LIMITS OF ILP

B649

Parallel Architectures and Programming

A Perfect Processor

- Register renaming
 - * infinite number of registers
 - * hence, avoids all WAW and WAR hazards
- Branch prediction
 - ★ perfect prediction
- Jump prediction
 - * perfect jump and return prediction
- Memory address alias analysis
 - * addresses perfectly disambiguated
- Cache
 - * no misses

Available ILP on a Perfect Processor

- Look arbitrarily ahead
- Rename all registers
- Rename within an issue packet to avoid dependences
- Handle memory dependences
- Provide sufficient replicated functional units

- Look arbitrarily ahead
- Rename all registers
- Rename within an issue packet to avoid dependences
- Handle memory dependences
- Provide sufficient replicated functional units

Comparisons needed:

$$2n-2 + 2n-4 + ... + 2 = 2 \sum_{i=1}^{i=n-1} i = 2((n-1)n/2) = n^2-n$$

- Look arbitrarily ahead
- Rename all registers
- Rename within an issue packet to avoid dependences
- Handle memory dependences
- Provide sufficient replicated functional units

Comparisons needed:

$$2n-2$$
 + $2n-4$ + ... + $2 = 2 \sum_{i=1}^{i=n-1} i = 2((n-1)n/2) = n^2-n$

- Look arbitrarily ahead
- Rename all registers
- Rename within an issue packet to avoid dependences
- Handle memory dependences
- Provide sufficient replicated functional units

Comparisons needed:

$$2n-2 + (2n-4) + ... + 2 = 2 \sum_{i=1}^{i=n-1} i = 2((n-1)n/2) = n^2-n$$

- Look arbitrarily ahead
- Rename all registers
- Rename within an issue packet to avoid dependences
- Handle memory dependences
- Provide sufficient replicated functional units

Comparisons needed:

$$2n-2 + 2n-4 + ... + 2 = 2 \sum_{i=1}^{i=n-1} i = 2((n-1)n/2) = n^2-n$$

- Look arbitrarily ahead
- Rename all registers
- Rename within an issue packet to avoid dependences
- Handle memory dependences
- Provide sufficient replicated functional units

Comparisons needed:

$$2n-2 + 2n-4 + ... + 2 = 2 \sum_{i=1}^{i=n-1} i = 2((n-1)n/2) = n^2-n$$

Effect of Window Size

Effect of Window Size

Realistic Branch and Jump Prediction

(2K window, 64 issue)

Branch Misprediction Rate

(2K window, 64 issue)

Limited Number of Registers

(2K window, 64 issue, 150K bits tournament predictor)

Imperfect Alias Analysis

(2K window, 64 issue, 150K bits tournament predictor, 256 integer + 256 FP registers)

Realizable Processor

- 64 issues per cycle
 - * no issue restriction
 - * 10 times widest available in 2005
- Tournament branch predictor with 1K entries
 - * comparable to best in 2005, not a primary bottleneck
- Perfect memory reference disambiguation
 - * may be practical for small window sizes
- Register renaming with 64 integer and 64 FP registers
 - * comparable to IBM Power5

Performance on a Realizable Processor

Beyond These Limits

- WAW and WAR hazards through memory
 - * stack frames (reuse of stack area)
- "Unnecessary" dependences
 - * recurrences
 - * code generation conventions (e.g., loop index, use of specific registers)
 - * can we eliminate some of these?
- Data flow limits
 - * value prediction (not very successful, so far)

CROSS-CUTTING ISSUES

Role of Software vs Hardware

- Memory reference disambiguation
 - * alias analysis
- Speculation
 - * hardware-based better with unpredictable branches
 - * precise exceptions: both hardware and software
 - * bookkeeping code not needed in hardware-based approach
- Scheduling
 - * compiler has a bigger picture
- Architecture independence
 - * hardware-based approach might be better (?)

SIMULTANEOUS MULTITHREADING

Why Multithreading?

- Limitations of ILP
 - * inherent limitations, in availability of instruction-level parallelism
 - * hardware limitations
 - * hardware complexities limit further improvements
- Two ways to multithread
 - * coarse-grained
 - * fine-grained

Why Multithreading?

- Limitations of ILP
 - * inherent limitations, in availability of instruction-level parallelism
 - * hardware limitations
 - * hardware complexities limit further improvements
- Two ways to multithread
 - * coarse-grained
 - * fine-grained

Beware: textbook uses multithreading and multiprocessing interchangeably

Simultaneous Multithreading

Design and Challenges

- Build on top of existing hardware
 - * need per-thread register renaming tables
 - * separate PCs
 - * ability to commit from multiple threads
- Throughput vs per-thread performance
 - * preferred thread
 - * fetching far ahead for single thread vs throughput
- Large register file
- Maintaining clock cycle speed
- Handling cache and TLB misses

IBM Power5 Approach

- Increase the associativity of L1 instruction cache and instruction address translation buffers
- Added per-thread load and store queues
- Increased the sizes of L2 and L3 caches
- Added separate instruction prefetch and buffering
- Increased the number of virtual registers from 152 to 240
- Increased the size of several issue queues

Potential Performance Improvement

Broad Comparison

Processor	Microarchitecture	Fetch/ issue/ execute	Func. units	Clock rate (GHz)	Transistors and die size	Power
Intel Pentium 4 Extreme	Speculative dynamically scheduled; deeply pipelined; SMT	3/3/4	7 int. 1 FP	3.8	125M 122 mm ²	115 W
AMD Athlon 64 FX-57	Speculative dynamically scheduled	3/3/4	6 int. 3 FP	2.8	114M 115 mm ²	104 W
IBM Power5 1 processor	Speculative dynamically scheduled; SMT; two CPU cores/chip	8/4/8	6 int. 2 FP	1.9	200M 300 mm ² (estimated)	80 W (estimated)
Intel Itanium 2	EPIC style; primarily statically scheduled	6/5/11	9 int. 2 FP	1.6	592M 423 mm ²	130 W

What Limits These Processors?

- ILP limitations as already seen
- Hardware complexity increases rapidly
- Power
 - * dynamic power dominates
 - * multiple issues required much more hardware, increasing power cost
 - * growing gap between peak and sustained performance
 - * speculation is inherently energy inefficient

NEXT: MULTICORE