Optimizing Data Locality

Presented by Chris Frisz and Janhavi
Virkar

Motivation

. Memory access 1s slow

. Speed up computations by keeping data
In cache...

— ...but cache 1s small

. Utilize analysis and transformations of
loops to fit data into cache
appropriately

Overview

. Represent iteration space as
dependence vector space
. Dependence Vectors

for Iy := 0 to 5 do
for b, := 0 to 6 do
AlL+1] := 1/3 * (AlkR] + AlL+1] + AR +2]);

D = {(0,1),(1,0),(1,-1)}.

Background

. Unimodular Transformations

~ LLoops transformations represented as
matrix transformations

- Example Loop interchange

S l[a]=]2]

Loop Transformation Theory

. The same transformation matrix i1s used
to verify that a transformation is legal
using dependence vectors

— Since iteration space and dependence
space are the same dimension

Unimodular Transformation
Theorem

Theorem 2.1 . Let D be the set of distance vectors of a
loop nest. A unimodular transformation T' is legal if and

only if¥d € D:Td » 0.

Fully Permutable

. Loop nests to which any arbitrary loop
permutation that would make the
transformed dependences

lexicographically positive are called

fully permutable

Important property for tiling

Localized vector space

. Localized iteration space

- Part of the iteration space which carries
reuse

. LLocalized vector space

— Abstraction of the localized iteration space

- (Given 1n terms of a span of vectors

Reuse vs. Locality

. Reuse inherent in computation

. Locality 1s obtained by exploiting reuse

Indexing function and uniformly
generated sets

. Represent memory reference Alv] = A[Hx*i +
c] (an indexing function)

. Multiple memory references form a uniformly
generated set if the locations they access
only differ by a constant term

Definition 4.1 Let n be the depth of a loop nest, and d be
the dimensions of an array A. Two references A[f(7)] and
A[§()], where f and § are indexing functions Z™ — Z9,
are called uniformly generated if

f(ij_—_ H?*'I*E} andﬁ(i’): Hi'+59

where H is a linear transformation and ¢; and ¢, are
constant vectors.

Linear algebra background

. Matrices as linear transformations
- Representing loop transformations a
. Kernel of a matrix

— The set of vectors whose product with the
matrix 1s the zero vector

. This 1s a subspace

~ We'll use it for quantifying reuse

. —————————

Linear algebra background
(cont.)

Span of a set of vectors — spanivy, ..., v}

- Represents a subspace consisting of a linear
combination of the given vectors

. Example: two—dimensional Cartesian space

— We use it to represent dependence vector spaces
and quantify reuse

Dimension of a subspace — dim(S)

— The minimum number of linearly independent
vectors in a span for a subspace

- We use 1t to give the number of loops carrying

reuse.

Evaluating reuse and locality

. Types of reuse

- Self-temporal: Ry,
- Self-spatial: R,

- Group-temporal: R,

- Group-spatial: R,

Self—-temporal reuse

. Accesses to the same location by one
memory reference

. For memory reference Alv] = A|H=*1 +

c], self-temporal reuse is given by
ker(H)

. That 1s, all iteration vectors whose
product with H 1s the zero vector are
iterations with self—temporal reuse

e —

. R, = ker(H)

Self—spatial reuse

. Accesses along the same row of
memory by a single memory reference

. R, = ker(H,) where H, is H with the
bottom row zeroed out

— Zeroing out the bottom row of H treats a
memory row as the same location

. R, 1s a superset of R,

Group—temporal reuse

. Accesses to the same location by multiple
memory references

. Consider two memory references A[v] =
A[H#i + cq] and Alul] = A[H*i + ¢,]

. Find a particular solution to the equation Hx*r;
= C; — Co for all pairs of memory references
in a uniformly generated set

. 'R Sspanirsiater b rken(H)ifor rps. ¢ = ¢

L ——

Group—spatial reuse

. Accesses to the same memory row by
multiple memory references

. Find a particular solution to the
equation H*r-='¢ 5 — €. 5 tor all pairs of
memory references where cg; 1s ¢; with
the last element set to zero

. R = spanits, it rgh + ker(H)

. R, 1s a superset of R,

R RIS,

Reference equivalence classes

. Two memory references A[H*i + ¢,] and A[Hxi
+ ¢,] are in the same temporal equivalence class
if there exists some r such that H*r = ¢; = ¢,

- The number of equivalence classes i1s denoted
by g;
. Two memory references A[H*i + c;] and A[Hxi

+ ¢,] are in the same spatial equivalence class if
and only 1f there exists some r such that H, * r =

Cs,l = Cs,2
— The number of equivalence sets 1s denoted by
s
e ——— e —,_———————1

Combining reuses

. Calculate the number of memory
accesses per iteration by the equation:

gs + (97 — 9s)/1
ZEsdirn(ngﬂL)

where

_ 0 RsrNL=RssNL
6 —]
1 otherwise.

The data locality optimization
problem

Definition 4.2 For a given iteration space with
1. a set of dependence vectors, and

2. uniformly generated reference sets

the data locality optimization problem is o find the uni-

modular andlor tiling transform, subject to data depen-
dences, that minimizes the number of memory accesses

per iteration.

An algorithm

Overview:. Uses unimodular transformations and
reuse quantification on a loop nest to create a fully
permutable loop nest that can be tiled to optimize
locality

Step 1: Identify loops that will stay outermost

Step 2: identify a subset of the remaining loops
which will minimize memory accesses when placed
innermost and tiled

Step 3: Recursively apply skewing, reversal, and
permutation transformations to the rest of the loop
nest while satisfying dependences until it 1s fully

permutable
e ————=

An algorithm (cont.)

. Performance is O(n? * d) for n number
of loops in the nest and d the number of
dependences

. Simplified by excluding loops that
carry no reuse or must be placed
outermost due to legality.

. Run quickly when there 1s little reuse
or many dependences limit the possible

loop permutations.
L N S S IR S SN PR i L b e SRS

Benchmarks

40
é 25 J— O 64x64 tling E-]
= & 32x32 tiling S 35} o 3Dt
< noftiling n o 2D tile
20 + 30 L. © DOALL middle
15 +
10
5 1)
0 I I | | l | | |
0 1 2 3 4 5 6 7 8

Processors

Figore 5: Perfonmance of 500 x 500 double precision LU

factorization without pivoting on the SGI 4D/380. No Figure 6: Behavior of 30 iterations of a 500 x 500 double

register tiling was performed. precision SOR siep on the SGI 4D/380. The tile sizes are
64 x 64 iterations. No register tiling was performed.

ﬁ

Further work

. OPIRAL framework implements tiling
optimization transformations along with
domain—specific optimizations

. Extending the number of permutable loops

Table 1: Execution Time (in Seconds) of Different Versions of Jacobi

* Differeni Scheme Matrix Size for ﬁS_K Mairix Size for RI0OK
869 | 1024 | 1279 | 669 1024 | 1279 |

Original " Time 46 68 102 24.43 | 44.65 | 52.93
Speedup | 1.00 | 1.G0 1.00 1.00 1.00 1.00 |

Peel-and-fusion Time aT 50 42 17.08 27.23 35.76

[Speedup | 1.24 1.36 1.24 1.43 1.64 1.48

[Tiling w/ Artay Dup. Time 25 38 &80 9.25 17.23 | 20.14
Speedup | 1.84 1.79 1.70 7.64 2.59 Z.63

References

Allen, Randy and K. Kennedy. Optimizing Compilers for Modern
Architectures. Morgan Kaufman: San Francisco, 2002.

M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,” in
Proc. ACM SIGPLAN Conf. Programming Language Design and
Implementation (PLDI), 1991, pp. 30-44.

Song, Y. and L1, Z. New tiling techniques to improve cache temporal
locality. In Proceedings of the ACM SIGPLLAN Conference on
Programming [Language Design and Implementation, 1999.

M. Piischel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B.W.
Singer, J. Xiong, F. Franchetti, A. Ga’cic’, Y. Voronenko, K. Chen, R.W.

Johnson, and N. Rizzolo, “SPIRAL: Code generation for DSP
transforms,” Proc. IEEE, vol. 93, no. 2, pp. 232-275, Feb. 2005.

