
EXPLOITING ILP
B649

Parallel Architectures and Pipelining

B649: Parallel Architectures and Programming, Spring 2009

What is ILP?

• Use hardware techniques to minimize stalls
★ branch prediction
★ dynamic scheduling
★ speculation

• Pick instructions across branches (i.e., across basic
blocks) to overlap
★ on MIPS average dynamic branch frequency is 15% to 25%
★ Pick instructions across loop iterations

2

Pipeline CPI = Ideal pipeline CPI + Structural stalls +
 Data hazard stalls + Control stalls

for (i=1; i<=1000; i++)
x[i] = x[i] + y[i];

B649: Parallel Architectures and Programming, Spring 2009

Data Dependences
• Conditions for data dependence from instruction i

to instruction j
★ i and j access a common memory location / register
★ at least one of those accesses is a write
★ there is a valid control-flow path from i to j

• Data dependence is transitive
★ j depends on i, k depends on j ⇒ k depends on i

• Three types of data dependences
★ true dependence (RAW)
★ anti-dependence (WAR)
★ output dependence (WAW)

3

B649: Parallel Architectures and Programming, Spring 2009

Control Dependences

• Dependences arising out of program control-flow
• Prevent reordering to maintain program correctness
(just like data dependences)

4

if (c1) {
S1;

}
if (c2) {

S2;
}
S3;

B649: Parallel Architectures and Programming, Spring 2009

Control Dependences

• Dependences arising out of program control-flow
• Prevent reordering to maintain program correctness
(just like data dependences)

4

if (c1) {
S1;

}
if (c2) {

S2;
}
S3;

if (c1)

if (c2)

S1;

S2;

S3;

B649: Parallel Architectures and Programming, Spring 2009

Another (Equivalent) View

• Data dependences
★ true dependences (RAW)

• Name dependences
★ anti-dependences (WAR) and output dependences (WAW)
★ not “true” dependences

• Control dependences

5

B649: Parallel Architectures and Programming, Spring 2009

Another (Equivalent) View

• Data dependences
★ true dependences (RAW)

• Name dependences
★ anti-dependences (WAR) and output dependences (WAW)
★ not “true” dependences

• Control dependences

5

Both software and hardware will reorder to improve
performance as long as the “observed behavior” of the
program does not change.

(Principle of observational equivalence)

BASIC COMPILER TECHNIQUES:
LOOP UNROLLING AND

SCHEDULING

B649: Parallel Architectures and Programming, Spring 2009

Simple Example

7

for (i=1000; i>0; i--)
x[i] = x[i] + s;

B649: Parallel Architectures and Programming, Spring 2009

Simple Example

7

for (i=1000; i>0; i--)
x[i] = x[i] + s;

B649: Parallel Architectures and Programming, Spring 2009

Pipelined Machine

8

B649: Parallel Architectures and Programming, Spring 2009

Scheduled Loop

9

for (i=1000; i>0; i--)
x[i] = x[i] + s;

B649: Parallel Architectures and Programming, Spring 2009

Scheduled Loop

10

for (i=1000; i>0; i--)
x[i] = x[i] + s;

B649: Parallel Architectures and Programming, Spring 2009

Loop Unrolling

11

B649: Parallel Architectures and Programming, Spring 2009

Loop Unrolling

11

Takes 27 cycles

B649: Parallel Architectures and Programming, Spring 2009

Schedule Unrolled Loop

12

B649: Parallel Architectures and Programming, Spring 2009

Schedule Unrolled Loop

12

Takes 14 cycles

B649: Parallel Architectures and Programming, Spring 2009

Loop Unrolling

13

• Unroll a small number of times (called unroll factor)
★ reduces branches
★ bigger body enables better instruction scheduling

• Rename registers to avoid name dependences
★ too much unrolling can cause register pressure

• Reorder instructions to reduce stalls
• Generate startup and / or cleanup loops for

iterations that are not multiple of unroll factor

BRANCH PREDICTION

B649: Parallel Architectures and Programming, Spring 2009

Static Branch Prediction

• Delay slots help
★ can schedule instructions in the delay slots from the branch

direction taken more often

• Static prediction approaches
★ predict taken (average misprediction for SPEC is 34%,

ranging from 9% to 59%)
★ use profile information

15

B649: Parallel Architectures and Programming, Spring 2009

Misprediction Rate Based on Profile Data
Spec92 Benchmarks

16

B649: Parallel Architectures and Programming, Spring 2009

Dynamic Branch Prediction

17

• “Branch prediction buffer” or “branch history table”
• Small 1-bit memory (cache) indexed by lower bits of

address

bits to index BPB

Address bits

Branch
Prediction
Buffer1

0

1
0

B649: Parallel Architectures and Programming, Spring 2009

Dynamic Branch Prediction

17

• “Branch prediction buffer” or “branch history table”
• Small 1-bit memory (cache) indexed by lower bits of

address

Problem: Predicts incorrectly twice

bits to index BPB

Address bits

Branch
Prediction
Buffer1

0

1
0

B649: Parallel Architectures and Programming, Spring 2009

Two-bit Predictors

18

B649: Parallel Architectures and Programming, Spring 2009

Prediction Accuracy: 4K 2-bit Entries
(Spec89 Benchmarks)

19

B649: Parallel Architectures and Programming, Spring 2009

Prediction Accuracy: 4K vs Infinite

20

B649: Parallel Architectures and Programming, Spring 2009

Correlating Branch Predictors

21

if (aa == 2)
aa = 0;

if (bb == 2)
bb = 0;

if (aa != bb) {
...

}

• Motivating example

• Idea
★ “correlate” last m branches

B649: Parallel Architectures and Programming, Spring 2009

General Correlating Predictors

• (m,n) predictor
★ use last m branches to predict using n bit saturating

counters

22

bits to index BPB

Address bits

Branch
Prediction
Buffer

global shift register
(m bits)

n bits

B649: Parallel Architectures and Programming, Spring 2009

General Correlating Predictors

• (m,n) predictor
★ use last m branches to predict using n bit saturating

counters

23

bits to index BPB

Address bits

Branch
Prediction
Buffer

global shift register
(m bits)

n bits

B649: Parallel Architectures and Programming, Spring 2009

General Correlating Predictors

• (m,n) predictor
★ use last m branches to predict using n bit saturating

counters

24

if b = number of entries in BTB,

number of bits in BTB = 2^m × 2^n × b

B649: Parallel Architectures and Programming, Spring 2009

Comparison of 2-bit Predictors

25

B649: Parallel Architectures and Programming, Spring 2009

Tournament Predictors
(Spec89 Benchmarks)

26

DYNAMIC SCHEDULING

B649: Parallel Architectures and Programming, Spring 2009

Comments on Assignment 1

28

• Start NOW!
• Use course blog for discussions
• Needs work, but rewards await you
• You may mix languages

★ e.g., parsing might be easier with a scripting language

• Matrix-matrix computation == matrix multiply
• Note differences in Tomasulo’s approach for assignment from the

textbook Figure 2.9
• Extra credit possibilities (case-by-case)

★ forwarding in pipelined architecture
★ speculation in Tomasulo’s approach
★ other applications
★ transformations such as, loop unrolling

B649: Parallel Architectures and Programming, Spring 2009

Why Dynamic Scheduling?

• Reduces stalls
★ tolerates data hazards
★ tolerates cache misses

• Code optimized for one pipeline can run on another
• Can work with statically scheduled code
• BUT, needs significantly more hardware

29

B649: Parallel Architectures and Programming, Spring 2009

Dynamic Scheduling: Idea

• Out-of-order execution
• Out-of-order completion
• Additional issues:

★ WAR and WAW hazards
★ precise exceptions

• Implementation:
★ split ID into Issue and Read Operands
★ multiple instructions in execution need multiple functional

units

• In order issue, out-of-order execution

30

B649: Parallel Architectures and Programming, Spring 2009

Dynamic Scheduling: Idea

• Out-of-order execution
• Out-of-order completion
• Additional issues:

★ WAR and WAW hazards
★ precise exceptions

• Implementation:
★ split ID into Issue and Read Operands
★ multiple instructions in execution need multiple functional

units

• In order issue, out-of-order execution

30

DIV.D F0, F2, F4
ADD.D F10,F0,F8
SUB.D F12,F8,F14

B649: Parallel Architectures and Programming, Spring 2009

Dynamic Scheduling: Idea

• Out-of-order execution
• Out-of-order completion
• Additional issues:

★ WAR and WAW hazards
★ precise exceptions

• Implementation:
★ split ID into Issue and Read Operands
★ multiple instructions in execution need multiple functional

units

• In order issue, out-of-order execution

30

DIV.D F0, F2, F4
ADD.D F10,F0,F8
SUB.D F12,F8,F14

DIV.D F0, F2, F4
ADD.D F6,F0,F8
SUB.D F8,F10,F14
MUL.D F6,F10,F8

B649: Parallel Architectures and Programming, Spring 2009

Tomasulo’s Approach

• Invented by Robert Tomasulo for IBM 360
★ 360 had only 4 FP regs and long floating point delays

• Avoids RAW and WAW hazards by register renaming
★ use of reservation stations

31

DIV.D F0, F2, F4
ADD.D F6,F0,F8
S.D F6,0(R1)
SUB.D F8,F10,F14
MUL.D F6,F10,F8

B649: Parallel Architectures and Programming, Spring 2009

Tomasulo’s Approach

• Invented by Robert Tomasulo for IBM 360
★ 360 had only 4 FP regs and long floating point delays

• Avoids RAW and WAW hazards by register renaming
★ use of reservation stations

31

DIV.D F0, F2, F4
ADD.D F6,F0,F8
S.D F6,0(R1)
SUB.D F8,F10,F14
MUL.D F6,F10,F8

DIV.D F0, F2, F4
ADD.D S,F0,F8
S.D S,0(R1)
SUB.D T,F10,F14
MUL.D F6,F10,T

B649: Parallel Architectures and Programming, Spring 2009

Tomasulo’s Approach: Basic Structure

32

B649: Parallel Architectures and Programming, Spring 2009

Tomasulo’s Approach: Steps

33

• Issue
★ get next instruction from queue
★ move to a matching reservation station (or stall if none available)
★ get operand values if in registers, else keep track of units that will produce

them

• Execute
★ if an operand not available, monitor the CDB
★ if all operands are ready, execute the instruction when the functional unit

becomes available
★ loads and stores take two steps: read register and wait for memory

• Write results
★ functional units write into CDB (and from there into registers)
★ stores write to memory when both value and store register are available

B649: Parallel Architectures and Programming, Spring 2009

Tomasulo’s Approach: Fields

• Reservation station:
★ Op: operation
★ Qj, Qk: operands, to come from reservation stations
★ Vj, Vk: operands, available in registers
★ A: effective address (initialized with immediate value)
★ Busy: bit to indicate the reservation station is busy

• Register file:
★ Qi: the number of the reservation station whose result will go into this

register; blank (or zero) indicates the register already has the value

34

B649: Parallel Architectures and Programming, Spring 2009

Example

35

1. L.D F6,32(R2)
2. L.D F2,44(R3)
3. MUL.D F0,F2,F4
4. SUB.D F8,F2,F6
5. DIV.D F10,F0,F6
6. ADD.D F6,F8,F2

B649: Parallel Architectures and Programming, Spring 2009

Example

36

B649: Parallel Architectures and Programming, Spring 2009

Example (contd.)

37

B649: Parallel Architectures and Programming, Spring 2009

Observations

• RAW hazards handled by waiting for operands
• WAR and WAW hazards handled by register

renaming
★ only WAR and WAW hazards between instructions

currently in the pipeline are handled; is this a problem?
★ larger number of hidden names reduces name dependences

• CDB implements forwarding

38

B649: Parallel Architectures and Programming, Spring 2009

Loop Example

39

Loop: L.D F0,0(R1)
MUL.D F4,F0,F2
S.D F4,0(R1)
DADDIU R1,R1,-8
BNE R1,R2,loop

B649: Parallel Architectures and Programming, Spring 2009

Loop Example

40

B649: Parallel Architectures and Programming, Spring 2009

Summary of Tomasulo’s Approach

41

• Need to check WAR and WAW hazards
★ through registers
★ through loads and stores

• Works very well if branches predicted accurately
★ instruction not allowed to execute unless all preceding branches

finished

• Out-of-order completion results in imprecise exceptions
• Widely popular

★ high performance without compiler assistance
★ can hide cache latencies
★ reasonable performance for code difficult to schedule statically
★ key component of speculation

HARDWARE-BASED SPECULATION

B649: Parallel Architectures and Programming, Spring 2009

Speculation: Handling Control Dependences

• Fetch, issue, and execute instructions as if branch
predictions always right

• Mechanism to handle situation where prediction
was incorrect

• Combines three key ideas:
★ dynamic branch prediction
★ speculation to execute without waiting for control

dependences to resolve
★ dynamic scheduling

43

B649: Parallel Architectures and Programming, Spring 2009

Speculation: Handling Control Dependences

• Fetch, issue, and execute instructions as if branch
predictions always right

• Mechanism to handle situation where prediction
was incorrect

• Combines three key ideas:
★ dynamic branch prediction
★ speculation to execute without waiting for control

dependences to resolve
★ dynamic scheduling

43

Data flow execution

B649: Parallel Architectures and Programming, Spring 2009

Extending Tomasulo’s Algorithm

• Separate execution from completion
★ execute: when data dependences are resolved
★ commit: when control dependences are resolved

• Out-of-order execution, but in-order commit
• Store uncommitted instructions in a reorder

buffer (ROB)
• Written results found in ROB, until committed

★ similar to store buffer

• Register file / memory written upon commit

44

B649: Parallel Architectures and Programming, Spring 2009

Tomasulo’s Approach + Speculation

45

B649: Parallel Architectures and Programming, Spring 2009

Tomasulo’s Approach + Speculation

45

Fields in ROB
1. Instruction type
2. Destination
3. Value
4. Ready

B649: Parallel Architectures and Programming, Spring 2009

Speculation Steps
Issue → Execute → Write → Commit

46

• Issue
★ get instruction from queue
★ issue if empty reservation station and empty ROB slot

✴ otherwise, stall
★ update control fields to indicate buffers are in use
★ send the reserved ROB entry number to the reservation

station for tagging

B649: Parallel Architectures and Programming, Spring 2009

Speculation Steps
Issue → Execute → Write → Commit

47

• Execute
★ if an operand not ready, monitor the CDB

✴ checks RAW hazards
★ execute when both operands available

✴ loads require two steps (why?)
✴ stores only need base register (why?)

B649: Parallel Architectures and Programming, Spring 2009

Speculation Steps
Issue → Execute → Write → Commit

48

• Write
★ upon completion, write result+tag on CDB
★ CDB is read by ROB and any waiting reservation stations
★ mark reservation station available
★ for store:

✴ write in ROB’s Value field if value available
✴ otherwise, keep monitoring CDB for the value

B649: Parallel Architectures and Programming, Spring 2009

Speculation Steps
Issue → Execute → Write → Commit

49

• Commit (also called “completion” or “graduation”)
★ normal commit

✴ update the register with the result, remove entry from ROB
★ store

✴ update memory with the result, remove entry from ROB
★ correctly predicted branch

✴ finish the branch
★ incorrectly predicted branch

✴ flush the ROB
✴ restart at the correct successor

B649: Parallel Architectures and Programming, Spring 2009

Example

50

1. L.D F6,32(R2)
2. L.D F2,44(R3)
3. MUL.D F0,F2,F4
4. SUB.D F8,F2,F6
5. DIV.D F10,F0,F6
6. ADD.D F6,F8,F2

B649: Parallel Architectures and Programming, Spring 2009

Example

51

B649: Parallel Architectures and Programming, Spring 2009

Loop Example

52

Loop: L.D F0,0(R1)
MUL.D F4,F0,F2
S.D F4,0(R1)
DADDIU R1,R1,-8
BNE R1,R2,loop

B649: Parallel Architectures and Programming, Spring 2009

Loop Example

53

B649: Parallel Architectures and Programming, Spring 2009

Observations on Speculation

54

• Speculation enables precise exception handling
★ defer exception handling until instruction ready to commit

• Branches are critical to performance
★ prediction accuracy
★ latency of misprediction detection
★ misprediction recovery time

• Must avoid hazards through memory
★WAR and WAW already taken care of (how?)
★ for RAW

✴ don’t allow load to proceed if an active ROB entry has
Destination field matching with A field of load

✴ maintain program order for effective address computation
(why?)

SUPERSCALAR PROCESSORS

B649: Parallel Architectures and Programming, Spring 2009

Improving ILP: Multiple Issue

• Statically scheduled superscalar processors
• VLIW (Very Long Instruction Word) processors
• Dynamically scheduled superscalar processors

56

B649: Parallel Architectures and Programming, Spring 2009

Multiple Issue Processor Types

57

B649: Parallel Architectures and Programming, Spring 2009

Dyn. Scheduling+Multiple Issue+Speculation

58

• Design parameters
★ two-way issue (two instruction issues per cycle)
★ pipelined and separate integer and FP functional units
★ dynamic scheduling, but not out-of-order issue
★ speculative execution

• Task per issue: assign reservation station and update
pipeline control tables (i.e., control signals)

• Two possible techniques
★ do the task in half a clock cycle
★ build wider logic to issue any pair of instructions together

• Modern processors use both (4 or more way
superscalar)

B649: Parallel Architectures and Programming, Spring 2009

Loop Example

59

Loop: LD R2,0(R1) ;R2=array element
 DADDIU R2,R2,#1 ;increment R2
 SD R2,0(R1) ;store result
 DADDIU R1,R1,#8 ;increment pointer
 BNE R2,R2,Loop ;branch if not last

B649: Parallel Architectures and Programming, Spring 2009

Two-Way Issue, Without Speculation

60

B649: Parallel Architectures and Programming, Spring 2009

Two-Way Issue, With Speculation

61

Compare with 14 and 19, without speculation

ADVANCED TECHNIQUES FOR
INSTRUCTION DELIVERY AND

SPECULATION

B649: Parallel Architectures and Programming, Spring 2009

Increasing Fetch Bandwidth:
Branch Target Buffers

63

B649: Parallel Architectures and Programming, Spring 2009

Increasing Fetch Bandwidth:
Branch Target Buffers

64

B649: Parallel Architectures and Programming, Spring 2009

Increasing Fetch Bandwidth:
Branch Target Buffers

65

B649: Parallel Architectures and Programming, Spring 2009

Increasing Fetch Bandwidth:
Branch Target Buffers: Variation

66

Target instruction(s)
+

B649: Parallel Architectures and Programming, Spring 2009

Increasing Fetch Bandwidth

67

• Return address predictors
★ assuming a special instruction for return (not a jump)
★ returns are indirect (why?)
★ more important for OO and dynamic languages (esp. VMs)

B649: Parallel Architectures and Programming, Spring 2009

Return Address Prediction Accuracy

68

B649: Parallel Architectures and Programming, Spring 2009

Increasing Fetch Bandwidth

69

• Return address predictors
★ assuming a special instruction for return (not a jump)
★ returns are indirect (why?)
★ more important for OO and dynamic languages (esp. VMs)

• Integrated (stand-alone) instruction fetch units (not
just a pipeline stage)
★ integrated branch prediction
★ instruction prefetch (when might this be useful?)
★ instruction memory access and buffering (e.g., trace cache

on Pentium 4)

B649: Parallel Architectures and Programming, Spring 2009

Improving Speculation: Register Renaming
• Use an extended set of “physical” registers, instead of

“architectural” registers
★ beware of the terminology difference with memory system

• Physical registers hold values, instead of reservation stations
or ROB

• Map of architectural to physical registers
• Commit steps:

★ make the map entry for written architectural reg. “permanent”
★ deallocate physical registers containing “older” value

• Deallocating physical registers
★ look at the source operands to find unused physical registers
★ wait until next instruction writing the same architectural register

commits (how does this work?)
70

B649: Parallel Architectures and Programming, Spring 2009

Improving Speculation

• Limiting speculation
★ avoid speculating when it may cause an expensive

exception, such as TLB miss or L2 miss

• Speculating through multiple branches
★ speculate on a subsequent branch while the previous one

still pending
✴ useful when high branch frequency, clustered branches, or long

functional unit delays
★ speculating on more than branch in one cycle

✴ no architecture combines multiple branch prediction in one
cycle with full speculation

• Value prediction
71

INTEL PENTIUM 4

B649: Parallel Architectures and Programming, Spring 2009

Overall Architecture

73

B649: Parallel Architectures and Programming, Spring 2009

Overall Architecture

74

B649: Parallel Architectures and Programming, Spring 2009

Overall Architecture

75

B649: Parallel Architectures and Programming, Spring 2009

Overall Architecture

76

B649: Parallel Architectures and Programming, Spring 2009

Overall Architecture

77

B649: Parallel Architectures and Programming, Spring 2009

Characteristics

78

B649: Parallel Architectures and Programming, Spring 2009

Branch Misprediction Rate

79

B649: Parallel Architectures and Programming, Spring 2009

Percentage Mispredicted uops

80

B649: Parallel Architectures and Programming, Spring 2009

Data Cache Misses

81

B649: Parallel Architectures and Programming, Spring 2009

CPI

82

B649: Parallel Architectures and Programming, Spring 2009

Intel Pentium 4 vs AMD Opteron: CPI

83

B649: Parallel Architectures and Programming, Spring 2009

Intel Pentium 4 vs AMD Opteron: Performance

84

Pentium 4: 3.2 GHz
Opteron: 2.6 GHz

B649: Parallel Architectures and Programming, Spring 2009

Intel Pentium 4 vs IBM Power5

85

Pentium 4: 3.2 GHz
Power5: 1.9 GHz

B649: Parallel Architectures and Programming, Spring 2009

Recap

86

• Many advanced techniques on modern processors
★ pipelining
★ dynamic scheduling
★ branch prediction
★ speculation
★ multiple issue
★ branch target buffers
★ register renaming
★ ...

• Too much complexity ⇒ Multiple cores

