EXPLOITING ILP

B649
Parallel Architectures and Pipelining

What 1s 1LP?

Pipeline CPI = Ideal pipeline CPI + Structural stalls +
Data hazard stalls + Control stalls

® Use hardware techniques to minimize stalls
* branch prediction
* dynamic scheduling
* speculation
® Pick instructions across branches (i.e., across basic
blocks) to overlap

* on MIPS average dynamic branch frequency is 15% to 25%

* Pick instructions across loop iterations

for (1=1; 1<=1000; 1++)
x[1] = x[1] + y[1];

B649: Parallel Architectures and Programming, Spring 2009

Data Dependences

* Conditions for data dependence from instruction z
to instruction 7

* 7 and 7 access a common memory location / register
* at least one of those accesses is a write
* there is a valid control-flow path from 7 to s

® Data dependence is transitive

* 7 depends on 7, £ depends on 7 = k& depends on 7
* Three types of data dependences

* true dependence (RAW)

* anti-dependence (WAR)

* output dependence (WAW)

B649: Parallel Architectures and Programming, Spring 2009

Control Dependences

* Dependences arising out of program control-flow

* Prevent reordering to maintain program correctness
(just like data dependences)

1if (cl) {
S1;
}

1f (c2) {
S2;
}

S3;

B649: Parallel Architectures and Programming, Spring 2009

Control Dependences

* Dependences arising out of program control-flow

* Prevent reordering to maintain program correctness
(just like data dependences)
(if (D)

1f (cl) {
S1; \ﬁ s1;)
} :Lé
1f (c2) { if (c2)
S2;
}
S3;

B649: Parallel Architectures and Programming, Spring 2009

Another (Equivalent) View

* Data dependences
* true dependences (RAW)

* Name dependences
* anti-dependences (WAR) and output dependences (WAW)

* not “true” dependences

* Control dependences

B649: Parallel Architectures and Programming, Spring 2009

Another (Equivalent) View

* Data dependences
* true dependences (RAW)

* Name dependences
* anti-dependences (WAR) and output dependences (WAW)

* not “true” dependences

* Control dependences

Both software and hardware will reorder to improve
performance as long as the “observed behavior” of the
program does not change.

(Principle of observational equivalence)

B649: Parallel Architectures and Programming, Spring 2009

BASIC COMPILER TECHNIQUES:
LOOP UNROLLING AND
SCHEDULING

Simple Example

for (1=1000; 1>0; 1--)
x[1] = x[1] + s;

B649: Parallel Architectures and Programming, Spring 2009

Simple Example

for (1=1000; 1>0; 1--)

x[1] = x[1] + s;
Loop: L.D FO,0(R1) s FO=array element
ADD.D F4,FO,F2 ;add scalar in F2
S.D F4,0(R1) :store result
DADDUI R1,R1,#-8 ;decrement pointer
;8 bytes (per DW)
BNE R1,R2,Loop ;branch R1!=R2

B649: Parallel Architectures and Programming, Spring 2009

Pipelined Machine

Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0

B649: Parallel Architectures and Programming, Spring 2009

Scheduled Loop

Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3 for (1 =1000 : 1>0 : S _)
FP ALU op Store double 2 . .
Load double FP ALU op 1 X I: 1 :l = X [1] =Ig S ;
Load double Store double 0
Clock cycle 1ssued
Loop: L.D FO,0(R1) |

stall 2

ADD.D F4,FO,F2 3

stall 4

stall 5

S.D F4,0(R1) 6

DADDUI R1,R1,#-8 7

stall 8

BNE R1,R2,Loop 9

B649: Parallel Architectures and Programming, Spring 2009

Instruction producing result

Scheduled Loop

Instruction using result

Latency in clock cycles

FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op

Load double

Store double

1
0

for (1=1000; 1>0; 1--)
x[1] = x[1] + s;

Loop:

L.D
stall
ADD.D
stall
stall
S.D
DADDUI
stall
BNE

Clock cycle issued

FO,0(R1)
F4,F0,F2
F4,0(R1)
R1,R1,#-8

R1,R2,Loop

I b =

o0 ~J1 O WD

B649: Parallel Architectures and Programming, Spring 2009

Loop: L.D FO,0(R1)
DADDUI R1,R1,#-8
ADD.D F4,FO,F2
stall
stall
S.D F4,8(R1)
BNE R1,R2,Loop

10

L.D F0,0(R1) ;FO=array element
ADD.D F4,F0,F2 ;add scalar in F2
S.D F4,0(R1) ;store result
DADDUI R1,R1,#-8 ;decrement pointer

;8 bytes (per DW)
BNE R1,R2,Loop sbranch R1!=R2

FO,0(R1)

F4,F0,F2

F4,0(R1) ;drop DADDUI & BNE
F6,-8(R1)

F8,F6,F2

F8,-8(R1) ;drop DADDUI & BNE
F10,-16(R1)

F12,F10,F2

F12,-16(R1) ;drop DADDUI & BNE
F14,-24(R1)

F16,F14,F2

F16,-24(R1)

R1,R1,#-32

R1,R2,Loop

[B
o

o .
o

o .

L
A
Sa
L
A
S.
L
A
S.
L
A

jww B we B we B we B we B we B we B we B v B o B e

L

L.D F0,0(R1) ;FO=array element
ADD.D F4,F0,F2 ;add scalar in F2
S.D F4,0(R1) ;store result
DADDUI R1,R1,#-8 ;decrement pointer

;8 bytes (per DW)
BNE R1,R2,Loop sbranch R1!=R2

FO,0(R1)

F4,F0,F2

F4,0(R1) ;drop DADDUI & BNE
F6,-8(R1)

F8,F6,F2

F8,-8(R1) ;drop DADDUI & BNE
F10,-16(R1)

F12,F10,F2

F12,-16(R1) ;drop DADDUI & BNE
F14,-24(R1)

F16,F14,F2

F16,-24(R1)

R1,R1,#-32

R1,R2,Loop

. .
jww B we B we B we B we B we B we B we B v B o B e
o o

o .

L
A
Sa
L
A
S.
L
A
S.
L
A

L

LDV IDVDOUVLW;mEXI2 I rrrr

> - oo oo .

D
D
D
D
D.
D.
D.
D.
D
D
D
D
D
E

o
—
—

oo o o

FO,0(R1)
F6,-8(R1)
F10,-16(R1)
F14,-24(R1)
F4,F0,F2
F8,F6,F2
F12,F10,F2
F16,F14,F2
F4,0(R1)
F8,-8(R1)
R1,R1,#-32
F12,16(R1)
F16,8(R1)
R1,R2,Loop

Schedule Unrolled Loop

Loop:

FO,0(R1)
F6,-8(R1)
F10,-16(R1)
F14,-24(R1)
F4,F0,F2
F8,F6,F2
F12,F10,F2
F16,F14,F2
F4,0(R1)
F8,-8(R1)
R1,R1,#-32
F12,16(R1)
F16,8(R1)
R1,R2,Loop

o O O O -
oo O O

T
m o O O O O O O O O O O O O

WL BV O UL ;m> 222> rrrrrrrr
(-
-
[

_—

Takes 14 cycles

B649: Parallel Architectures and Programming, Spring 2009

12

Looop Unrolling

e Unroll a small number of times (called unroll factor)
* reduces branches

* bigger body enables better instruction scheduling

* Rename registers to avoid name dependences

* too much unrolling can cause register pressure

® Reorder instructions to reduce stalls

* Generate startup and / or cleanup loops for
iterations that are not multiple of unroll factor

B649: Parallel Architectures and Programming, Spring 2009 13

Static Branch Prediction

* Delay slots help

* can schedule instructions in the delay slots from the branch
direction taken more often

® Static prediction approaches

* predict taken (average misprediction for SPEC is 34%),
ranging from 9% to 59%)

* use profile information

B649: Parallel Architectures and Programming, Spring 2009

15

‘Misprediction rate

Floating point

Benchmark

£ 2007 Elsavier, Inc. All rights resarved.

Dynamic Branch Prediction

* “Branch prediction bufter” or “branch history table”

* Small 1-bit memory (cache) indexed by lower bits of

address
Address bits

bits to index BPB

)
0
1
1
0

g

B649: Parallel Architectures and Programming, Spring 2009

Branch
Prediction
Buffer

17

Dynamic Branch Prediction

¢ “Branch prediction buffer” or “branch historv table”
p y

* Small 1-bit memory (cache) indexed by lower bits of

address
Address bits

bits to index BPB

)
0
1
1
0

,

Branch
Prediction
Buffer

Problem: Predicts incorrectly twice

B649: Parallel Architectures and Programming, Spring 2009

17

Not taken

Predict taken Predict taken
11 10

Not taken

Not taken

Not taken

£ 2007 Elsavier, Inc. All rights

nasa7/
matrix300
tomcatv
doduc

SPEC89 spice
benchmarks

fpppp
gce
espresso
eqntott

li 10%

0% 2% 4% 6% 8% 10% 12% 14% 16%

Frequency of mispredictions

© 2007 Elsavier, Inc. All rights resarved.

@ 4096 entries:
2 bits per entry

matrix300

O Unlimited entries:

tomcatv 2 bits per entry

SPEC89
benchmarks

gce

espresso

eqgntott

10%
10%
0%

2% 6% 8% 10% 12% 14%

Frequency of mispredictions
s resarved.

4% 16%

£ 2007 Elsavier, Inc. All rig

18%

Correlating Branch Predictors

* Motivating example

1if (aa == 2)
aa = 0;
1f (bb == 2)
bb = 0;
1f (aa !'= bb) {
}

¢ [dea

* “correlate” last m branches

B649: Parallel Architectures and Programming, Spring 2009

21

General Correlating Predictors

* (m,n) predictor

* use last m branches to predict using N bit saturating

counters

Address bits

bits to index BPB

n bits

global shift register
(m bits)

B649: Parallel Architectures and Programming, Spring 2009

Branch
Prediction
Buffer

e

General Correlating Predictors

* (m,n) predictor

* use last m branches to predict using N bit saturating

counters
Address bits

bits to index BPB

global shift register
(m bits)

B649: Parallel Architectures and Programming, Spring 2009

Branch
Prediction
Buffer

23

General Correlating Predictors

* (m,n) predictor

* use last m branches to predict using N bit saturating
counters

If b = number of entries in BTB,

number of bits In BTB =22 m x 2*n x b

B649: Parallel Architectures and Programming, Spring 2009

24

Il 4096 entries:
2 bits per entry

@ Unlimited entries:
2 bits per entry

[0 1024 entries:
(2,2)

spice

SPEC89
benchmarks

fpppp

espresso

eqntott

10%
10%
5%

4% 6% 8% 10% 12% 14% 16% 18%
Frequency of mispredictions

© 2007 Elsavier, Inc. All rights reserved.

onditional branch
isprediction rate

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

Total predictor size
: gzoo'ramﬂ, Inc. All runmu_vd.;

N s
e -.' -—
— — -

—a——
— -a N >

Comments on Assignment 1|

e Start NOW!

e Use course blog for discussions
* Needs work, but rewards await you
* You may mix languages
* e.g., parsing might be easier with a scripting language
* Matrix-matrix computation == matrix multiply

* Note differences in Tomasulo’s approach for assignment from the
textbook Figure 2.9

e Extra credit possibilities (case-by-case)
* forwarding in pipelined architecture
* speculation in Tomasulo’s approach
* other applications

* transformations such as, loop unrolling

B649: Parallel Architectures and Programming, Spring 2009

28

Why Dynamic Scheduling?

® Reduces stalls

* tolerates data hazards

* tolerates cache misses

* Code optimized for one pipeline can run on another
* Can work with statically scheduled code

* BUT, needs significantly more hardware

B649: Parallel Architectures and Programming, Spring 2009

29

Dynamic Scheduling: Idea

¢ Out-of-order execution
® Qut-of-order completion

* Additional issues:
* WAR and WAW hazards
* precise exceptions
* Implementation:
* split ID into Issue and Read Operands

* multiple instructions 7z execution. need multiple functional
units

® In order issue, out-of-order execution

B649: Parallel Architectures and Programming, Spring 2009

30

Dynamic Scheduling: Idea

¢ Out-of-order execution
® Qut-of-order completion

* Additional issues:
* WAR and WAW hazards
* precise exceptions
* Implementation:
* split ID into Issue and Read Operands

DIV.D FO, F2, F4
ADD.D F10,FO,F8
SUB.D F12,F8,F14

* multiple instructions 7z execution. need multiple functional

units

® In order issue, out-of-order execution

B649: Parallel Architectures and Programming, Spring 2009

30

Dynamic Scheduling: Idea

¢ Out-of-order execution
® Qut-of-order completion

* Additional issues:
* WAR and WAW hazards
* precise exceptions
* Implementation:
* split ID into Issue and Read Operands

D
A
S

V.D FO, F2, F4
DD.D F10,FO,F8

UB.D F12,F8,F14

D
A
S

DD.

UB.

MUL.

D F6,
D F8,

D F6,

V.D FO, F2, F4

-0,F8
=10,F14

-10,F8

* multiple instructions 7z execution. need multiple functional

units

® In order issue, out-of-order execution

B649: Parallel Architectures and Programming, Spring 2009

30

Tomasulo’s Approach

* Invented by Robert Tomasulo for IBM 360
* 360 had only 4 FP regs and long floating point delays

* Avoids RAW and WAW hazards by regzster renaming

*x use of reservation stations

DIV.D FO, F2, F4

ADD.D-F6,F0,E8

S.D ig,eﬂﬁ)

SUB.D F8,F10,F14
D

MUL.D™F6,F10,F8

B649: Parallel Architectures and Programming, Spring 2009

Tomasulo’s Approach

* Invented by Robert Tomasulo for IBM 360
* 360 had only 4 FP regs and long floating point delays

* Avoids RAW and WAW hazards by regzster renaming

*x use of reservation stations

DIV.D FO, F2, F4 DIV.D FO, F2, F4
ADD.D.F6.FO,E8 ADD.D S,FO,F8
SD [FeeR1) | W) SD SO0(R1)
SUB.D F8,F10,F14 SUB.D T,F10,F14
MUL.D*F6,F10,F8 MUL.D F6,F10,T

B649: Parallel Architectures and Programming, Spring 2009

rom instruction unit

Instruction
queue

FP registers

Load-store
operations

Operand

Floating-point Biees

operations

L
7
- Operation bus

- Store buffers
' Load buffers

3
2 Reservation
1

Address

Common data bus (CDB)

© 2007 Elsavier, Inc. All rights resarved.

Tomasulo’s Approach: Steps

* Issue
* get next instruction from queue
* move to a matching reservation station (or stall if none available)

* get operand values if in registers, else keep track of units that will produce
them

e Execute

* if an operand not available, monitor the CDB

* if all operands are ready, execute the instruction when the functional unit
becomes available

* loads and stores take two steps: read register and wait for memory

e Write results

* functional units write into CDB (and from there into registers)

* stores write to memory when both value and store register are available

B649: Parallel Architectures and Programming, Spring 2009 33

Tomasulo’s Approach: Fields

From instruction unit

Instruction
queue

FP registers

Load-store

operations

Operand

A . .
Address unit Floating-point buses
) operations

Store buffers

[¥ § v Load buffers
Y

Operation bus
- 3 Yy v 4 Y 4 Y

® Reservation station: ? ﬂ==j_l 1

Data yAddress Y Y Y

. Memory unit i | FE_dders ll | EP muItiiners !I
* Op: Operatlon Common data bus (CDB)

£ 2007 Elsavier, Inc. All rights reserved.

* Qj, Qk: operands, to come from reservation stations
* Vj, Vk: operands, available in registers
*x A: effective address (initialized with immediate value)

* Busy: bit to indicate the reservation station is busy

* Register file:

* Qi: the number of the reservation station whose result will go into this
register; blank (or zero) indicates the register already has the value

B649: Parallel Architectures and Programming, Spring 2009

Example

2L ol

L.D
L.D
MUL.D
SUB.D
DIV.D

ADD.D

F6,32(R2)
F2,44(R3)
=0,F2,F4
=8,F2,F6
=10,F0,F6
-6,F8,F2

B649: Parallel Architectures and Programming, Spring 2009

35

Instruction

Instruction status

Execute

Write Result

F6,32(R2)

\,

.\,

F2,44(R3)

.\/

FO,F2,F4

F8,F2,F6

F10,FO0,F6

F6,F8,F2

Reservation stations

Vk

45 + Regs[R3]

Mem[34 + Regs[R2]] Load2

Addl

Load2

Regs[F4] Load2

Mem[34 + Regs[R2]] Mult1

Register status

Fé6 F8 F10

Add2 Addl Mult2

Instruction status

Instruction Execute Write Result

L.D F6,32 (R2) v v
L.D F2,44(R3)
MUL.D FO,F2,F4

~ SUB.D F8,F2,F6

~ DIV.D F10,FO0,F6

~ ADD.D F6,F8,F2

Reservation stations

Busy Op Vj Vk

no

no

no

no

no
yes MUL Meml[45 + Regs[R3]] Regs[F4]
yes DIV Mem([34 + Regs[R2]] Multl

Register status

Field FO F4 F6 F8 F10 F12
Qi Mult1 Mult2

Observations

* RAW hazards handled by waiting for operands
* WAR and WAW hazards handled by register
renaming

* only WAR and WAW hazards between instructions
currently in the pipeline are handled; is this a problem?

* larger number of hidden names reduces name dependences

* CDB implements forwarding

B649: Parallel Architectures and Programming, Spring 2009 38

Loop Example

Loop:

L.D
MUL.D
S.D

FO,0(R1)
F4,F0,F2
F4,0(R1)

DADDIU R1,R1,-8

BNE

R1,R2,loop

B649: Parallel Architectures and Programming, Spring 2009

39

Instruction status

~ Instruction From iteration Issue Execute Write Result
- L.D FO,0(R1) v v

F4,F0,F2

F4,0(R1)

FO,0(R1)

F4,FO0,F2

F4,0(R1)

Reservation stations

vk Qj A

Regs[R1]+0
Regs[R1] -8

Regs[R1]
Regs[R1] -8

Register status

Fé6 F8

Summary of Tomasulo’s Approach

e Need to check WAR and WAW hazards

* through registers

* through loads and stores

* Works very well if branches predicted accurately

* instruction not allowed to execute unless all preceding branches

finished
* Out-of-order completion results in imprecise exceptions

e Widely popular
* high performance without compiler assistance
* can hide cache latencies
* reasonable performance for code difficult to schedule statically

* key component of speculation

B649: Parallel Architectures and Programming, Spring 2009 41

- N
—— = -

g
e

)

Speculation: Handling Control Dependences

® Fetch, issue, and execute instructions as if branch
predictions always right

®* Mechanism to handle situation where prediction
was incorrect

* Combines three key ideas:

* dynamic branch prediction

* speculation to execute without waiting for control
dependences to resolve

* dynamic scheduling

B649: Parallel Architectures and Programming, Spring 2009 43

Speculation: Handling Control Dependences

® Fetch, issue, and execute instructions as if branch
predictions always right

®* Mechanism to handle situation where prediction
was incorrect

* Combines three key ideas:

* dynamic branch prediction

* speculation to execute without waiting for control
dependences to resolve

* dynamic scheduling

Data flow execution

B649: Parallel Architectures and Programming, Spring 2009 43

Extending Tomasulo’s Algorithm

* Separate execution from completion

* execute: when data dependences are resolved

* commit: when control dependences are resolved
® Out-of-order execution, but in-order commit

® Store uncommitted instructions in a reorder

buffer (ROB)

® Written results found in ROB, until committed

* similar to store buffer

® Register file / memory written upon commit

B649: Parallel Architectures and Programming, Spring 2009

44

Store
address

I
Instruction
e
Load-store D
operations
Floating-point
operations

Load buffers

-
-
Reorder buffer
-
I

.
=
-

FP registers

Operand
buses

r_l
)
- Operation bus

Common data bus (CDB)

£ 2007 Elsavier, Inc. All rights

Tomasulo’s Approach + Speculation

Fields in ROB b
t m twer Reorder buffer
% WFI From instruction unit

4. Ready '
Reg # Data
Instruction Y Y ,
queue
FP registers
Load-store
operations
Y . . Operand
Address unit Floating-point buses
operations '
Load buffers Y Y
\

Operation bus

Store 3 5
address 2 Reservation 1
Store - 1 stations
data y Address
Memory unit FP adders

Common data bus (CDB)

© 2007 Elsavier, Inc. All rights resarved.

B649: Parallel Architectures and Programming, Spring 2009

Speculation Steps

Issue — Execute — Whiite — Commul

® Jssue

* oet instruction from queue

* issue if empty reservation station and empty ROB slot

* otherwise, stall
* update control fields to indicate bufters are in use

* send the reserved ROB entry number to the reservation
station for tagging

B649: Parallel Architectures and Programming, Spring 2009

46

Speculation Steps

Issue — Execute — White — Commui

® kxecute

* if an operand not ready; monitor the CDB
* checks RAW hazards

* execute when both operands available
* loads require two steps (why?)

* stores only need base register (why?)

B649: Parallel Architectures and Programming, Spring 2009

47

Speculation Steps

Issue — Execute — Write — Commui

® Write

* upon completion, write result+tag on CDB
* CDB is read by ROB and any waiting reservation stations
* mark reservation station available

* for store:

* write in ROB’s Value field if value available

* otherwise, keep monitoring CDB for the value

B649: Parallel Architectures and Programming, Spring 2009

48

Speculation Steps

Issue — Execute — Write = Commait

* Commit (also called “completion” or “graduation”)
* normal commit
* update the register with the result, remove entry from ROB

* store

* update memory with the result, remove entry from ROB

* correctly predicted branch
* finish the branch

* incorrectly predicted branch
* flush the ROB

* restart at the correct successor

B649: Parallel Architectures and Programming, Spring 2009

49

Example

2L ol

L.D
L.D
MUL.D
SUB.D
DIV.D

ADD.D

F6,32(R2)
F2,44(R3)
=0,F2,F4
=8,F2,F6
=10,F0,F6
-6,F8,F2

B649: Parallel Architectures and Programming, Spring 2009

50

Reorder buffer

Instruction State Destination Value

L.D F6,32(R2) Commit F6 Mem[34 + Regs[R2]]
L.D F2,44(R3) Commit F2 Mem[45 + Regs[R3]]
MUL.D FO,F2,F4 Write result FO #2 x Regs[F4]

SUB.D F8,F2,F6 Write result #2 - #1
DIV.D F10,FO0,F6 Execute
ADD.D F6,F8,F2 Write result #4 +#2

Reservation stations

Vk

MUL.D Mem([45 + Regs[R3]] Regs[F4]
DIV.D Mem[34 + Regs[R2]] #3

FP register status

Field F4 F5

Reorder #
Busy

Loop Example

Loop:

L.D
MUL.D
S.D

FO,0(R1)
F4,F0,F2
F4,0(R1)

DADDIU R1,R1,-8

BNE

R1,R2,loop

B649: Parallel Architectures and Programming, Spring 2009

32

Reorder buffer

Instruction State Destination Value

L.D FO,0(R1) Commit FO Mem][0 +
Regs[R1]]

MUL.D F4,F0,F2 Commit F4 #1 x Regs[F2]

S.D F4,0(R1) Write result 0 + Regs[R1] #2

DADDIU R1,R1,#-8 Write result R1 Regs[R1] -8

BNE R1,R2,Loop Write result

L.D FO,0(R1) Write result FO Mem|[#4]

MUL.D F4,F0,F2 Write result F4 #6 x Regs[F2]

S.D F4,0(R1) Write result #7

DADDIU R1,R1,#-8 Write result R1 #4 -8

BNE R1,R2,Loop Write result

2
3

[e—

O| || N[N |[WwW|2

[S—
)

FP register status

Field F3 F4
Reorder # 7

Busy

Observations on Speculation

* Speculation enables precise exception handling

* defer exception handling until instruction ready to commit

® Branches are critical to performance
* prediction accuracy
* latency of misprediction detection

* misprediction recovery time

® Must avoid hazards through memory

* WAR and WAW already taken care of (how?)
* for RAW

* don’t allow load to proceed if an active ROB entry has
Destination field matching with A field of load

* maintain program order for effective address computation

(why?)

B649: Parallel Architectures and Programming, Spring 2009 54

v

R
- I, " S0 -
- —

.

it

Z
Q
%
——
:
-
o'
5
<
O
m
2
7

Improving 11.P: Multiple Issue

* Statically scheduled superscalar processors
* VLIW (Very Long Instruction Word) processors

® Dynamically scheduled superscalar processors

B649: Parallel Architectures and Programming, Spring 2009

56

Common name

Issue
structure

Hazard
detection

Scheduling

Distinguishing
characteristic

Examples

Superscalar
(static)

dynamic

hardware

static

in-order execution

mostly in the
embedded space:
MIPS and ARM

Superscalar
(dynamic)

dynamic

dynamic

some out-of-order
execution, but no
speculation

none at the present

Superscalar
(speculative)

dynamic

hardware

dynamic with
speculation

out-of-order execution
with speculation

Pentium 4,
MIPS R12K, IBM
Power5

VLIW/LIW

static

primarily
software

static

all hazards determined
and indicated by compiler
(often implicitly)

most examples are in
the embedded space,
such as the TT Cé6x

primarily static

primarily
software

mostly static

all hazards determined
and indicated explicitly
by the compiler

[tanium

Dyn. Scheduling+Multiple Issue+Speculation

* Design parameters
* two-way issue (two instruction issues per cycle)
* pipelined and separate integer and FP functional units
* dynamic scheduling, but not out-of-order issue

* speculative execution

* Task per issue: assign reservation station and update
pipeline control tables (i.e., control signals)

* Two possible techniques
* do the task in half a clock cycle

* build wider logic to issue any pair of instructions together

® Modern processors use both (4 or more way
superscalar)

B649: Parallel Architectures and Programming, Spring 2009 58

Loop Example

Loop: LD R2,0(R1)
DADDIU R2 ,R2 ,#1
SD R2,0(R1)
DADDIU R1,R1, #8
BNE R2,R2,Loop

'R2=array element
*1ncrement R?2
*store result
»Tncrement pointer
*branch if not last

B649: Parallel Architectures and Programming, Spring 2009

59

Two-Way Issue, Without Speculation

Memory

Issuesat Executesat access at Write CDB at
Iteration clockcycle clockcycle clockcycle clock cycle
number Instructions number number number number Comment
1 LD R2,0(R1) 1 2 3 4 First issue
1 DADDIU R2,R2,#1 1 5 6 Wait for LW
1 SD R2,0(R1) 2 3 7 Wait for DADDIU
1 DADDIU R1,R1,#8 2 3 4 Execute directly
1 BNE R2,R3,L00P 3 7 Wait for DADDIU
2 LD R2,0(R1) 4 8 9 10 Wait for BNE
2 DADDIU R2,R2,#1 4 11 12 Wait for LW
2 SD R2,0(R1) 5 9 13 Wait for DADDIU
2 DADDIU R1,R1,#8 5 8 9 Wait for BNE
2 BNE R2,R3,L00P 6 13 Wait for DADDIU
3 LD R2,0(R1) 7 14 15 16 Wait for BNE
3 DADDIU R2,R2,#1 7 17 18 Wait for LW
3 SD R2,0(R1) 8 15 19 Wait for DADDIU
3 DADDIU R1,R1,#8 8 14 15 Wait for BNE
3 BNE R2,R3,L00P 9 19 Wait for DADDIU

B649: Parallel Architectures and Programming, Spring 2009

Two-Way Issue, With Speculation

Write

Issues Executes Readaccess CDBat Commits
Iteration atclock atclock at clock clock at clock
number Instructions number number number number number Comment
1 LD R2,0(R1) 1 2 3 4 5 First issue
1 DADDIU R2,R2,#1 1 5 6 7 Wait for LW
1 SD R2,0(R1) 2 3 7 Wait for DADDIU
1 DADDIU R1,R1,#8 2 3 4 8 Commit in order
1 BNE R2,R3,L0O0P 3 7 8 Wait for DADDIU
2 LD R2,0(R1) 4 5 6 9 No execute delay
2 DADDIU R2,R2,#1 4 8 10 Wait for LW
2 SD R2,0(R1) 5 6 10 Wait for DADDIU
2 DADDIU R1,R1,#8 5 6 7 11 Commit in order
2 BNE R2,R3,L0O0P 6 10 11 Wait for DADDIU
3 LD R2,0(R1) 7 8 0 10 12 Earliest possible
3 DADDIU R2,R2,#1 7 11 12 13 Wait for LW
3 SD R2,0(R1) 8 9 13 Wait for DADDIU
3 DADDIU R1,R1,#8 8 /7 9\ 10 14 Executes earlier
3 BNE R2,R3,L00P 9 _13 / 14 Wait for DADDIU

Compare with 14 and 19, without speculation

B649: Parallel Architectures and Programming, Spring 2009

61

ADVANCED TECHNIQUES FOR
INSTRUCTION DELIVERY AND
SPECULATION

PC of instruction to fetch

Predicted PC

Number of
entries

in branch-
target
buffer

No: instruction is
Q not predicted to be Branch
branch; proceed normally predicted
taken or

Yes: then instruction is branch and predicted untaken
PC should be used as the next PC

© 2007 Elsavier, Inc. All rights resarved.

Send PC to memory and
branch-target buffer

Entry found in
branch-target
buffer?

Send out
predicted

Is
instruction PC

a taken
branch?

Normal
instruction
execution

Enter Mispredicted branch, Branch correctly
branch instruction kill fetched instruction; predicted;
address and next restart fetch at other [continue execution

PC into branch- target; delete entry with no stalls
target buffer from target buffer

© 2007 Elsavier, Inc. All rights reserved.

Increasing Fetch Bandwidth:
Branch “larget Buffers

Instruction in buffer Prediction Actual branch Penalty cycles
yes taken taken 0
yes taken not taken 2
no taken 2
no not taken 0

B649: Parallel Architectures and Programming, Spring 2009

65

Increasing Fetch Bandwidth:
Branch Target Buffers: Vanation

PC of instruction to fetch Target instruction(s)

+
Predicted PC

Number of
entries

in branch-
target
buffer

No: instruction is

- not predicted to be Branch
branch; proceed normally predicted
taken or
Yes: then instruction is branch and predicted untaken

PC should be used as the next PC

© 2007 Elsavier, Inc. All rights resarved.
B649: Parallel Architectures and Programming, Spring 2009 66

Increasing Fetch Bandwidth

® Return address predictors

* assuming a special instruction for return (not a jump)
* returns are indirect (why?)

*x more important for OO and dynamic languages (esp. VMs)

B649: Parallel Architectures and Programming, Spring 2009

67

<~ go

-0 m88ksim
- cct

-O- compress
-9 xlisp

& ijpeg

-A- perl

-@- vortex

Return address buffer entries

© 2007 Elsavier, Inc. All rights resarved.

Increasing Fetch Bandwidth

® Return address predictors

* assuming a special instruction for return (not a jump)

* returns are indirect (why?)

*x more important for OO and dynamic languages (esp. VMs)
* [ntegrated (stand-alone) instruction fetch units (not

just a pipeline stage)
* integrated branch prediction
* instruction prefetch (when might this be useful?)

* instruction memory access and buffering (e.g., trace cache
on Pentium 4)

B649: Parallel Architectures and Programming, Spring 2009

09

Improving Speculation: Register Renaming

e Use an extended set of “physical” registers, instead of
“architectural” registers

* beware of the terminology difterence with memory system

* Physical registers hold values, instead of reservation stations

or ROB
® Map of architectural to physical registers

e Commit steps:
* make the map entry for written architectural reg. “permanent”

* deallocate physical registers containing “older” value

® Deallocating physical registers
* look at the source operands to find unused physical registers

* wait until next instruction writing the same architectural register

commits (how does this work?)
B649: Parallel Architectures and Programming, Spring 2009

70

Improving Speculation

* Limiting speculation

* avoid speculating when it may cause an expensive
exception, such as TLB miss or L2 miss

* Speculating through multiple branches

* speculate on a subsequent branch while the previous one
still pending

* useful when high branch frequency, clustered branches, or long
functional unit delays

* speculating on more than branch in one cycle

* no architecture combines multiple branch prediction in one
cycle with full speculation

* Value prediction

B649: Parallel Architectures and Programming, Spring 2009 71

Front-end BTB “ Instruction
4K entries | prefetch

Instruction decoder :
Microcode

ROM

Trace cache BTB Execution trace cache
2K entries 12K uops pop queue

Register renaming

Memory uop queue Integer FP uop queue
]

L2 cache
2MB
8-way

set associative

L1 data cache (16K byte 8-way)

£ 2007 Elsavier, Inc. All rights

Front-end BTB - Instruction
4K entries prefetch
Instruction decoder
Microcode
ROM

Trace cache BTB ‘ Execution trace cache

Register renaming

Memory uop queue Integer FP uop queue

L2 cache
2MB
8-way

set associative

L1 data cache (16K byte 8-way)

£ 2007 Elsavier, Inc. All rights

Front-end BTB - Instruction
4K entries prefetch

Instruction decoder :
Microcode

Trace cache BTB . Execution trace cache
2K entries |/ 12K uops yop queue

Register renaming

Memory uop queue Integer FP uop queue
]

L2 cache
2MB
8-way

set associative

L1 data cache (16K byte 8-way)

£ 2007 Elsavier, Inc. All rights

Front-end BTB - Instruction
4K entries prefetch

Instruction decoder :
Microcode

ROM

Trace cache BTB Execution trace cache

A—

‘ Register renaming

Memory uop queue Integer FP uop queue
]

L2 cache
2MB
8-way

set associative

L1 data cache (16K byte 8-way)

£ 2007 Elsavier, Inc. All rights

Front-end BTB - Instruction
4K entries prefetch

Instruction decoder
Microcode
ROM
Trace cache BTB Execution trace cache

Register renaming

4

< momane TR

ry uop queue
— N S S——

L2 cache
2MB
8-way

set associative

L1 data cache (16K byte 8-way)

£ 2007 Elsavier, Inc. All rights

Feature

Size

Comments

Front-end branch-target
buffer

4K entries

Predicts the next [A-32 instruction to fetch; used only when the
execution trace cache misses.

Execution trace cache

12K uops

Trace cache used for uops.

Trace cache branch-
target buffer

2K entries

Predicts the next uop.

Registers for renaming

128 total

128 uops can be in execution with up to 48 loads and 32 stores.

Functional units

7 total: 2 simple ALU,

complex ALU, load, store,
FP move, FP arithmetic

The simple ALU units run at twice the clock rate, accepting up
to two simple ALU uops every clock cycle. This allows
execution of two dependent ALU operations in a single clock
cycle.

L1 data cache

16 KB: 8-way associative;
64-byte blocks
write through

Integer load to use latency is 4 cycles; FP load to use latency is
12 cycles; up to 8 outstanding load misses.

L2 cache

2 MB; 8-way associative;
128-byte blocks
write back

256 bits to L1, providing 108 GB/sec; 18-cycle access time; 64
bits to memory capable of 6.4 GB/sec. A miss in L2 does not
cause an automatic update of L 1.

4 5 6 7 8 9 10 11 12
Branch mispredictions per 1000 instructions

©2007 Elsevier, Inc. All rights reserved.

mcf

crafty

pwise
swim
mgrid
applu
mesa

0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000

Misspeculation percentage
‘ OMr Inc.l s :

0O 20 40 60 80 100 120 140 160 180 200 0O 2 4 6 8 10 12 14 16 18 20
L1 data cache misses per 1000 instructions L2 data cache misses per 1000 instructions
© 2007 Elsavier, Inc. All rights resarved.

SSRRE

— 1.73

_ 1.45

0.0000 005 01000 0.1500 02000 02500 0.3000 03500 04000 0.450C
CPI

© 2007 Elsavier, Inc. All rights

" Pentium 4

mgrid B AMD Opteron

applu

mesa

:

L

0.00 1.00 200 3.00 400 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.0C
CPI

© 2007 Elsavier, Inc. All rights

"~ Pentium 4
B Opteron

1500 2000
SPECRatio

© 2007 Elsavier, Inc. All rights resarved.

" Intel Pentium 4
B 1BM Power5

& K

& W@
)

© 2007 Elsavier, Inc. All rights

Recap

® Many advanced techniques on modern processors
* pipelining
* dynamic scheduling

* branch prediction

* speculation
* multiple issue
* branch target buffers

* register renaming

X,

* Too much complexity = Multiple cores

B649: Parallel Architectures and Programming, Spring 2009

86

