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Basic Optimizations

Average memory access time = Hit time + Miss rate x Miss penalty

* Larger block size to reduce miss rate

® Larger caches to reduce miss rate

* Higher associativity to reduce miss rate
® Multilevel caches to reduce miss penalty

® Prioritizing read misses over writes to reduce miss

penalty

* Avoiding address translation during indexing of the
cache to reduce hit time
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Eleven Advanced Optimizations

Average memory access time = Hit time + Miss rate x Miss penalty

* Reducing the hit time

* small and simple caches, way prediction, trace caches

* Increasing cache bandwidth

* pipelined caches, multibanked caches, non-blocking caches

® Reducing the miss penalty

* critical word first, merging write bufters
® Reducing the miss rate
* compiler optimizations
* Reducing miss penalty / miss rate via parallelism

* hardware prefetching, compiler prefetching
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#1: Small and Simple Caches
(To Reduce Hit Time)

e Small caches can be faster

* reading tags and comparing is time-consuming

* L1 should be fast enough to be read in 1-2 cycles
* desirable to keep L2 small enough to fit on chip
* could keep data oft-chip and tags on-chip
* Simpler caches can be faster

* direct-mapped caches: can overlap tag check and
transmission of data

* Why is this not possible with set-associative caches?

B649: Parallel Architectures and Programming, Spring 2009



®
c
@
E
—
»
0
o}
O
o

16 KB 32 KB 64 KB 128 KB 256 KB 512 KB

Cache size
2007 Elsavier, Inc. All rights resarved. )




#2: Way Prediction
(To Reduce Hit Time)

 Extra bits per block to predict the «way (block
within the set) of the next cache access

* can set the multiplexer early
* can match the tag and read data in parallel
* miss results in matching other blocks in next clock cycle
® Prediction accuracy > 85% suggested by simulations

* oood match for speculative processors

* used in Pentium 4

B649: Parallel Architectures and Programming, Spring 2009
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#3: lrace Caches
(To Reduce Hit Time)

* Goal: to enhance instruction-level parallelism (find
sufficient number of instructions without
dependencies)

* trace = dynamic sequence of executed instructions

® Using traces

* branches folded into traces, hence need to be validated

* more comp!.

icated address mapping (?)

* better utilize long blocks

* conditional

branches cause duplication of instructions

acCross traces

* used in Pentium 4 (in general, benefits not obvious)
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#4: Pipelined Cache Access
(To Increase Cache Bandundth)

* Pipeline results in fast clock cycle time and high
bandwidth, but slow hits

* Pentium 1: 1 clock cycle for instruction cache
* Pentium Pro / I1I: 2 clock cycles

* Pentium 4: 4 clock cycles

B649: Parallel Architectures and Programming, Spring 2009
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#5: Nonblocking CGaches
(1o Increase Cache Bandundth)

® Nonblocking or lockup-free cache increases the
potential benefit of out-of-order processors by
continuing to serve hits while a miss is outstanding

* called hzt-under-miss optimization
* Further optimization if multiple outstanding misses
allowed
* hit-under-miltiple-miss or miss-under-miss optimization
* useful only if memory system can serve multiple misses
* recall that outstanding misses can limit achievable ILP

* In general, L1 misses possible to hide, but L2 misses
extremely difficult to hide

B649: Parallel Architectures and Programming, Spring 2009
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#6: Multibanked Caches
(1o Increase Cache Bandundth)

* Originally used for memory, but also applicable to
caches

* [2: Opteron has two banks, Sun Niagara has four banks

® Sequential interleaving works well

Block

Bank O Bank 2 Bank 3
address address address address
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 12

B649: Parallel Architectures and Programming, Spring 2009
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#7: Critical Word First and Early Restart
(To Reduce Mass Penallty)

* Observation: cache usually needs one word of the
block at a time

* show impatience!

® Critical word first

* fetch the missed word from the memory first and sent it to
processor as soon as it arrives

* Early restart

* fetch words in normal order, but send the requested word
to the processor as soon as it arrives

* Useful for large block sizes

B649: Parallel Architectures and Programming, Spring 2009 14
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#3: Merging Write Bufters
(To Reduce Mass Penalty)

* Write merging
* used in Sun Niagara
* Helps reduce stalls due to write buffers being full

* Uses memory more efhiciently

* multi-word writes are faster than writes performed one
word at a time

* The block replaced in a cache is called the wvictim.
* AMD Opteron calls its write bufter wictim buffer

* do not confuse with wvictim cache.

B649: Parallel Architectures and Programming, Spring 2009
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#9: Compiler Optimizations: Code
(To Reduce Muss Rate)

® Reordering procedures to reduce conflict misses
* Aligning basic blocks at cache block boundaries

® Branch straightening

B649: Parallel Architectures and Programming, Spring 2009
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#9: Compiler Optimizations: Code
(To Reduce Muss Rate)

® Reordering procedures to reduce conflict misses

Memory

Direct-mapped
cache
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#9: Compiler Optimizations: Code
(To Reduce Muss Rate)

* Reordering procedures to reduce conflict misses

* Aligning basic blocks at cache block boundaries
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#9: Compiler Optimizations: Code
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#9: Compiler Optimizations: Code
(lo Reduce Mass Rate)

* Reordering procedures to reduce conflict misses
* Aligning basic blocks at cache block boundaries

® Branch straightening
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#9: Compiler Optimizations: Code
(lo Reduce Mass Rate)

* Reordering procedures to reduce conflict misses
* Aligning basic blocks at cache block boundaries

® Branch straightening
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#9: Compiler Optimizations: Data
(To Reduce Muss Rate)

* Loop interchange

* to effectively leverage spatial locality

* Blocking

* to improve temporal locality

B649: Parallel Architectures and Programming, Spring 2009
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#9: Compiler Optimizations: Loop Interchange

(lo Reduce Miss Rale)

for (§=0; j < 100; j++)
for (1=0; 1 < 5000; 1++)
x[11[3] = 2*x[1]1[]];

B649: Parallel Architectures and Programming, Spring 2009
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#9: Compiler Optimizations: Loop Interchange

(lo Reduce Miss Rale)

for (§=0; j < 100; j++)
for (1=0; 1 < 5000; 1++)
x[11[3] = 2*x[1]1[]];

Column-major ordering
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#9: Compiler Optimizations: Loop Interchange

(lo Reduce Miss Rale)

for (§=0; j < 100; j++)
for (1=0; 1 < 5000; 1++)
x[11[3] = 2*x[1]1[]];

Only one cache miss

Column-major ordering
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#9: Compiler Optimizations: Loop Interchange

(lo Reduce Miss Rale)

for (j=0; j < 100; j++)
for (1=0; 1 < 5000; 1++)
x[11[3] = 2*x[1]1[]];

Row-major ordering
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#9: Compiler Optimizations: Loop Interchange

(To Reduce Muss Rate)

for (3=0; 3 < 100; j++)
for (1=0; 1 < 5000; 1++)
x[1][3] = 2*x[1]1[3];

Row-major ordering

B649: Parallel Architectures and Programming, Spring 2009
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#9: Compiler Optimizations: Loop Interchange
(To Reduce Muss Rate)

for (3=0; 3 < 100; j++)
Ci:_,vfor (1=0; 1 < 5000; 1++)

x[11[J] = 2*x[1]1[3];

Row-major ordering
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#9: Compiler Optimizations: Loop Interchange

(lo Reduce Miss Rale)

for (1=0; 1 < 5000; 1++)
for (3=0; j < 100; J++)
x[11[3] = 2*x[1]1[]];

Row-major ordering

B649: Parallel Architectures and Programming, Spring 2009
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#9: Compiler Optimizations: Blocking
(lo Reduce Miss Rale)

for (1=0; 1 < N; 1++)
for (j=0; j < N; j++)
{
r = 0.0;
for (k=0; k < N; k++)
r=r + y[i][k]l*z[k][3];
}X[i][j] = r;

B649: Parallel Architectures and Programming, Spring 2009



#9: Compiler Optimizations: Blocking
(lo Reduce Miss Rale)

for (1=0; 1 < N; 1++)
for (3=0; J < N; J++)
{
r = 0.0;
for (k=0; k < N; k++)
r=r + y[i]llkl*z[k][3];
}X[i][j] = r;

Misses = anywhere between 0 and (2N3+N?2)

B649: Parallel Architectures and Programming, Spring 2009
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#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

for (i=0; i < N; i++4)
for (3=0; j < N; j++)
{
r=0.0;
for (k=0; k < N; k++)
r=r + y[i]l[kl*z[k][3];
x[1][J] = r;

2 2 2
i i k

3 3 3

4 4 4

5 5 5
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#9: Compiler Optimizations: Blocking
(lo Reduce Maiss Rate)

for (i=0; 1 < N; i++)
for (3=0; j < N; j++)
{
r=0.0;
for (k=0; k < N; k++)
r=r + y[1]l[k]l*z[k][]];
x[11[]J] = r;

J K j
X z
0 1 P 0 1 2
0 0
1 1
2 2 2
i i k
3 3 3
4 4 4
5 5 5
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#9: Compiler Optimizations: Blocking
(lo Reduce Maiss Rate)

(&) P w N - o

o R w N — o
(&) 4 w N
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for (1=0; 1 < N; 1++)
for (j=0; j < N; j++)
{
R = ZEROS(2,2);
for (k=0; k < N; k++)
R=Rm® Y[1][kl=xZ[k][]];
}X[i][j] = R;

B649: Parallel Architectures and Programming, Spring 2009
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#9: Compiler Optimizations: Blocking
(lo Reduce Maiss Rate)

(&) P w N - o

o R w N — o
(&) 4 w N
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for (11=0; 11 < N/B; 11++)
for (3J3=0; 33 < N/B; 3J++)
{
R = ZEROS(2,2);
for (kk=0; kk < N/B; kk++)
R =R @8 Y[11][kk]=zZ[kk][]7];
}X[ﬁ][jj] = R;

B649: Parallel Architectures and Programming, Spring 2009




#9: Compiler Optimizations: Blocking

(To Reduce Muss Rale) |for Gii=0; ii < n/B; i)
for (jj=0; jj < N/B; j++)
{
R = ZEROS(2,2);
for (kk=0; kk < N/B; kk++)
R =R ® Y[1i][kk]lxzZ[kk][]jj];
}X[ﬁ][jj] = R;

for (11=0; 11 < N/B; 11++)

for (33=0; JJ < N/B; Jj++)
{

R = ZEROS(2,2):

for (kk=0; kk < N/B; kk++)

{

for (i=ii; 1 < i1+B; i++)

for (J=3J; 3 < JJ+B; J++)
for (k=kk; k < kk+B; k++)
, REi1[J] = ROA1[3] + y[illkl*z[k][]]

}X[ii][jj] = R;

B649: Parallel Architectures and Programming, Spring 2009 28



#9: Compiler Optimizations: Blocking
(lo Reduce Miss Rale)

for (ii=0; ii < N/B; 1ii++)
for (3jj=0; jj < N/B; jj++)
{
R = ZEROS(2,2);
for (kk=0; kk < N/B; kk++)
{
for (i=ii; 1 < ii+B; i++)
for (3=jj; J < 33+B; j++)
for (k=kk; k < kk+B; k++)
R[i11[J] = RIAI03] + y[illk]l*z[k][]]
}
X[ii10331 = R;
}

for (i1=0; ii < N/B; ii++)
for (3J=0; JJ < N/B; JJj++)
for (kk=0; kk < N/B; kk++)
for (i=ii; i < 1i+B; i++)
gor (3J=33; J < JJ+B; J++)
r = 0.0;
for (k=kk; k < kk+B; k++)
r=r + y[il[kl*z[k][3]1;
}XEil[j] =
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#9: Compiler Optimizations: Blocking
(To Reduce Muss Rale)
for (33=0; jj < N; jj = jj+B)
for (kk=0; kk < N; kk = kk+B)
for (i=0; 1 < N; 1++)
for (j=jj; J < min(3jj+B,N); Jj++)
{
r =0.0;
for (k=kk; k < min(kk+B,N):; k++)
r=r + y[1l[kl*z[k][3];
x[11[3] = x[1]1[j]+r;

) K J
X y rd
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
0 0 0
1 1 1
2 2 2
i k
3 3 3
4 4 4
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#10: Hardware Prefetching
(To Reduce Muss Penalty or Miss Rate)

® [nstruction prefetch

* prefetch two blocks, instead of one, on miss

* Data prefetch

*x extend the same idea to data

* an older study found 50% to 70% misses could be captured
with 8 stream buffers (one for instruction, 7 for data)

* Pentium 4 can prefetch into L2 cache from up to § streams
* invokes prefetch upon two successive misses to a page

* won't prefetch across 4KB page boundary

B649: Parallel Architectures and Programming, Spring 2009
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#10: Hardware Prefetching
(To Reduce Muss Penalty or Miss Rate)
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Speedup due to hardware prefetching on Pentium 4
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#11: Compiler-Controlled Pretetching
(To Reduce Muss Penalty or Miss Rate)

* Register prefetch
* preload register
® Cache pretetch

* load into the cache, but not register

e Fither could be faulting or non-faulting
* normal load is faulting register prefetch

* non-faulting prefetches turn into no-ops

* Usually need non-blocking caches to be eftective

B649: Parallel Architectures and Programming, Spring 2009
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Miss
Hit Band- pen- Miss Hardware cost/
Technique time width alty rate  complexity = Comment

Small and simple caches + - 0 Trivial; widely used

Way-predicting caches
Trace caches
Pipelined cache access
Nonblocking caches
Banked caches

Critical word first
and early restart

Merging write buffer

Compiler techniques to reduce
cache misses

Hardware prefetching of
instructions and data

Compiler-controlled
prefetching

3
+

Used in Pentium 4

Used in Pentium 4

Widely used

Widely used

Used in L2 of Opteron and Niagara
Widely used

Widely used with write through

Software is a challenge: some
computers have compiler option

Many prefetch instructions;
Opteron and Pentium 4 prefetch
data

Needs nonblocking cache; possible
instruction overhead; in many CPUs
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Memory lypes

e SRAM
* static RAM
* uses about six transistors per bit
* access type close to one cycle

*x used for caches

e DRAM
* dynamic RAM

* much more compact, needs one transistor + one capacitor per bit
* substantially slower than SRAM

* used for main memory

e Characteristics
* bandwidth

* latency (access time vs cycle time )

B649: Parallel Architectures and Programming, Spring 2009
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DRAM 'lechnology

Address Data
Bus

CAS

Column Address Latch

Column Address Decoder

Row Row

E R R R R RN
Addr. Addr. seo00000S
Latch Dcdr

FE RN RN
RAS Se000000
FERR RN
FERENRR RN

Sense and Refresh

Amplifiers

Figure from the web-site of Ars Technica
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DRAM 'lechnology
®

Address Data
Bus Bus

CAS

Column Address Latch

Row

Figure from the web-site of Ars Technica
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DRAM 'lechnology
Aag oau&%“

Bus

Figure from the web-site of Ars Technica
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DRAM 'lechnology

Address Bus Data Bus

Figure from the web-site of Ars Technica
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Row access strobe (RAS)

Column access
strobe (CAS)/
Year of Slowest Fastest data transfer Cycle
introduction Chip size DRAM (ns) DRAM (ns) time (ns) time (ns)

1980 64K bit 180 150 75 250
1983 256K bit 150 120 50 220
1986 IM bit 120 100 25 190
1989 4M bit 100 80 20 165
1992 16M bit 80 60 15 120
1996 64M bit 70 50 12 110
1998 128M bit 70 50 10 100
2000 256M bit 65 45 7 90
2002 512M bit 60 40 5 80
2004 1G bit 55 35 70
2006 2G bit 50 30 . 60




DIMMs = Packaged DRAMs

* DIMM = Dual Inline Memory Modules
* SODIMM = Small Outline DIMM
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DRAM Bandwidth Optimizations

* DRAM:s consist of multiple modules (1-4M bits)
* Fast-page mode

* repeated access to row bufter without incurring row-access
time

* obsoleted by synchronous access (modern DRAM still
support it, though)

* Synchronous DRAM (SDRAM)

* after initial latency; can read several bytes with one cycle

latency (bus cycle)
® Double Data Rate SDRAM (DDR SDRAM)

* typically, use multiple banks internally

B649: Parallel Architectures and Programming, Spring 2009 45



DDR DRAMs and DIMMs

Clock rate M transfers DRAM MB/sec DIMM
Standard (MHz) per second name /DIMM name
DDR 133 266 DDR266 2128 PC2100
DDR 150 300 DDR300 2400  PC2400
DDR 200 400 DDR400 3200  PC3200
DDR2 266 533 DDR2-533 4264 PC4300
DDR2 333 667 DDR2-667 5336 PC5300
DDR2 400 800 DDR2-800 6400 PC6400
DDR3 533 1066 DDR3-1066 8528 PC8500
DDR3 666 1333 DDR3-1333 10,664 PC10700
DDR3 800 1600 DDR3-1600 12,800 PC12800

B649: Parallel Architectures and Programming, Spring 2009



VIRTUAL MEMORY
AND
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Virtual Machines: An Old Idea

A virtual machine is taken to be an efficient, isolated duplicate of the real
machine.  We explain these notions through the idea of a virtual
machine monitor (VMM) ... a VMM has three essential characteristics.
First, the VMM provides an environment for programs which is
essentially identical with the original machine; second, programs run in
this environment show at worst only minor decreases in speed; and last,

the VMM is in complete control of the system resources.

Gerlad Popek and Robert Goldberg
“Formal requirements for virtualizable third generation architectures,”
Communications of the ACM (July 1974)

B649: Parallel Architectures and Programming, Spring 2009

48



Protection via Virtual Memory

* Two process modes

* yser mode and kerne/ mode

* Read-only state

* user processes may not modify state bits such as user/kernel
bit, exception enable/disable bit, memory protection
information, etc.

® Mechanisms to go from user to kernel level and vice-
versa

* system calls

®* Mechanisms to limit memory access

B649: Parallel Architectures and Programming, Spring 2009 49



Virtual page Page
number offset
<36> <12>

@ <l e <1><1> <36> <28>
V RW US D A Tag Physical address

G

| | | [ |
I e e e T I I I
n... (Low-order 12 bits
e T T T T T L 1T 1 {1} | ofaddress)

'_III <i2>
| dotmux el
@ <28> @ physica

address

(High-order 28 bits of address)

© 2007 Elsavier, Inc. All rights resarved.




Protection via Virtual Machines

* (Operating) System Virtual Machines
* does not include JVM or Microsoft CLR

*x VMware ESX, Xen (hypervisors or ~virtual machine monitors,
can run on bare machines)

*x Parallels, VMware Fusion (run on a host OS)
® Regained popularity
* increased importance of isolation and security
* failures in security and reliability of standard OSes
* sharing of computers among unrelated users

* increased hardware speeds, making VM overheads
acceptable

B649: Parallel Architectures and Programming, Spring 2009 51



Popularity of Virtual Machines: 11

* Protection
* see previous slide
* Software management
* could run legacy operating systems

* Hardware management

* let separate software stacks share hardware

* also useful at the end-user level

* some VMMs support migration of a running VM to a
different computer, for load-balancing and fault tolerance

B649: Parallel Architectures and Programming, Spring 2009

32



Complications

¢ “Difficult” instructions

* paravirtualization.: make some minimal changes to the guest OS
to avoid difficult instructions

* Virtual memory

* separate “vertual, physical, and machine. memory

* maintain shadow page table to avoid double translation;
alternatively, need hardware support for multiple indirections

e T'[.B virtualization

* VMM maintains per-OS TBB copies

* TLBs with process-ID tag can avoid TLB flush on VM context
switch through the use of virtual PIDs

* [/O sharing

B649: Parallel Architectures and Programming, Spring 2009 53
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NEX'T:
PARALLEL COMPUTING
OR
SCIENTIFIC COMPUTING
OR
COMPILER TECHNIQUES



