
Compiling for GPUs
Adarsh Yoga

Madhav Ramesh

Agenda

• Introduction to GPUs

• Compute Unified Device Architecture (CUDA)

• Control Structure Optimization Technique for GPGPU

• Compiler Framework for Automatic Translation and
Optimization from OpenMP to GPGPU

GPUs

• High performance many core processors

• Based on SIMD architecture – exploits data
parallelism.

• Less control hardware is required since the since the
same program is executed on many data elements.

GPU Hardware Model

Programming Model

Copy Data
CPU GPU

(coproc)
Copy Data

• Data-parallel portions of an application are executed
on the device as kernels which run in parallel on
many threads.

Vector addition (Sequential code)

1 5 6 8 9 1 2 3 6 5Vector A

5 4 1 1 5 6 5 8 9 2Vector B

Vector C 9 7 9 14 76 9 7 9 14 7 7 11 15 7

+ + + + + + + + + +

= = = = = = = = = =

Vector addition (Sequential code)

Vector Addition (GPU - CUDA)

Vector Addition (GPU - CUDA)

Vector Addition (GPU - CUDA)

Control Structure
Optimization Technique in

GPGPU

Control-structure splitting

Introduction

• CUDA programming framework made computational
power of GPUs easier to utilize.

• But how to tune a CUDA program to work well on a
GPU?

• The main optimizing task is finding the optimal
numbers of threads and blocks that will keep the
GPU occupied.

GPU Occupancy

• Occupancy is the number of threads running
concurrently.

• Limit of occupancy – number of registers each
thread requires.

• Control structures pose serious challenges to
the GPU occupancy.

Splitting Technique

• CUDA compiler tries to optimize single-thread
performance while ignoring overall resource
pressure.

• Two techniques called loop and branch splitting
which smartly increase code redundancy.

• The idea is to free the hardware resources by
purposefully increasing the code size.

Loop Splitting

Loop Splitting

• Optimization can be done when loop body contains
multiple independent operations relying on different
inputs.

• Leads to smaller loop bodies and hence reduces loop
register pressure.

• In the example considered, at least two registers are
freed which leads to an increase in occupancy.

Branch Splitting

Branch Splitting

• When one branch of the “if” statement has lower
occupancy the whole “if” statement will always run
with that occupancy.

• This technique splits a branch of the initial kernel
into two kernels.

• Rules to determine if branch splitting is of any
benefit:
– Does not run at 100% occupancy
– And contains two or more branches
– And utilize different amounts of hardware

Speedup – Branch splitting

• Where T is the runtime of the worst case of
the branched version.

• is the occupancy possible for branch i when
run on its own.

• is the occupancy the branched version
gets executed with.

Synthetic Benchmark

• Synthetic benchmark with full control over the
branch using decision mask to show
performance changes.

• Fewer registers used by “If” branch than
“Else” branch. So possible occupancy of 100%
and 67% respectively.

• Overall runtime of the kernel execution was
measured over a fixed data set.

Linear Decision Mask

Linear Decision Mask

• For the first iteration, the branch-version
executes only the “if” branch but with 67%
occupancy.

• Whereas the split version drops out the else
kernel and hence runs at 100% occupancy.

• For the last iteration the overhead of
additional kernel invocations and loads leads
to lower performance of the split version.

Random Decision Mask

Random Decision Mask

Random Decision Mask

• The drop in the performance after the extreme cases
is due to the serialization of the branch statement.

• The split version performs better because of two
reasons.
– Reduction in the serialization of branches.
– Lowering the resource usage per thread.

Compiler Framework for
Automatic Translation and

Optimization from OpenMP to
GPGPU

OpenMP to GPU compilation

• Improve programmability.
• OpenMP to GPU translator.
• Automatic Source to Source translation of standard

OpenMP applications to CUDA based GPGPU
applications.

• Significant similarities between the working of
OpenMP and CUDA.

• Popular extension for Shared Memory programming.

Why choose OpenMP?
• Efficient in expressing loop level parallelism.

#omp pragma parallel for
For(i=0; i < N; i++)

#omp pragma parallel for
for(j=0; j < N; j++)

A[i][j] = i * j;

for(i=0; i < N; i++)
for(j=0; j < N; j++)

A[i][j] = i * j;

int tx = threadIdx.x;
int ty = threadIdx.y;

A[tx][ty] = tx* ty;

• OpenMP’s fork-join model is similar to Master
threads running in host CPU and a pool of
threads in the GPU device.

• Incremental Parallelization of Applications.
• OpenMP allows multiple parallel regions.
• CUDA allows call to multiple kernels.

The Compilation System

OpenMP Stream
Optimizer

O-2-G Baseline
Translator + CUDA

Optimizer

Open MP
Input Program

Optimized
OpenMP for
GPU

CUDA GPU
Program

Phase 1 Phase 2

Baseline Translation

1) Interpret the OpenMP semantics to CUDA.
2) Identify the “kernel regions”.
3) Transform the “kernel regions” to GPU kernel

functions.
4) Insert necessary memory transfer call by

analysing the shared data that would be
accessed by the GPU.

Interpretation of OpenMP semantics

1) Parallel Constructs
• omp parallel
 Fundamental constructs to specify parallel regions .
 Candidate kernel regions.
 Transformed to GPU functions.

2) Work Sharing Constructs
• omp parallel, omp for
 Used to partition work among threads on a GPU device.
 Each iteration of an omp for is assigned to a thread.
 Each section in an omp sections is assigned to a thread.

Transforming a kernel region to a
CUDA Kernel

• Identified Kernel regions placed inside CUDA Kernels
• Work partitioning
 Partition loop iterations
 Map omp sections
 Determine redundant sections
 Calculate # of threads in a block and # threads blocks

• Data Mapping
 Map shared data to global or private memory
 Insert memory allocation(cudaMalloc) and transfer

calls(CudaMemcpy)
 What to copy from the host to the device, and vice versa?
 Is it necessary to move back all data?

Identifying Kernel regions
• OpenMP parallel regions are potential parallel

regions.
• Split in between synchronization constructs.
• Sub-regions having atleast one work-sharing

construct become kernel regions.
• Split regions decide the number of possible

kernel calls.
• Chance of a split region lying within control

structures.
• Results in unstructured blocks as we are going to

see.

A Problem?

Dealing with unstructured blocks

Compiler Optimizations
• Mere Baseline translations from OpenMP to

CUDA may not yield optimum results
• OpenMP
 Coarse grained parallelism

• CUDA
 Fine grained parallelism

• Compiler’s OpenMP optimizer transforms
CPU-style OpenMP code to suit execution on
GPUs.

Jacobi Iteration
Sequential Code:
for(i = 1; i < SIZE; i++) {

for(j = 1; j < SIZE; j++) {
x_j[i][j] = (x[i][j-1] + x[i][j-1] + x[i-1][j] + x[i+1][j])/4;

}
}

GPU Code:

__shared__ float u_sh[BLOCK_SIZE][BLOCK_SIZE];
x[tx][ty] = x_d[x+y*BLOCK_SIZE];

if(tx > 0 && ty > 0 && tx < BLOCK_SIZE && ty < COLS_IN_BLOCK-1)
{

x_d[tx + ty * BLOCK_SIZE] = (u_sh[tx+1][ty] + u_sh[tx-1][ty]
+ u_sh[tx][ty+1] + u_sh[tx][ty-1])/4;

}

Parallel Loop Swap on Jacobi

O-2-G CUDA Optimizations
• Specific to CUDA architecture
• Frequent references to Global memory is

slow
• A Few optimizations are possible
1) Caching of Frequently Accessed Global data
 Access to global memory is not cached
 To exploit temporal locality, treat shared memory

or registers for faster memory access
 Constant memory- a read only memory, faster

than global

2) Memory Transfer Reductions
• Insertions of memory transfer calls for the shared and

threadprivate data
• Remove unnecessary transfers of data to and from GPU
• Data-flow analysis
Algorithm:
For each kernel region,

Determine UseSet- set of shared data read in the kernel
Determine DefSet – set of shared data written in the kernel

For Each variable in UseSet, if data is defined in the host code, copy data in this
variable from Host to GPU

For Each variable in DefSet, if data is used in host code after the kernel call, copy it
from GPU to the Host

Performance of Regular Applications

Performance of Irregular Applications

References

• OpenMP to GPGPU: A Compiler Framework for
Automatic Translation and Optimization
– Seyong Lee, Seung-Jai Min, Rudolf Eigenmann

• Control Structure Splitting Optimization for GPGPU
– Snaider Carillo, Jakob Siegel, Xiaoming Li

• Nvidia Programming Guide
• Introduction to OpenMP

– From Lawrence Livermore National Laboratory

Synchronization Constructs
• omp barrier, omp flush, omp critical etc..
 Constitute Split points
 One Split point divides a parallel region to 2 sub-regions
 Each sub-region now a kernel region

Why have split points in the inside the parallel region?

- Enforce a global synchronization in CUDA

- No efficient global synchronization in CUDA

- _syncthreads() is limited to a block

- One solution is to have multiple kernels

Directives for specifying data properties
• omp shared, omp private, etc..
 Map data into GPU memory spaces
 Explicit memory transfers to specific regions in the memory
 Shared data can be mapped to global memory
 Private data can be seen only by a single thread(local, global)

- Why is Shared Memory not mapped to shared memory in the
CUDA programming model?

- Shared data in Open MP can be seen by all threads
- CUDA -> visible only to a thread block.

Loop Collapsing
• An optimizing technique to handle irregular

applications
• Irregular applications are those that have

dependencies with outer loops or that have indirect
memory access

• Example of an irregular application

• Can be applied to loops without dependencies or
indirect memory accesses

#pragma omp parallel for
for(i=0; i<NUM_ROWS; i++)

for(j=rowptr[i]; j<rowprt[i+1]; j++)
W[i]+=A[j]*p[col[j]]

Working of loop collapsing
int a[50][100];
#pragma omp parallel for
for(int i=0; i<50; i++)

for(int j=0; j<100; j++)
a[i][j] = 0;

(a) Input OpenMP code

int a[5000];
For(tid=0; tid<5000; tid++)

a[tid] = 0;

(c) Internal representation in O2G
translator

int a[50][100];
#pragma omp parallel for
#pragma omp for collapse(2)
for(int i=0; i<50; i++)

for(int j=0; j<100; j++)
a[i][j] = 0;

(b) o/p of OMP stream Optimizer

int a[5000];
If(tid<5000)

a[tid] = 0;

(d) GPU Code

What goes into a kernel region?
• Simple translation scheme to convert all work-

sharing constructs into kernel functions.
• Work-sharing constructs contain true parallel

code. Constitute the kernel regions.
• Other sub-regions outside these constructs but

inside the omp parallel are executed by a single
thread (omp master, omp single).

• Some run serially(omp ordered, omp critical)
• Redundant execution allowed to reduce

expensive memory calls.

	Compiling for GPUs
	Agenda
	GPUs
	GPU Hardware Model
	Programming Model
	Vector addition (Sequential code)
	Vector addition (Sequential code)
	Vector Addition (GPU - CUDA)
	Vector Addition (GPU - CUDA)
	Vector Addition (GPU - CUDA)
	Control Structure Optimization Technique in GPGPU
	Control-structure splitting
	Introduction
	GPU Occupancy
	Splitting Technique
	Loop Splitting
	Loop Splitting
	Branch Splitting
	Branch Splitting
	Speedup – Branch splitting
	Synthetic Benchmark
	Linear Decision Mask
	Linear Decision Mask
	Random Decision Mask
	Random Decision Mask
	Random Decision Mask
	Compiler Framework for Automatic Translation and Optimization from OpenMP to GPGPU
	OpenMP to GPU compilation
	Why choose OpenMP?
	Slide Number 30
	Slide Number 31
	The Compilation System
	Baseline Translation
	Interpretation of OpenMP semantics
	Transforming a kernel region to a CUDA Kernel
	Identifying Kernel regions
	A Problem?
	Dealing with unstructured blocks
	Compiler Optimizations
	Jacobi Iteration
	Parallel Loop Swap on Jacobi
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	O-2-G CUDA Optimizations
	Slide Number 47
	Performance of Regular Applications
	Performance of Irregular Applications
	References
	Slide Number 51
	Slide Number 52
	Loop Collapsing
	Working of loop collapsing
	What goes into a kernel region?

