
Optimizing Data Locality

Presented by Chris Frisz and Janhavi
Virkar

Motivation

● Memory access is slow

● Speed up computations by keeping data
in cache...

– ...but cache is small

● Utilize analysis and transformations of
loops to fit data into cache
appropriately

Overview

● Represent iteration space as
dependence vector space

● Dependence Vectors

Background

● Unimodular Transformations

– Loops transformations represented as
matrix transformations

– Example Loop interchange

Loop Transformation Theory

● The same transformation matrix is used
to verify that a transformation is legal
using dependence vectors

– Since iteration space and dependence
space are the same dimension

Unimodular Transformation
Theorem

Fully Permutable

● Loop nests to which any arbitrary loop
permutation that would make the
transformed dependences
lexicographically positive are called
fully permutable

● Important property for tiling

Localized vector space

● Localized iteration space

– Part of the iteration space which carries
reuse

● Localized vector space

– Abstraction of the localized iteration space

– Given in terms of a span of vectors

Reuse vs. Locality

● Reuse inherent in computation

● Locality is obtained by exploiting reuse

Indexing function and uniformly
generated sets

● Represent memory reference A[v] = A[H*i +
c] (an indexing function)

● Multiple memory references form a uniformly
generated set if the locations they access
only differ by a constant term

Linear algebra background

● Matrices as linear transformations

– Representing loop transformations

● Kernel of a matrix

– The set of vectors whose product with the
matrix is the zero vector

● This is a subspace

– We'll use it for quantifying reuse

Linear algebra background
(cont.)

● Span of a set of vectors – span{v1, ..., vk}

– Represents a subspace consisting of a linear
combination of the given vectors

● Example: two-dimensional Cartesian space

– We use it to represent dependence vector spaces
and quantify reuse

● Dimension of a subspace – dim(S)

– The minimum number of linearly independent
vectors in a span for a subspace

– We use it to give the number of loops carrying
reuse.

Evaluating reuse and locality

● Types of reuse

– Self-temporal: Rst

– Self-spatial: Rss

– Group-temporal: Rgt

– Group-spatial: Rgs

Self-temporal reuse

● Accesses to the same location by one
memory reference

● For memory reference A[v] = A[H*i +
c], self-temporal reuse is given by
ker(H)

● That is, all iteration vectors whose
product with H is the zero vector are
iterations with self-temporal reuse

● Rst = ker(H)

Self-spatial reuse

● Accesses along the same row of
memory by a single memory reference

● Rss = ker(Hs) where Hs is H with the
bottom row zeroed out

– Zeroing out the bottom row of H treats a
memory row as the same location

● Rss is a superset of Rst

Group-temporal reuse

● Accesses to the same location by multiple
memory references

● Consider two memory references A[v] =
A[H*i + c1] and A[u] = A[H*i + c2]

● Find a particular solution to the equation H*ri

= c1 – c2 for all pairs of memory references
in a uniformly generated set

● Rgt = span{r2, ..., rg} + ker(H) for rk = c1 - ck

Group-spatial reuse

● Accesses to the same memory row by
multiple memory references

● Find a particular solution to the
equation H*ri = cs,1 – cs,2 for all pairs of
memory references where cs,i is ci with
the last element set to zero

● Rgs = span{r2, ..., rg} + ker(Hs)

● Rgs is a superset of Rgt

Reference equivalence classes
● Two memory references A[H*i + c1] and A[H*i

+ c2] are in the same temporal equivalence class
if there exists some r such that H*r = c1 - c2

– The number of equivalence classes is denoted
by gt

● Two memory references A[H*i + c1] and A[H*i
+ c2] are in the same spatial equivalence class if
and only if there exists some r such that Hs * r =
cs,1 – cs,2

– The number of equivalence sets is denoted by
gs

Combining reuses

● Calculate the number of memory
accesses per iteration by the equation:

The data locality optimization
problem

An algorithm

● Overview: Uses unimodular transformations and
reuse quantification on a loop nest to create a fully
permutable loop nest that can be tiled to optimize
locality

● Step 1: Identify loops that will stay outermost

● Step 2: identify a subset of the remaining loops
which will minimize memory accesses when placed
innermost and tiled

● Step 3: Recursively apply skewing, reversal, and
permutation transformations to the rest of the loop
nest while satisfying dependences until it is fully
permutable

An algorithm (cont.)

● Performance is O(n2 * d) for n number
of loops in the nest and d the number of
dependences

● Simplified by excluding loops that
carry no reuse or must be placed
outermost due to legality.

● Run quickly when there is little reuse
or many dependences limit the possible
loop permutations.

Benchmarks

Further work

● SPIRAL framework implements tiling
optimization transformations along with
domain-specific optimizations

● Extending the number of permutable loops

References

● Allen, Randy and K. Kennedy. Optimizing Compilers for Modern
Architectures. Morgan Kaufman: San Francisco, 2002.

● M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,” in
Proc. ACM SIGPLAN Conf. Programming Language Design and
Implementation (PLDI), 1991, pp. 30–44.

● Song, Y. and Li, Z. New tiling techniques to improve cache temporal
locality. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, 1999.

● M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B.W.
Singer, J. Xiong, F. Franchetti, A. Gaˇcic´, Y. Voronenko, K. Chen, R.W.

Johnson, and N. Rizzolo, “SPIRAL: Code generation for DSP
transforms,” Proc. IEEE, vol. 93, no. 2, pp. 232–275, Feb. 2005.

