When used this way, the
Omega test is given as input an in-
teger p rogramming program P and
a designation of a set of protected
variables I~ C V. The Omega test
projects P into one or more prob-
lems involving only variables in 17
that describe all the possible values
of the variables in 9 such that there
is an integer solution to P with
those values. For example, project-
ing the integer p rogramming prob-
lem { 0 - < a - < 5 ; b -<a -<5b} onto a
produces the problem {2 -< a --- 5}.

Actually, results of the projection
process can be slightly more com-
plicated than jus t described. The
results may not be in terms of the
variables in ~'. Instead, the results
are given in terms of a set V' of not
more than 191 variables (possibly
including new variables), along with
methods for calculating the appro-
priate values for the values of 9
from the values of 9 ' . For example,
if asked to project the integer pro-
g ramming problem {a = 10b + 25c;
a -> 13} onto a, the Omega test will
produce {or-> 3; a = 5w}.

The projection process may pro-
duce mult iple problems. For exam-
ple, project ing the problem {5b-<
a -< 6b} onto a produces:

{20 -< a}
{0 -< or; a = 6~}

{ 1 - < (7 ; a = 6 c r - 1}
{2 -< (7; a = 6or - 2}
{3 -< o~; a = 6or - 3}

Changes to the Omega Test
Three of the changes required are
simple, the other is not as simple.
The quick changes are:

• I f the current problem P involves
only protected variables, check to
see if there are integer solutions of
P and if so, r epor t P as one projec-
tion.
• When per fo rming an inexact
Fourier-Motzkin elimination, pro-
ject the d~vk shadow and the inter-
section of the original constraints
with all of the equality checks near
the lower bounds. In o ther words,
we must project all of the subprob-
lems where we would look for an

integer solution, not s topping when
an integer solution is first verified.
This might be expensive if project-
ing a system involved many inexact
projections. We do not believe this
will occur in practice for the prob-
lems arising from dependency
analysis.

• We never pe r fo rm Fourier-
Motzkin variable elimination on a
protected variable. This could re-
quire us to pe r fo rm an inexact pro-
ject ion in a situation where we
could have pe r fo rmed an exact
projection if we were not protect ing
certain variables.

The not so simple change in-
volves equalities. Given an equality
constraint Zicv aixi = 0, let g be the
GCD of the coefficients of the
nonprotec ted variables (we always
assume that the constraint is nor-
malized).

• I f g = 0, the constraint involves
only protected variables. We use
our s tandard methods to eliminate
the constraint. This will result in
the el imination of a protected vari-
able. All substitutions pe r fo rmed in
this process are recorded in a sub-
stitution log. These substitutions
involve only protected variables.
• I f g = 1, we use our s tandard
techniques (outlined in the section
on equality constraints) to f ind a
substitution involving only unpro-
tected variables that simplifies or
eliminates the constraint.
• I f g > 1, we create a new pro-
tected variable or, add the con-
straint:

go" = ~ (ai mo"~ g)xi
i ~ V

Eliminating this new constraint will
t ransform the original constraint so
that the GCD of the nonprotec ted
variables is 1 (after normalization).

When we repor t a projection,
any substitutions involving pro-
tected variables are translated back
into equality constraints.

Projection with Wildcards
As a modification of the approach

jus t described, we could refuse to
pe r fo rm inexact reductions while
pe r fo rming projection. The advan-
tage of this is that we only repor t
one projected problem as our re-
sult. The disadvantage is that the
projected problem has addit ional
variables (that should be t reated as
wildcards).

In the applications we have
found for projection, we have
found projection with wildcards to
be more useful than producing
mult iple results.

Using Projection
This projection technique can be
used for several purposes. We de-
scribe some that have occurred to
U S .

Dependence direction and
distance vectors
One problem with some depen-
dence analysis methods is that they
are only "yes/no" decision methods.
In compilers and o ther p rogram-
structuring tools, we need to know
the data dependence direction vec-
tor [24] and data dependence dis-
tance vector [13, 19] that describe
the relation between the iterations
in which the conflicting reads/
writes occur. One way to de te rmine
dependence direction vectors is to
make 3 L calls to a decision proce-
dure (where L is the number of
loops su r rounding both refer-
ences). In o rde r to be competitive, a
dependence analysis method must
be able to short-cut this enumera-
tion (e.g., [6, 8]).

In our method, we take the inte-
ger p rogramming problem for de-
termining if any dependence exists
between two references, and intro-
duce a new variable for the de-
pendence distance in each shared
loop (along with the appropr ia te
equality constraints to define the
value of the variable). We then
project the problem onto the de-
pendence distance variables. The
projected system may be a bet ter
way to describe dependence condi-
tions than dependence directions
and distances; it accurately de-
scribes more informat ion than is

COMMUNIOATIONSOFTHE ACM/August 1992/Vol.35, No.8 109

typically contained in dependence
direction vectors (such as when a
dependence distance is always
greater than 5).

Alternatively, we can use the
projected set of constraints to de-
termine efficiently the dependence
direction and distance vectors. We
scan the dependences , and infer as
much informat ion as possible from
constraints involving a single de-
pendence distance variable. We
next unprotec t any dependence
distance variable that is uncoupled
or with a sign that is completely de-
termined. I f coupled variables were
unprotected, we project the' prob-
lem onto the protected variables
and repeat this process• Otherwise,
we choose one protected variable
and generate the subproblems for
two or three possible signs for the
variable (negative, zero or positive),
and recursively explore those.

For example, the dependence
distances for the following array
pair

f o r j = 0 to 20 do
for i = m a x (- j , - 1 0) to 0 do
for k = m a x (- j , - 1 0) - i to - 1 do
for 1 = 0 t o 5 d o
a(l,i,j) -- . . .
• . . = a(l,k,i+j)

simplify to:

0_<Aj_< 10
Ai + Aj_< 10
Ai + 2Aj _< 10
3 A j + 2 A i + A k _ < 2 0
2Aj + 2Ai + Ak <-- 10
l < - - A j + A i + k

I - - < A j + ~ i
Al = 0

We first unprotec t Al, and then
consider s ign(Aj)= 0 and sign(Aj)
= 1. Consider ing sign(Aj) = 0
g i v e s :

................... iiiiiiJiii~

I _ < A i _ 10
1 --< Ak + Ai
Ak + 2Ai --< 10

We would then unprotec t Ai

(since we know sign(A/)= 1) and
project the problem, obtaining
- 8 - Ak _< 8, which gives a direc-
tion vector o f (=,<,%--) .

Returning to considerat ion of
sign(Aj) = 1 produces:

- 8 _ < A i _ < 8
- 8 _ < A k _ < 8
- 8 --< 2Ak + Ai
- 9 <-- Ak + Ai

Ak + 2Ai <-- 8
Ak - Ai <-- 17

Recursively analyzing the possibili-
ties for the sign of Ai produces di-
rection vectors o f (< ,> ,* ,=) ,
(< ,= ,* ,=) and (< ,< ,* ,=) . This ex-
ample is the most difficult example
seen in our testing, requir ing 2,492
/xsecs to analyze.

Run-time Checks and
Compile-time Assertions
By project ing a problem onto the
variables cor responding to symbolic
constants that cannot be deter-
mined at compile-time, we can pro-
duce a predicate that will allow us to
de te rmine at run-t ime if a particu-
lar dependence or dependence di-
rection exists (as described by [12]).
Alternatively, at compile time we
could ask the user if the predicate is
true.

Summarizing Array References
In in te rprocedura l analysis, we
need to characterize the port ions of
an array that may be affected by a
p rocedure call [4, 10, 11, 22]. We
can use the Omega test to obtain an
accurate summary of the locations
of an array that might be affected

Table 1.
Execution t imes for programs In the NASA NAS benchmark suite

Program Average Time 95%-Tlle Time

#1: MXM 275 ~secs 316 ~secs
#3: CHOLSKY 504/~secs 1024/~secs
#4: BTRIX 250 #secs 367 #secs
#5: GMTRY 191 #secs 534 Fsecs
#7: VPENTA 129/~secs 204/~secs

by a single assignment statement.
We do this by setting up an integer
p rog ramming problem involving
variables for each array index and
all loop variables and symbolic con-
stants, and adding appropr ia te con-
straints for the loop bounds, sub-
script expressions, and so on.
Projecting this p roblem onto the
variables for the array indexes and
the symbolic constants gives an ac-
curate summary of the locations of
the ar ray affected by the assign-
ment statement. The summary is
not limited to convex polyhedron.
The projected problem will have
solutions only for those locations
that can actually be changed. De-
tails such as strides are accurately
represented .

The Omega test can easily be
used to de te rmine when two re-
gions intersect. With more work,
the Omega test can be used to check
if one region is a subset of another .
It is unclear how to use the Omega
test to merge affected regions;
however, the Omega test could be
used to convert exact affected re-
gions into approx imate affected
regions (such as described by [4,
10]) and then those regions could
be merged.

Determining Loop Bounds
The Omega test can be used to de-
termine appropr ia t e loop bounds
when interchanging nonrectangu-
lar loops. The use of integer pro-
g ramming and project ion to per-
form this is described by [3].

P e r f o r m a n c e
We have implemented the Omega
test in Wolfe's tA_ny tool [26]. We
handle r a in and m a x expressions
in loop bounds and symbolic con-
stants, and compute exact sets o f
direction vectors (as opposed to the
compressed direct ion vectors nor-
mally genera ted by t iny) . We ap-
plied this tool to the p rograms 1, 3,
4, 5 and 7 of the NASA NAS
benchmark suite and to all the t i n y
source files dis t r ibuted with t iny ,
(which include Cholesky decompo-
sition, LU decomposit ion, several
versions of wavefront algori thms,

110 August 1992/%1.35, No.8/COMMUNICATIONS OF THE ACM

and several more contrived exam-
ples), as well as several of our own
test programs. Programs 2 and 6 of
the NAS benchmark make exten-
sive use of index arrays. Since we
do not provide special t rea tment
for index arrays, we decided that it
would be misleading to include
them. The analysis of array pairs
that have different constant sub-
scripts (e.g., a(4) and a(5)) are n o t

included in the figures repor ted
here; those cases are detected while
scanning the subscripts (thus both
avoiding the analysis time and the
time required to scan the loop
bounds). S tandard optimizations
such as induction variable recogni-
tion and forward substitution were
pe r fo rmed by hand. We did not
compute input dependences (an
input dependence is a dependence
between two reads of the same loca-
tion of an array) or dependences
between array pairs that did not
share at least one common loop.

We t imed the Omega test on a
Decstation 3,100, a 12-MIPS work-
station based on a MIPS R2000
CPU. Shown in Table 1 are our re-
sults on the time per ar ray pair re-
quired to analyze programs in the
NASA NAS benchmark:

The third p rogram of the NAS
benchmark (CHOLSKY) is sub-
stantially more complicated that
almost all real-world For t ran code,
involving loops nested four deep,
triplely subscripted arrays and
groups of 3 coupled-loop indices.
We feel confident that it represents
a good "worst-case example" for
analyzing dusty deck For t ran code
(excluding t rea tment of index ar-
rays).

Our results on individual array
pairs from all programs tested are
shown in Figure 5. Each point is the
t iming result for a single array pair.
To present the results in a some-
what machine independen t fash-
ion, the results are plotted on a log/
log graph of analysis t ime vs. copy-
ing time (the time required jus t to
copy the problem). All times were
randomly per tu rbed by -+l/2/zsec
to spread out over lapping points.
The diagonal lines are drawn at

t I I I - I 1 2000

~Pq

A

'°°° I °; 2 . ° ~ " "'"<> ,A
. " ~ °~ • ..:

?. . : ?

too , . ~ ~ ° ° .

7" • imp,o

' ° ° V. - mpl xl

50 75 1 O0 150
copy time (p.soc)

P l g u r e 5. Omega Test Performance

analysis time = 8 × copying time,
4 x copying time and 2 x copying
time.

The analysis time is the total time
required to analyze the array pair,
calculate the appropr ia te direction
vectors and add the dependences to
dependence graph. This is exclud-
ing the time required to scan the
array subscripts and loop bounds
and build the constraints that de-
scribe the dependence between the
array pairs.

Across a range of test programs,
we found the following break-down
for how time was spent by the
Omega test: about one-half the
time was spent deal ing with in-
equality constraints, about one-
fourth of the time was spent on
dealing with equality constraints,
and one-four th of the time was
spent examining projected con-
straints to construct direction vec-
tors. None of our test cases re-
quired inexact Fourier-Motzkin
variable elimination.

To analyze our results, the set of
constraints describing the depend-

ence distances for each array pair
were analyzed to remove any re-
dunda n t constraints (this is not
cost-effective normally). Based on
the simplified constraints, each
array pair was classified as follows:

• s i m p l e - - A n y case that does not
involve coupled dependence dis-
tances.
• r e g u l a r - - A case where depen-
dence distances are coupled, but all
inequality constraints have unit
coefficients (for example, {Ai _> O;
hi + Aj > 0}).
• c o n v e x - - A case where the in-
equality constraints define a convex
region but at least one constraint
has a nonuni t coefficient (for exam-
ple, {0- -<Aj- -10; O <-- A i + A j < - -

10; Ai + 2Aj- - 10} -- the last con-
straint makes this nonregular) .

• c o m p l e x - - A case where the in-
equality constraints define a
nonconvex region. We only en-
countered two such cases, one
shown here and another one identi-
cal except that the lower bound of
the i loop is 2.

f o r i = 1 to 1 0 d o
f o r j = 0 to 4 do

a (i - j) = a(j)

COMMUNICATIONS OF THE A C M / A u g u s t 1 9 9 2 / V o l . 3 5 , N o . 8 1 1 1

end for
endfor

The flow/anti dependence dis-
tances for the last example are all
the distances that satisfy {-4-<
Aj _< 4; --7 <-- Ai -- Aj, Ai + Aj <-- 10;
Ai ~ 9} except for {Ai = 9; ~ = 0}.

Maydan, Hennessy and Lam [18]
use memoization to obtain better
performance. Memoization could
be added to the Omega test. The
cost of computing a hash key and
verifying a cache hit, however,
would be about 2 to 4 times the
copying cost for a problem, and
therefore adding caching to the
Omega test would not produce sig-
nificant savings for typical, simple
cases and may produce little or no
overall speed improvement.

We found that the cost of scan-
ning array-subscripts and loop
bounds to build a dependence
problem was typically 2 to 4 times
the copying cost for the problem.
Thus, for many array pairs the cost
of building the dependence prob-
lem was nearly as large or even
larger than the time spent analyz-
ing the resulting problem. We have
not spent much effort trying to
improve the performance of the
code that builds dependence prob-
lems. It is difficult, however, to
imagine building a dependence
problem in much less than twice the
time required to copy the problem.
This suggests that for the majority
of array pairs, using a dependence
analysis algorithm significantly
faster than the Omega test would
not lead to significant overall speed
improvements.

Polynomial Time Bounds
Described here are some general
time bounds on parts of the Omega
test, and then we describe polyno-
mial time bounds for cases where
other polynomial time algorithms
are accurate. We will use m to de-
note the number of constraints and
n to denote the number Of vari-
ables.

The time taken by the methods
in the section on equality con-
straints to eliminate one equality

constraint is O(mn log ICI) worst-
case time, where C is coefficient
with the largest absolute value in
the constraint. This cost arises be-
cause we might apply the perform
log]CI substitutions before we can
eliminate the constraint, and per-
forming a substitution takes O(nm)
time.

Eliminating unbound variables
takes O(mnp) worst-case time, where
p is the number of passes required
to eliminate all the variables that
become unbound. At least one vari-
able is eliminated in each pass ex-
cept the last.

Normalizing the constraints and
checking for directly contradictory
or redundant constraints requires
O(mn) expected time (the time
bound is only expected, not worst-
case, because hashing is used).

Producing the subproblems that
result from Fourier-Motzkin vari-
able elimination takes time propor-
tional to the size of the subproblems
produced.

Special Cases
During normalization, the Omega
test checks to see if any variables are
involved in constraints with other
variables. If not, and if checking for
contradictory constraint pairs has
not produced a contradiction, we
know the problem has solutions
and we do not need to perform any
additional computation. This ap-
plies if and only if the Single Vari-
able Per Constraint (SVPC) test can
be applied, which was found to be
applicable in one-third of the
unique cases found in the Perfect
Club Benchmark (a higher percent-
age if duplicate cases were consid-
ered separately) [18].

The Acyclic Test can be applied
in exactly those cases that the
Omega test can resolve just by elim-
inating unbound variables and per-
forming exact projections that do
not increase the number of con-
straints, a process that takes O(mn 2)
worst-case time. They found that
this test could be applied in over
one fourth of the unique cases en-
countered [18].

The Loop Residue test [21] can

be applied in just those cases where
each constraint is of the form xi
x j + c , xi>-c, or c>-xi. In a set of
constraints with this property, Fou-
rier-Motzkin variable elimination is
exact and preserves this property.
On n variables, there can be at most
n 2 + n constraints of this form after
eliminating redundant pairs. Thus,
the Omega test will take O(n ~) time
to resolve a set of constraints that
can be solved by the Loop Residue
algorithm. Maydan, Hennessy and
Lam [18] found that the Loop Resi-
due algorithm could be applied in
one-fourth of the unique cases en-
countered in their study of the Per-
fect Club benchmark.

Maydan, Hennessy and Lain
found that 91% of the cases they
encountered could be determined
by constant tests and Banerjee's
Generalized GCD tests. Of the re-
maining 9% of the cases, they
found that their SVPC, Acyclic or
Loop Residue tests could be applied
in 86% of the unique cases.

The Delta test [8] works by
searching for dependence distances
that can be easily determined, and
then propagating that information
with the intent of making it possible
to easily determine other depend-
ence distances precisely, in the
cases where their algorithm can
determine a dependence distance
without the use of Multiple Induc-
tion Variable (MIV) tests, the
Omega test also will determine it
efficiently (and in polynomial time)
by a combination of solving equality
constraints, tightening inequality
constraints and converting tight
inequality constraints into equality
constraints. Since the Omega test
treats the dependence analysis
problem as a single integer pro-
gramming problem, it automati-
cally achieves the propagation ef-
fects of the Delta test. Therefore,
any dependence analysis problem
that can be solved by the Delta test
without resorting to exponential
algorithms or approximate meth-
ods (i.e., resorting to what they
refer to as MIV tests) can be solved
in polynomial time by the Omega
test.

112 August 1992/Vo1.35, No.8/COMMUNICAlr lONS OF THE ACM

In their study of the RiCEPS,
Perfect, SPEC benchmarks and
LINPACK and EISPACK, they
found that 97% percent of the cases
could be solved without requiring
the use of MIV tests.

The Omega test can solve, in ef-
fective polynomial time, any prob-
lem that can be solved by any com-
bination of the Single Variable Per
Constraint test, the Acyclic test, the
Loop Residue test and the Delta
test, effectively. Thus, we expect
that it should be able to solve more
problems exactly and efficiently
than any one of them alone.

Related Work on Exact
Dependence Analysis
The Constraint-Matrix test [23]
makes use of the simplex algorithm
modified for integer programming.
The Constraint-Matrix test can fail
to terminate and it is not clear how
efficiently it works in practice.

Lu and Chen describe [17] an
integer programming algorithm
for dependence analysis. Their
method, however, appears prohibi-
tively expensive for use in a pro-
duction compiler.

Triolet [22] used Fourier-
Motzkin techniques for represent-
ing affected array regions in inter-
procedural analysis. Triolet found
Fourier-Motzkin techniques to be
expensive (22 to 28 times longer
than using simpler methods for
representing affected array re-
gions).

Several implementations of Fou-
rier-Motzkin variable elimination
have been described for use in de-
pendence analysis. The Power test
described by Wolfe and Tseng [27]
combines Banerjee's Generalized
GCD test, constraint tightening,
and Fourier-Motzkin variable elim-
ination. They take no special action
when performing an inexact pro-
jection except to flag the result as
possibly being conservative. Fou-
rier-Motzkin elimination is used
[18] if none of the other methods
they use give an exact answer. They
use back substitution to determine a
sample solution. I f the sample solu-
tion is not integral, they suggest the

use of branch and bound methods
to verify or disprove the existence
of integer solutions (they have not
found the need to implement these
methods as yet). It has been sug-
gested that due to the expense of
Fourier-Motzkin variable elimina-
tion, simpler tests should be used in
situations where they are known to
be accurate [18, 27].

Ancourt and Irigoin [3] describe
the use of Fourier-Motzkin variable
elimination to determine loop
bounds for iterating over an itera-
tion space described by a set of lin-
ear inequalities (using projection as
described in the section on integer
programming problems). Their
work significantly overlaps with
o u r s .

When performing what is appar-
ently an inexact projection, they
first perform a more elaborate pro-
cess to check if the projection is in-
exact. They consider a concept sim-
ilar to our dark shadow, except
they force the difference between
the upper and lower bounds to be
at least (a - 1)b, as opposed to (a -
1) (b- 1). Since our definition is
safe and makes the d~rk shadow
larger, it is the preferred choice.

They do not actually generate
the dark shadow as a separate
problem. Rather, they check to see
if the constraints in the dark
shadow are redundant with respect
to the real shadow. I f they are, then
the dark shadow and real shadow
are identical, and the elimination is
exact.

I f the projection is not exact,
then they add pseudo-linear con-
straints to the real shadow to obtain
the in teger shadow. These pseudo-
linear constraints appear useful
and appropriate for determining
loop hounds. They are, however,
difficult to use for determining the
existence of integer solutions.

They do not provide any perfor-
mance data for their algorithm.

A recent report [11] on the PIPS
project mentions that Fourier-
Motzkin variable elimination is
used to analyze dependences (based
on the work described in [3]). The
methods used are not fully de-

scribed, but the basic framework
appears similar to that described in
the section on dependence direc-
tion and distance vector. It is not
clear how the pseudo-linear con-
straints of the latter are handled.
They point out that in many simple
cases, Fourier-Motzkin variable
elimination is fast and efficient.
They state that using integer pro-
gramming techniques for depen-
dence analysis incurs a very high
cost (that is acceptable since PIPS is
not a production system). They also
state that in their implementation,
dependence testing does not take a
noticeable amount of time com-
pared with the wholly paralleliza-
tion process.

Source Code Availability
A C language implementation of
the Omega test is freely available
for anonymous f~p from t~p.cs.
umd.edu in directly pub/omega.
Files available include a stand-alone
version of the Omega test and a
version of Wolfe's t iny tool [26]
extended to use the Omega test.

Conclusions
Conservative dependence analysis
methods may be efficacious for the
demands of vectorizing compilers.
Transforming programs so as to
make efficient use of massively par-
allel SIMD computers is a much
more demanding task. Also, pro-
grams that have undergone trans-
formations such as loop skewing
and loop interchange present anal-
ysis problems substantially more
difficult than encountered in typi-
cal dusty-deck Fortran.

Our studies have convinced us
that the Omega test is a fast and
practical method for performing
data dependence analysis that is not
only adequate for problems en-
countered in vectorizing Fortran
code, but also for the demands of
more sophisticated program trans-
formation tools.

Performing projection of integer
programming problems is an excit-
ing concept. We have discussed how
it can be used to determine effi-
ciently information about depend-

C O M M U N I C A T I O N S OF THE ACM/August 1992/Vol.35, No.8 113

ence direction and distance vectors,
as well for several other uses. It can
make it much easier to describe and
build program analysis and trans-
formation tools. For example:, it can
be used for determining loop
bounds after loop interchange, and
we have made extensive use of it in
work that considers loop transfor-
mations in a uniform manner [3,
2O].

Acknowledgments
Thanks to everyone who gave me
feedback on this work, especially
Michael Wolfe and the anonymous
referee who provided detailed
comments, as well as to my research
group (Dave Wonnacott, Udayan
Borker and Wayne Kelly). t"4

References
1. Allen, J.R. Dependence analysis for

subscripted variables and its appli-
cation to program transformations.
PhD thesis, Rice University, Apr.
1983.

2. Allen, J.R. and Kennedy, K. Auto-
matic translation of Fortran pro-
grams to vector form. ACM Trans.
Prog. Lang. Syst. 9, 4 (Oct. 1987),
491-542.

3. Ancourt, C. and Irigoin, P. Scan-
ning polyhedra with do loops. In
PPOPP '91, 1991.

4. Balasundaram, V. and Kennedy, K.
A technique for summarizing data
access and its use in parallelism
enhancing transformations. In
S1GPLAN Conference on Program-
ming Language Design and Implemen-
tation, '89, June, 1989.

5. Banerjee, U. Dependence analysis
for supercomputing. Kluwer Aca-
demic Publishers, Boston, Mass.,
1988.

6. Burke, M. and Cytron, R. Inter-
procedural dependence analysis
and parallelization. In Proceedings of
the SIGPLAN "86 Symposium on Com-
piler Construction, Palo Alto, Calif.,
July, 1986.

7. Dantzig, G.B. and Eaves, B.C. Fou-
rier-Motzkin elimination and its
dual. J. Combin. Theo. A, 14 (1973),
288-297.

8. Goff, G., Kennedy, K. and Tseng,
C. Practical dependence testing. In
ACM SIGPLAN'91 Conference on
Programming Language Design and
Implementation, 1991.

9. Haghighat, M. and Polychron-

opoulos, C. Symbolic dependence
analysis for high performance
parallelizing compilers. In Proceed-
ings of the Third Workshop on Lan-
guages and Compilers for Parallel Com-
puting, Aug. 1990.

10. Havlak, P. and Kennedy, K. Experi-
ence with interprocedural analysis
of array side effects. In Supercom-
puting '90, 1990.

11. Irigoin, P., Jouvelot, P. and Triolet,
R. Semantical interprocedural
parallelization: An overview of the
pips project. In ICS '91, 1991.

12. Klappholz, D. and Kong, X. Ex-
tending the Banerjee-Wolfe test to
handle execution conditions. Tech.
Rep. 9101, Dept. of EE/CS, Stevens
Institute of Technology, 1991.

13. Kuck, D., Muraoka, Y. and Chen, S.
On the number of operations si-
multaneously executable in For-
tran-like programs and their result-
ing speedup. IEEE Trans. Comput.,
1972.

14. Li, Z. and Yew, P. Some results on
exact data dependence analysis. In
D. Gelernter, A. Nicolau, and D.
Padua, Eds., Languages and Compil-
ers for Parallel Computing. The MIT
Press, 1990.

15. Li, Z., Yew, P. and Zhu, C. Data
dependence analysis on multidi-
mensional array references. In Pro-
ceedings of the 1989 ACM Interna-
tional Conference on Supercomputing,

16. Lichnewsky, A. and Thomasset, F.
Introducing symbolic problem solv-
ing techniques in the dependence
testing phases of a vectorizer. In
Proceedings of the Second International
Conference on Supercomputing St.
Malo, France, July 1988.

17. Lu, L. and Chen, M. Subdomain
dependence test for massive paral-
lelism. In Proceedings of Supercomput-
ing '90, New York, Nov. 1990.

18. Maydan, D.E., Hennessy, J.L. and
Lam, M.S. Efficient and exact data
dependence analysis. In ACM
SIGPLAN'91 Conference on Program-
ming Language Design and Implemen-
tation, 1991.

19. Muraoka, Y. Parallelism exposure
and exploitation in programs. PhD
thesis, Dept. of Computer Science,
University of Illinois at Urbana-
Champaign, Feb. 1971.

20. Pugh, W. Uniform methods for
loop optimization. In 1991 Interna-
tional Conference on Supercomputing,
Cologne, Germany, June 1991.

21. Shostak, R. Deciding linear inequal-
ities by computing loop residues. J.

ACM 28, 4 (Oct. 1981), 769-779.
22. Triolet, R. Interprocedural analysis

for program restructuring with
Parafrase. CSRD Rep. 538, Dept. of
Computer Science, University of
Illinois at Urbana-Champaign, Dec.
1985.

23. Wallace, D. Dependence of multi-
dimensional array references. In
Proceedings of the Second International
Conference on Supercomputing, St.
Malo, France, July 1988.

24. Wolfe, M.J. Optimizing super-
compilers for supercomputers. PhD
thesis, Dept. of Computer Science,
University of Illinois at Urbana-
Champaign, Oct. 1982.

25. Wolfe, M. Optimizing Supercompilers
for Supercomputers. Pitman Publish-
ing, London, 1989.

26. Wolfe, M. The tiny loop restructur-
ing research tool. In Proceedings of
1991 International Conference on Par-
allel Processing, 1991.

27. Wolfe, M. and Tseng, C. The power
test for data dependence. Tech.
Rep. CS/E 90-015, Oregon Gradu-
ate Institute, Aug. 1990.

CR Category and Subject Descrip-
tors: D.3.4 [Programming Languages]:
Processors--Compilers, Optimization;
F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and
Reasoning about Programs, Mechanical
Verification; G.1.6 [Numerical Analy-
sis]: Optimization--integer programming

General Terms: Algorithms, Lan-
guages

Additional Key Words and Phrases:
Dependence Analysis, integer program-
ming, linear Diophantine Equations,
Omega test

About the Author:
WILLIAM PUGH is an assistant profes-
sor at the University of Maryland at Col-
lege Park in the Department of Com-
puter Science and Institute for
Advanced Computer Studies. He has
done research in the areas of incremen-
tal computation, randomized data struc-
tures, implementation of multiple in-
heritance, programming languages for
hard real-time systems, and compilers
for supercomputers. Author's Present
Address: Dept. of Computer Science,
University of Maryland, College Park,
MD 20742, pugh@cs.umd.edu

© ACM 0002-0782/92/0800-102 $1.50

114 August 1992/Vol.35, No.8/COMMUNICATIONS OF THE ACM

