Optimizing Data Locality

Presented by Chris Frisz and Janhavi Virkar

Motivation

- Memory access is slow
- Speed up computations by keeping data in cache...
 - ...but cache is small
- Utilize analysis and transformations of loops to fit data into cache appropriately

Overview

• Represent iteration space as dependence vector space

Dependence Vectors

for $I_1 := 0$ to 5 do for $I_2 := 0$ to 6 do $A[I_2+1] := 1/3 * (A[I_2] + A[I_2+1] + A[I_2+2]);$

 $D = \{(0,1), (1,0), (1,-1)\}.$

Background

- Unimodular Transformations
 - Loops transformations represented as matrix transformations
 - Example Loop interchange

$$\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{c} d_1 \\ d_2 \end{array}\right] = \left[\begin{array}{c} d_2 \\ d_1 \end{array}\right].$$

Loop Transformation Theory

- The same transformation matrix is used to verify that a transformation is legal using dependence vectors
 - Since iteration space and dependence space are the same dimension

Unimodular Transformation Theorem

Theorem 2.1. Let D be the set of distance vectors of a loop nest. A unimodular transformation T is legal if and only if $\forall \vec{d} \in D : T\vec{d} \succ \vec{0}$.

Fully Permutable

- Loop nests to which any arbitrary loop permutation that would make the transformed dependences lexicographically positive are called fully permutable
- Important property for tiling

Localized vector space

- Localized iteration space
 - Part of the iteration space which carries reuse
- Localized vector space
 - Abstraction of the localized iteration space
 - Given in terms of a span of vectors

Reuse vs. Locality

- Reuse inherent in computation
- Locality is obtained by exploiting reuse

Indexing function and uniformly generated sets

- Represent memory reference A[v] = A[H*i + c] (an indexing function)
- Multiple memory references form a uniformly generated set if the locations they access only differ by a constant term

Definition 4.1 Let n be the depth of a loop nest, and d be the dimensions of an array A. Two references $A[\vec{f}(\vec{i})]$ and $A[\vec{g}(\vec{i})]$, where \vec{f} and \vec{g} are indexing functions $Z^n \to Z^d$, are called uniformly generated if

 $\vec{f}(\vec{\imath}) = H\vec{\imath} + \vec{c}_f$ and $\vec{g}(\vec{\imath}) = H\vec{\imath} + \vec{c}_g$

where H is a linear transformation and \vec{c}_f and \vec{c}_g are constant vectors.

Linear algebra background

- Matrices as linear transformations
 - Representing loop transformations
- Kernel of a matrix
 - The set of vectors whose product with the matrix is the zero vector
 - This is a subspace
 - We'll use it for quantifying reuse

Linear algebra background (cont.)

- Span of a set of vectors span $\{v_1, ..., v_k\}$
 - Represents a subspace consisting of a linear combination of the given vectors
 - Example: two-dimensional Cartesian space
 - We use it to represent dependence vector spaces and quantify reuse
- Dimension of a subspace dim(S)
 - The minimum number of linearly independent vectors in a span for a subspace
 - We use it to give the number of loops carrying reuse.

Evaluating reuse and locality

- Types of reuse
 - Self-temporal: R_{st}
 - Self-spatial: R_{ss}
 - Group-temporal: R_{gt}
 - Group-spatial: R_{gs}

Self-temporal reuse

- Accesses to the same location by one memory reference
- For memory reference A[v] = A[H*i + c], self-temporal reuse is given by ker(H)
- That is, all iteration vectors whose product with H is the zero vector are iterations with self-temporal reuse

•
$$R_{st} = ker(H)$$

Self-spatial reuse

- Accesses along the same row of memory by a single memory reference
- $R_{ss} = ker(H_s)$ where H_s is H with the bottom row zeroed out
 - Zeroing out the bottom row of H treats a memory row as the same location
- $R_{\rm ss}$ is a superset of $R_{\rm st}$

Group-temporal reuse

- Accesses to the same location by multiple memory references
- Consider two memory references A[v] = A[H*i + c₁] and A[u] = A[H*i + c₂]
- Find a particular solution to the equation H*r_i
 = c₁ c₂ for all pairs of memory references in a uniformly generated set
- $R_{gt} = span\{r_2, ..., r_g\} + ker(H)$ for $r_k = c_1 c_k$

Group-spatial reuse

- Accesses to the same memory row by multiple memory references
- Find a particular solution to the equation $H*r_i = c_{s,1} c_{s,2}$ for all pairs of memory references where $c_{s,i}$ is c_i with the last element set to zero
- $R_{gs} = span\{r_2, ..., r_g\} + ker(H_s)$
- $R_{\rm gs}$ is a superset of $R_{\rm gt}$

Reference equivalence classes

- Two memory references $A[H*i + c_1]$ and $A[H*i + c_2]$ are in the same temporal equivalence class if there exists some r such that $H*r = c_1 c_2$
 - The number of equivalence classes is denoted by $\ensuremath{g_t}$
- Two memory references A[H*i + c_1] and A[H*i + c_2] are in the same spatial equivalence class if and only if there exists some r such that $H_s * r = c_{s,1} c_{s,2}$
 - The number of equivalence sets is denoted by $g_{\rm s}$

Combining reuses

• Calculate the number of memory accesses per iteration by the equation:

$$\frac{g_S + (g_T - g_S)/l}{l^e s^{\dim(R_{SS} \cap L)}}$$

where

 $e = \begin{cases} 0 & R_{ST} \cap L = R_{SS} \cap L \\ 1 & \text{otherwise.} \end{cases}$

The data locality optimization problem

Definition 4.2 For a given iteration space with

1. a set of dependence vectors, and

2. uniformly generated reference sets

the data locality optimization problem is to find the unimodular and/or tiling transform, subject to data dependences, that minimizes the number of memory accesses per iteration.

An algorithm

- Overview: Uses unimodular transformations and reuse quantification on a loop nest to create a fully permutable loop nest that can be tiled to optimize locality
- Step 1: Identify loops that will stay outermost
- Step 2: identify a subset of the remaining loops which will minimize memory accesses when placed innermost and tiled
- Step 3: Recursively apply skewing, reversal, and permutation transformations to the rest of the loop nest while satisfying dependences until it is fully permutable

An algorithm (cont.)

- Performance is O(n² * d) for n number of loops in the nest and d the number of dependences
- Simplified by excluding loops that carry no reuse or must be placed outermost due to legality.
- Run quickly when there is little reuse or many dependences limit the possible loop permutations.

Benchmarks

Figure 5: Performance of 500×500 double precision LU factorization without pivoting on the SGI 4D/380. No register tiling was performed.

Figure 6: Behavior of 30 iterations of a 500×500 double precision SOR step on the SGI 4D/380. The tile sizes are 64×64 iterations. No register tiling was performed.

Further work

- SPIRAL framework implements tiling optimization transformations along with domain-specific optimizations
- Extending the number of permutable loops

Different Scheme		Matrix Size for R5K			Matrix Size for R10K			
		869	1024	1279	869	1024	1279	
Original	Time	46	68	102	24.43	44.65	52.93	
	Speedup	1.00	1.00	1.00	1.00	1.00	1.00	
Peel-and-fusion	Time	37	50	82	17.08	27.23	35.76	
	Speedup	1.24	1.36	1.24	1.43	1.64	1.48	
Tiling w/ Array Dup.	Time	25	38	60	9.25	17.23	20.14	
	Speedup	1.84	1.79	1.70	2.64	2.59	2.63	

Table 1:	Execution	Time ((in	Seconds)) of	Different	Versions	of	Jacobi
			•						

- Allen, Randy and K. Kennedy. <u>Optimizing Compilers for Modern</u> <u>Architectures</u>. Morgan Kaufman: San Francisco, 2002.
- M. E. Wolf and M. S. Lam, "A data locality optimizing algorithm," in Proc. ACM SIGPLAN Conf. Programming Language Design and Implementation (PLDI), 1991, pp. 30–44.
- Song, Y. and Li, Z. New tiling techniques to improve cache temporal locality. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation, 1999.
- M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B.W. Singer, J. Xiong, F. Franchetti, A. Ga`cic', Y. Voronenko, K. Chen, R.W. Johnson, and N. Rizzolo, "SPIRAL: Code generation for DSP transforms," Proc. IEEE, vol. 93, no. 2, pp. 232–275, Feb. 2005.