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Motivation

● Memory access is slow

● Speed up computations by keeping data 
in cache...

– ...but cache is small

● Utilize analysis and transformations of 
loops to fit data into cache 
appropriately



Overview

● Represent iteration space as 
dependence vector space

● Dependence Vectors



Background

● Unimodular Transformations

– Loops transformations represented as 
matrix transformations

– Example Loop interchange



Loop Transformation Theory

● The same transformation matrix is used 
to verify that a transformation is legal 
using dependence vectors

– Since iteration space and dependence 
space are the same dimension



Unimodular Transformation 
Theorem



Fully Permutable

● Loop nests to which any arbitrary loop 
permutation that would make the 
transformed dependences 
lexicographically positive are called 
fully permutable

● Important property for tiling



Localized vector space

● Localized iteration space

– Part of the iteration space which carries 
reuse

● Localized vector space

– Abstraction of the localized iteration space

– Given in terms of a span of vectors



Reuse vs. Locality

● Reuse inherent in computation

● Locality is obtained by exploiting reuse



Indexing function and uniformly 
generated sets

● Represent memory reference A[v] = A[H*i + 
c] (an indexing function)

● Multiple memory references form a uniformly 
generated set if the locations they access 
only differ by a constant term



Linear algebra background

● Matrices as linear transformations

– Representing loop transformations

● Kernel of a matrix

– The set of vectors whose product with the 
matrix is the zero vector

● This is a subspace

– We'll use it for quantifying reuse



Linear algebra background 
(cont.)

● Span of a set of vectors – span{v1, ..., vk}

– Represents a subspace consisting of a linear 
combination of the given vectors

● Example: two-dimensional Cartesian space

– We use it to represent dependence vector spaces 
and quantify reuse

● Dimension of a subspace – dim(S)

– The minimum number of linearly independent 
vectors in a span for a subspace

– We use it to give the number of loops carrying 
reuse.



Evaluating reuse and locality

● Types of reuse

– Self-temporal: Rst

– Self-spatial: Rss

– Group-temporal: Rgt

– Group-spatial: Rgs



Self-temporal reuse

● Accesses to the same location by one 
memory reference

● For memory reference A[v] = A[H*i + 
c], self-temporal reuse is given by 
ker(H)

● That is, all iteration vectors whose 
product with H is the zero vector are 
iterations with self-temporal reuse

● Rst = ker(H)



Self-spatial reuse

● Accesses along the same row of 
memory by a single memory reference

● Rss = ker(Hs) where Hs is H with the 
bottom row zeroed out

– Zeroing out the bottom row of H treats a 
memory row as the same location

● Rss is a superset of Rst



Group-temporal reuse

● Accesses to the same location by multiple 
memory references

● Consider two memory references A[v] = 
A[H*i + c1] and A[u] = A[H*i + c2]

● Find a particular solution to the equation H*ri

= c1 – c2 for all pairs of memory references 
in a uniformly generated set

● Rgt = span{r2, ..., rg} + ker(H) for rk = c1 - ck



Group-spatial reuse

● Accesses to the same memory row by 
multiple memory references

● Find a particular solution to the 
equation H*ri = cs,1 – cs,2 for all pairs of 
memory references where cs,i is ci with 
the last element set to zero

● Rgs = span{r2, ..., rg} + ker(Hs)

● Rgs is a superset of Rgt



Reference equivalence classes
● Two memory references A[H*i + c1] and A[H*i

+ c2] are in the same temporal equivalence class 
if there exists some r such that H*r = c1 - c2

– The number of equivalence classes is denoted 
by gt

● Two memory references A[H*i + c1] and A[H*i
+ c2] are in the same spatial equivalence class if 
and only if there exists some r such that Hs * r = 
cs,1 – cs,2

– The number of equivalence sets is denoted by 
gs



Combining reuses

● Calculate the number of memory 
accesses per iteration by the equation:



The data locality optimization 
problem



An algorithm

● Overview: Uses unimodular transformations and 
reuse quantification on a loop nest to create a fully 
permutable loop nest that can be tiled to optimize 
locality

● Step 1: Identify loops that will stay outermost

● Step 2: identify a subset of the remaining loops 
which will minimize memory accesses when placed 
innermost and tiled

● Step 3: Recursively apply skewing, reversal, and 
permutation transformations to the rest of the loop 
nest while satisfying dependences until it is fully 
permutable



An algorithm (cont.)

● Performance is O(n2 * d) for n number 
of loops in the nest and d the number of 
dependences

● Simplified by excluding loops  that 
carry no reuse or must be placed 
outermost due to legality.

● Run quickly when there is little reuse 
or many dependences limit the possible 
loop permutations.



Benchmarks



Further work

● SPIRAL framework implements tiling 
optimization transformations along with 
domain-specific optimizations

● Extending the number of permutable loops
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