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Motivation

. Memory access 1s slow

. Speed up computations by keeping data
In cache...

— ...but cache 1s small

. Utilize analysis and transformations of
loops to fit data into cache
appropriately




Overview

. Represent iteration space as
dependence vector space
. Dependence Vectors

for Iy := 0 to 5 do
for b, := 0 to 6 do
AlL+1] := 1/3 * (AlkR] + AlL+1] + AR +2]);

D = {(0,1),(1,0),(1,-1)}.




Background

. Unimodular Transformations

~ LLoops transformations represented as
matrix transformations

- Example Loop interchange

S l[a]=]2]




Loop Transformation Theory

. The same transformation matrix i1s used
to verify that a transformation is legal
using dependence vectors

— Since iteration space and dependence
space are the same dimension




Unimodular Transformation
Theorem

Theorem 2.1 . Let D be the set of distance vectors of a
loop nest. A unimodular transformation T' is legal if and

only if¥d € D:Td » 0.




Fully Permutable

. Loop nests to which any arbitrary loop
permutation that would make the
transformed dependences

lexicographically positive are called

fully permutable

Important property for tiling




Localized vector space

. Localized iteration space

- Part of the iteration space which carries
reuse

. LLocalized vector space

— Abstraction of the localized iteration space

- (Given 1n terms of a span of vectors




Reuse vs. Locality

. Reuse inherent in computation

. Locality 1s obtained by exploiting reuse




Indexing function and uniformly
generated sets

. Represent memory reference Alv] = A[Hx*i +
c] (an indexing function)

. Multiple memory references form a uniformly
generated set if the locations they access
only differ by a constant term

Definition 4.1 Let n be the depth of a loop nest, and d be
the dimensions of an array A. Two references A[ f(7)] and
A[§()], where f and § are indexing functions Z™ — Z9,
are called uniformly generated if

f(ij_—_ H?*'I*E} andﬁ(i’): Hi'+59

where H is a linear transformation and ¢; and ¢, are
constant vectors.




Linear algebra background

. Matrices as linear transformations
- Representing loop transformations a
. Kernel of a matrix

— The set of vectors whose product with the
matrix 1s the zero vector

. This 1s a subspace

~ We'll use it for quantifying reuse

. —————————




Linear algebra background
(cont.)

Span of a set of vectors — spanivy, ..., v}

- Represents a subspace consisting of a linear
combination of the given vectors

. Example: two—dimensional Cartesian space

— We use it to represent dependence vector spaces
and quantify reuse

Dimension of a subspace — dim(S)

— The minimum number of linearly independent
vectors in a span for a subspace

- We use 1t to give the number of loops carrying

reuse.




Evaluating reuse and locality

. Types of reuse

- Self-temporal: Ry,
- Self-spatial: R,

- Group-temporal: R,

- Group-spatial: R,




Self—-temporal reuse

. Accesses to the same location by one
memory reference

. For memory reference Alv] = A|H=*1 +

c ], self-temporal reuse is given by
ker(H)

. That 1s, all iteration vectors whose
product with H 1s the zero vector are
iterations with self—temporal reuse

e —

. R, = ker(H)



Self—spatial reuse

. Accesses along the same row of
memory by a single memory reference

. R, = ker(H,) where H, is H with the
bottom row zeroed out

— Zeroing out the bottom row of H treats a
memory row as the same location

. R, 1s a superset of R,




Group—temporal reuse

. Accesses to the same location by multiple
memory references

. Consider two memory references A[v] =
A[H#i + cq] and Alul] = A[H*i + ¢,]

. Find a particular solution to the equation Hx*r;
= C; — Co for all pairs of memory references
in a uniformly generated set

. 'R Sspanirsiater b rken(H)ifor rps. ¢ = ¢

L ——



Group—spatial reuse

. Accesses to the same memory row by
multiple memory references

. Find a particular solution to the
equation H*r-='¢ 5 — €. 5 tor all pairs of
memory references where cg; 1s ¢; with
the last element set to zero

. R = spanits, it rgh + ker(H)

. R, 1s a superset of R,

R RIS,



Reference equivalence classes

. Two memory references A[H*i + ¢,] and A[Hxi
+ ¢, ] are in the same temporal equivalence class
if there exists some r such that H*r = ¢; = ¢,

- The number of equivalence classes i1s denoted
by g;
. Two memory references A[H*i + c;] and A[Hxi

+ ¢, ] are in the same spatial equivalence class if
and only 1f there exists some r such that H, * r =

Cs,l = Cs,2
— The number of equivalence sets 1s denoted by
s
e ——— e —,_———————1




Combining reuses

. Calculate the number of memory
accesses per iteration by the equation:

gs + (97 — 9s)/1
ZEsdirn(ngﬂL)

where

_ 0 RsrNL=RssNL
6 — ]
1 otherwise.




The data locality optimization
problem

Definition 4.2 For a given iteration space with
1. a set of dependence vectors, and

2. uniformly generated reference sets

the data locality optimization problem is o find the uni-

modular andlor tiling transform, subject to data depen-
dences, that minimizes the number of memory accesses

per iteration.




An algorithm

Overview:. Uses unimodular transformations and
reuse quantification on a loop nest to create a fully
permutable loop nest that can be tiled to optimize
locality

Step 1: Identify loops that will stay outermost

Step 2: identify a subset of the remaining loops
which will minimize memory accesses when placed
innermost and tiled

Step 3: Recursively apply skewing, reversal, and
permutation transformations to the rest of the loop
nest while satisfying dependences until it 1s fully

permutable
e ————=




An algorithm (cont.)

. Performance is O(n? * d) for n number
of loops in the nest and d the number of
dependences

. Simplified by excluding loops that
carry no reuse or must be placed
outermost due to legality.

. Run quickly when there 1s little reuse
or many dependences limit the possible

loop permutations.
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Benchmarks
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Figore 5: Perfonmance of 500 x 500 double precision LU

factorization without pivoting on the SGI 4D/380. No Figure 6: Behavior of 30 iterations of a 500 x 500 double

register tiling was performed. precision SOR siep on the SGI 4D/380. The tile sizes are
64 x 64 iterations. No register tiling was performed.
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Further work

. OPIRAL framework implements tiling
optimization transformations along with
domain—specific optimizations

. Extending the number of permutable loops

Table 1: Execution Time (in Seconds) of Different Versions of Jacobi

* Differeni Scheme Matrix Size for ﬁS_K Mairix Size for RI0OK
869 | 1024 | 1279 | 669 1024 | 1279 |

Original " Time 46 68 102 24.43 | 44.65 | 52.93
Speedup | 1.00 | 1.G0 1.00 1.00 1.00 1.00 |

Peel-and-fusion Time aT 50 42 17.08 27.23 35.76

[ Speedup | 1.24 1.36 1.24 1.43 1.64 1.48

[ Tiling w/ Artay Dup. Time 25 38 &80 9.25 17.23 | 20.14
Speedup | 1.84 1.79 1.70 7.64 2.59 Z.63
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