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What is ILP?

• Use hardware techniques to minimize stalls
★ branch prediction
★ dynamic scheduling
★ speculation

• Pick instructions across branches (i.e., across basic 
blocks) to overlap
★ on MIPS average dynamic branch frequency is 15% to 25%
★ Pick instructions across loop iterations
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Pipeline CPI = Ideal pipeline CPI + Structural stalls +
 Data hazard stalls + Control stalls

for (i=1; i<=1000; i++)
x[i] = x[i] + y[i]; 
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Data Dependences
• Conditions for data dependence from instruction i 

to instruction j
★ i and j access a common memory location / register
★ at least one of those accesses is a write
★ there is a valid control-flow path from i to j

• Data dependence is transitive
★ j depends on i, k depends on j ⇒ k depends on i

• Three types of data dependences
★ true dependence (RAW)
★ anti-dependence (WAR)
★ output dependence (WAW)

3
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Control Dependences

• Dependences arising out of program control-flow
• Prevent reordering to maintain program correctness 
(just like data dependences)

4

if (c1) {
S1;

}
if (c2) {

S2;
}
S3;
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Another (Equivalent) View

• Data dependences
★ true dependences (RAW)

• Name dependences
★ anti-dependences (WAR) and output dependences (WAW)
★ not “true” dependences

• Control dependences

5
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Both software and hardware will reorder to improve 
performance as long as the “observed behavior” of the 
program does not change.

(Principle of observational equivalence)



BASIC COMPILER TECHNIQUES:
LOOP UNROLLING AND 

SCHEDULING
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Simple Example
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for (i=1000; i>0; i--)
x[i] = x[i] + s; 
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Simple Example
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for (i=1000; i>0; i--)
x[i] = x[i] + s; 
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Pipelined Machine
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Scheduled Loop
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for (i=1000; i>0; i--)
x[i] = x[i] + s; 
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Scheduled Loop
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for (i=1000; i>0; i--)
x[i] = x[i] + s; 
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Loop Unrolling
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Loop Unrolling
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Takes 27 cycles
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Schedule Unrolled Loop
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Schedule Unrolled Loop

12

Takes 14 cycles
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Loop Unrolling
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• Unroll a small number of times (called unroll factor)
★ reduces branches
★ bigger body enables better instruction scheduling

• Rename registers to avoid name dependences
★ too much unrolling can cause register pressure

• Reorder instructions to reduce stalls
• Generate startup and / or cleanup loops for 

iterations that are not multiple of unroll factor



BRANCH PREDICTION
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Static Branch Prediction

• Delay slots help
★ can schedule instructions in the delay slots from the branch 

direction taken more often

• Static prediction approaches
★ predict taken (average misprediction for SPEC is 34%, 

ranging from 9% to 59%)
★ use profile information

15
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Misprediction Rate Based on Profile Data
Spec92 Benchmarks

16
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Dynamic Branch Prediction

17

• “Branch prediction buffer” or “branch history table”
• Small 1-bit memory (cache) indexed by lower bits of 

address

bits to index BPB

Address bits

Branch
Prediction
Buffer1

0

1
0
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Dynamic Branch Prediction

17

• “Branch prediction buffer” or “branch history table”
• Small 1-bit memory (cache) indexed by lower bits of 

address

Problem: Predicts incorrectly twice

bits to index BPB

Address bits

Branch
Prediction
Buffer1

0

1
0
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Two-bit Predictors

18
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Prediction Accuracy: 4K 2-bit Entries
(Spec89 Benchmarks)
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Prediction Accuracy: 4K vs Infinite
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Correlating Branch Predictors
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if (aa == 2)
aa = 0;

if (bb == 2)
bb = 0;

if (aa != bb) {
...

}

• Motivating example

• Idea
★ “correlate” last m branches
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General Correlating Predictors

• (m,n) predictor
★ use last m branches to predict using n bit saturating 

counters

22

bits to index BPB

Address bits

Branch
Prediction
Buffer

global shift register 
(m bits)

n bits
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bits to index BPB

Address bits

Branch
Prediction
Buffer

global shift register 
(m bits)

n bits
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General Correlating Predictors

• (m,n) predictor
★ use last m branches to predict using n bit saturating 

counters

24

if b = number of entries in BTB,

number of bits in BTB = 2^m × 2^n × b
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Comparison of  2-bit Predictors
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Tournament Predictors
(Spec89 Benchmarks)
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DYNAMIC SCHEDULING
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Comments on Assignment 1

28

• Start NOW!
• Use course blog for discussions
• Needs work, but rewards await you
• You may mix languages

★ e.g., parsing might be easier with a scripting language

• Matrix-matrix computation == matrix multiply
• Note differences in Tomasulo’s approach for assignment from the 

textbook Figure 2.9
• Extra credit possibilities (case-by-case)

★ forwarding in pipelined architecture
★ speculation in Tomasulo’s approach
★ other applications
★ transformations such as, loop unrolling
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Why Dynamic Scheduling?

• Reduces stalls
★ tolerates data hazards
★ tolerates cache misses

• Code optimized for one pipeline can run on another
• Can work with statically scheduled code
• BUT, needs significantly more hardware

29
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Dynamic Scheduling: Idea

• Out-of-order execution
• Out-of-order completion
• Additional issues:

★ WAR and WAW hazards
★ precise exceptions

• Implementation:
★ split ID into Issue and Read Operands
★ multiple instructions in execution need multiple functional 

units

• In order issue, out-of-order execution

30
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DIV.D    F0, F2, F4
ADD.D  F10,F0,F8
SUB.D  F12,F8,F14
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DIV.D    F0, F2, F4
ADD.D  F10,F0,F8
SUB.D  F12,F8,F14

DIV.D    F0, F2, F4
ADD.D  F6,F0,F8
SUB.D  F8,F10,F14
MUL.D  F6,F10,F8
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Tomasulo’s Approach

• Invented by Robert Tomasulo for IBM 360
★ 360 had only 4 FP regs and long floating point delays

• Avoids RAW and WAW hazards by register renaming
★ use of reservation stations

31

DIV.D    F0, F2, F4
ADD.D  F6,F0,F8
S.D       F6,0(R1)
SUB.D  F8,F10,F14
MUL.D  F6,F10,F8
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DIV.D    F0, F2, F4
ADD.D  F6,F0,F8
S.D       F6,0(R1)
SUB.D  F8,F10,F14
MUL.D  F6,F10,F8

DIV.D    F0, F2, F4
ADD.D  S,F0,F8
S.D       S,0(R1)
SUB.D  T,F10,F14
MUL.D  F6,F10,T
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Tomasulo’s Approach: Basic Structure

32
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Tomasulo’s Approach: Steps

33

• Issue
★ get next instruction from queue
★ move to a matching reservation station (or stall if none available)
★ get operand values if in registers, else keep track of units that will produce 

them

• Execute
★ if an operand not available, monitor the CDB
★ if all operands are ready, execute the instruction when the functional unit 

becomes available
★ loads and stores take two steps: read register and wait for memory

• Write results
★ functional units write into CDB (and from there into registers)
★ stores write to memory when both value and store register are available
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Tomasulo’s Approach: Fields

• Reservation station:
★ Op: operation
★ Qj, Qk: operands, to come from reservation stations
★ Vj, Vk: operands, available in registers
★ A: effective address (initialized with immediate value)
★ Busy: bit to indicate the reservation station is busy

• Register file:
★ Qi: the number of the reservation station whose result will go into this 

register; blank (or zero) indicates the register already has the value

34
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Example

35

1.   L.D       F6,32(R2)
2.   L.D       F2,44(R3)
3.   MUL.D  F0,F2,F4
4.   SUB.D  F8,F2,F6
5.   DIV.D    F10,F0,F6
6.   ADD.D  F6,F8,F2
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Example

36
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Example (contd.)

37
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Observations

• RAW hazards handled by waiting for operands
• WAR and WAW hazards handled by register 

renaming
★ only WAR and WAW hazards between instructions 

currently in the pipeline are handled; is this a problem?
★ larger number of hidden names reduces name dependences

• CDB implements forwarding

38
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Loop Example

39

Loop:    L.D           F0,0(R1)
MUL.D      F4,F0,F2
S.D           F4,0(R1)
DADDIU   R1,R1,-8
BNE         R1,R2,loop
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Loop Example

40
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Summary of  Tomasulo’s Approach

41

• Need to check WAR and WAW hazards
★ through registers
★ through loads and stores

• Works very well if branches predicted accurately
★ instruction not allowed to execute unless all preceding branches 

finished

• Out-of-order completion results in imprecise exceptions
• Widely popular

★ high performance without compiler assistance
★ can hide cache latencies
★ reasonable performance for code difficult to schedule statically
★ key component of speculation



HARDWARE-BASED SPECULATION
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Speculation: Handling Control Dependences

• Fetch, issue, and execute instructions as if branch 
predictions always right

• Mechanism to handle situation where prediction 
was incorrect

• Combines three key ideas:
★ dynamic branch prediction
★ speculation to execute without waiting for control 

dependences to resolve
★ dynamic scheduling

43
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Data flow execution



B649: Parallel Architectures and Programming, Spring 2009

Extending Tomasulo’s Algorithm

• Separate execution from completion
★ execute: when data dependences are resolved
★ commit: when control dependences are resolved

• Out-of-order execution, but in-order commit
• Store uncommitted instructions in a reorder 

buffer (ROB)
• Written results found in ROB, until committed

★ similar to store buffer

• Register file / memory written upon commit

44



B649: Parallel Architectures and Programming, Spring 2009

Tomasulo’s Approach + Speculation

45
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Tomasulo’s Approach + Speculation

45

Fields in ROB
1. Instruction type
2. Destination
3. Value
4. Ready
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Speculation Steps
Issue → Execute → Write → Commit

46

• Issue
★ get instruction from queue
★ issue if empty reservation station and empty ROB slot

✴ otherwise, stall
★ update control fields to indicate buffers are in use
★ send the reserved ROB entry number to the reservation 

station for tagging
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Speculation Steps
Issue → Execute → Write → Commit

47

• Execute
★ if an operand not ready, monitor the CDB

✴ checks RAW hazards
★ execute when both operands available

✴ loads require two steps (why?)
✴ stores only need base register (why?)
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Speculation Steps
Issue → Execute → Write → Commit
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• Write
★ upon completion, write result+tag on CDB
★ CDB is read by ROB and any waiting reservation stations
★ mark reservation station available
★ for store:

✴ write in ROB’s Value field if value available
✴ otherwise, keep monitoring CDB for the value
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Speculation Steps
Issue → Execute → Write → Commit

49

• Commit (also called “completion” or “graduation”)
★ normal commit

✴ update the register with the result, remove entry from ROB
★ store

✴ update memory with the result, remove entry from ROB
★ correctly predicted branch

✴ finish the branch
★ incorrectly predicted branch

✴ flush the ROB
✴ restart at the correct successor
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Example

50

1.   L.D       F6,32(R2)
2.   L.D       F2,44(R3)
3.   MUL.D  F0,F2,F4
4.   SUB.D  F8,F2,F6
5.   DIV.D    F10,F0,F6
6.   ADD.D  F6,F8,F2
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Example

51
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Loop Example
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Loop:    L.D           F0,0(R1)
MUL.D      F4,F0,F2
S.D           F4,0(R1)
DADDIU   R1,R1,-8
BNE         R1,R2,loop
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Loop Example

53
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Observations on Speculation

54

• Speculation enables precise exception handling
★ defer exception handling until instruction ready to commit

• Branches are critical to performance
★ prediction accuracy
★ latency of misprediction detection
★ misprediction recovery time

• Must avoid hazards through memory 
★WAR and WAW already taken care of (how?)
★ for RAW

✴ don’t allow load to proceed if an active ROB entry has 
Destination field matching with A field of load

✴ maintain program order for effective address computation 
(why?)



SUPERSCALAR PROCESSORS
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Improving ILP: Multiple Issue

• Statically scheduled superscalar processors
• VLIW (Very Long Instruction Word) processors
• Dynamically scheduled superscalar processors

56
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Multiple Issue Processor Types

57
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Dyn. Scheduling+Multiple Issue+Speculation

58

• Design parameters
★ two-way issue (two instruction issues per cycle)
★ pipelined and separate integer and FP functional units
★ dynamic scheduling, but not out-of-order issue
★ speculative execution

• Task per issue: assign reservation station and update 
pipeline control tables (i.e., control signals)

• Two possible techniques
★ do the task in half a clock cycle
★ build wider logic to issue any pair of instructions together

• Modern processors use both (4 or more way 
superscalar)
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Loop Example

59

Loop: LD       R2,0(R1)    ;R2=array element
      DADDIU   R2,R2,#1    ;increment R2
      SD       R2,0(R1)    ;store result
      DADDIU   R1,R1,#8    ;increment pointer
      BNE      R2,R2,Loop  ;branch if not last
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Two-Way Issue, Without Speculation

60
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Two-Way Issue, With Speculation

61

Compare with 14 and 19, without speculation



ADVANCED TECHNIQUES FOR
INSTRUCTION DELIVERY AND 

SPECULATION
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Increasing Fetch Bandwidth:
Branch Target Buffers

63
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Increasing Fetch Bandwidth:
Branch Target Buffers
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Increasing Fetch Bandwidth:
Branch Target Buffers
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Increasing Fetch Bandwidth:
Branch Target Buffers: Variation

66

Target instruction(s)
+



B649: Parallel Architectures and Programming, Spring 2009

Increasing Fetch Bandwidth

67

• Return address predictors
★ assuming a special instruction for return (not a jump)
★ returns are indirect (why?)
★ more important for OO and dynamic languages (esp. VMs)
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Return Address Prediction Accuracy

68
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Increasing Fetch Bandwidth

69

• Return address predictors
★ assuming a special instruction for return (not a jump)
★ returns are indirect (why?)
★ more important for OO and dynamic languages (esp. VMs)

• Integrated (stand-alone) instruction fetch units (not 
just a pipeline stage)
★ integrated branch prediction
★ instruction prefetch (when might this be useful?)
★ instruction memory access and buffering (e.g., trace cache 

on Pentium 4)
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Improving Speculation: Register Renaming
• Use an extended set of “physical” registers, instead of 

“architectural” registers
★ beware of the terminology difference with memory system

• Physical registers hold values, instead of reservation stations 
or ROB

• Map of architectural to physical registers
• Commit steps:

★ make the map entry for written architectural reg. “permanent”
★ deallocate physical registers containing “older” value

• Deallocating physical registers
★ look at the source operands to find unused physical registers
★ wait until next instruction writing the same architectural register 

commits (how does this work?)
70
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Improving Speculation

• Limiting speculation
★ avoid speculating when it may cause an expensive 

exception, such as TLB miss or L2 miss

• Speculating through multiple branches
★ speculate on a subsequent branch while the previous one 

still pending
✴ useful when high branch frequency, clustered branches, or long 

functional unit delays
★ speculating on more than branch in one cycle

✴ no architecture combines multiple branch prediction in one 
cycle with full speculation

• Value prediction
71



INTEL PENTIUM 4
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Overall Architecture
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Overall Architecture
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Overall Architecture
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Overall Architecture
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Overall Architecture

77



B649: Parallel Architectures and Programming, Spring 2009

Characteristics
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Branch Misprediction Rate

79



B649: Parallel Architectures and Programming, Spring 2009

Percentage Mispredicted uops
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Data Cache Misses
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CPI

82



B649: Parallel Architectures and Programming, Spring 2009

Intel Pentium 4 vs AMD Opteron: CPI
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Intel Pentium 4 vs AMD Opteron: Performance

84

Pentium 4: 3.2 GHz 
Opteron:    2.6 GHz
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Intel Pentium 4 vs IBM Power5
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Pentium 4: 3.2 GHz 
Power5:     1.9 GHz
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Recap
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• Many advanced techniques on modern processors
★ pipelining
★ dynamic scheduling
★ branch prediction 
★ speculation
★ multiple issue
★ branch target buffers
★ register renaming
★ ...

• Too much complexity  ⇒ Multiple cores


