
MULTIPROCESSORS 
AND THREAD-LEVEL 

PARALLELISM
B649

Parallel Architectures and Programming



B649: Parallel Architectures and Programming, Spring 2009

Motivation behind Multiprocessors

• Limitations of ILP (as already discussed)
• Growing interest in servers and server-performance
• Growth in data-intensive applications
• Increasing desktop performance relatively 

unimportant
• Effectiveness of multiprocessors for server 

applications
• Leveraging design investment by replication

2



B649: Parallel Architectures and Programming, Spring 2009

Flynn’s Classification of  Parallel Architectures

• SISD: Single Instruction Single Data stream
★ uniprocessors

• SIMD: Single Instruction Multiple Data streams
★ suitable for data parallelism
★ Intel’s multimedia extensions, vector processors
★ growing popularity in graphics applications

• MISD: Multiple instruction Single Data stream
★ no commercial multiprocessor to date

• MIMD: Multiple Instruction Multiple Data streams
★ suitable for thread-level parallelism

3



B649: Parallel Architectures and Programming, Spring 2009

MIMD

• Architecture of choice for general-purpose 
multiprocessors

• Offers flexibility
• Can leverage the design investment in uniprocessors
• Can use off-the-shelf processors

★ “COTS” (Commercial, Off-The-Shelf) processors

• Examples
★ Clusters

✴ commodity and custom clusters
★ Multicores

4



B649: Parallel Architectures and Programming, Spring 2009

Shared-Memory Multiprocessors

5



B649: Parallel Architectures and Programming, Spring 2009

Distributed-Memory Multiprocessors

6



B649: Parallel Architectures and Programming, Spring 2009

Models for Memory and Communication

7

• Memory architecture
★ shared memory

✴ Uniform Memory Access (UMA)
✴ Symmetric (Shared-Memory) Multiprocessors (SMPs)

★ distributed memory
✴ Non-Uniform Memory Access (NUMA)

• Communication architecture (programming)
★ shared memory
★ message-passing



B649: Parallel Architectures and Programming, Spring 2009

Other Ways to Categorize Parallel Programming

8

data vs task parallel

client-sever vs p-to-p /

master-slave vs symm.

sh
ared m

em vs
 m

sg
 

passi
ng

tig
ht

ly
 v

s 
lo

os
el

y 
co

up
le

d
threads vs 

producer-consum
er

course vs fine grained

SP
M

D 
vs

 M
PM

D
recursive vs iterative

synch. vs asynch.

Parallel 
Programs



CACHES



B649: Parallel Architectures and Programming, Spring 2009

Terminology

10

cache
virtual memory
memory stall cycles
direct mapped
valid bit
block address
write through
instruction cache
average memory access time
cache hit
page
miss penalty

fully associative
dirty bit
block offset
write back
data cache
hit time
cache miss
page fault
miss rate
n-way set associative
least-recently used
tag field

write allocate
unified cache
misses per instruction
block
locality
address trace
set
random replacement
index field
no-write allocate
write buffer
write stall



B649: Parallel Architectures and Programming, Spring 2009

Memory Hierarchy

11



B649: Parallel Architectures and Programming, Spring 2009

Four Memory-Hierarchy Questions

12

• Where can a block be placed in the upper level?
★ block placement

• How is a block found if it is in the upper level?
★ block indentification

• Which block should be replaced on a miss?
★ block replacement

• What happens on a write?
★ write strategy



B649: Parallel Architectures and Programming, Spring 2009

Where Can a Block Be Placed in a Cache?

• Only one place for each block
★ direct mapped

• Anywhere in the cache
★ fully associative

• Restricted set of places
★ set associative

13

(Block address) MOD (Number of blocks in cache)

(Block address) MOD (Number of sets in cache)



B649: Parallel Architectures and Programming, Spring 2009

Example

14



B649: Parallel Architectures and Programming, Spring 2009

How is a Block Found if  it is in Cache?

15

• “Tags” in each cache block gives the block address
★ all possible tags searched in parallel (associative memory)
★valid bit tells whether a tag match valid

• No “index” field in fully associative caches

Fields in a memory address



B649: Parallel Architectures and Programming, Spring 2009

Which Block Should be Replaced on a Miss?

• Random
★ easy to implement

• Least-recently used (LRU)
★ idea: rely on the past to predict the future
★ replace the block unused for the longest time

• First in, First out (FIFO)
★ approximates LRU (oldest, rather than least recently used)
★ simpler to implement

16



B649: Parallel Architectures and Programming, Spring 2009

Comparison of  Replacement Policies

17

Data cache misses per 1000 instructions on five 
SPECint2000 and five SPECfp2000 benchmarks



B649: Parallel Architectures and Programming, Spring 2009

What Happens on a Write?

18

• Reads dominate
★ 7% of the overall memory traffic are writes
★ 28% of the data cache traffic are writes

• Write takes longer
★ reading cache line and validity check can be parallel
★ reads can read the whole line, write must modify only the 

specified bytes



B649: Parallel Architectures and Programming, Spring 2009

Handling Writes

• Write strategy
★ write through

✴ write to cache block and to the block in the lower-level memory
★ write back

✴ write only to cache block, update the lower-level memory when 
block replaced

• Block allocation strategy
★ write allocate

✴ allocate a block on cache miss
★ no-write allocate

✴ do not allocate, no affect on cache

19



B649: Parallel Architectures and Programming, Spring 2009

Example: Opteron Data Cache

20



B649: Parallel Architectures and Programming, Spring 2009

Terminology

21

cache
virtual memory
memory stall cycles
direct mapped
valid bit
block address
write through
instruction cache
average memory access time
cache hit
page
miss penalty

fully associative
dirty bit
block offset
write back
data cache
hit time
cache miss
page fault
miss rate
n-way set associative
least-recently used
tag field

write allocate
unified cache
misses per instruction
block
locality
address trace
set
random replacement
index field
no-write allocate
write buffer
write stall



SYMMETRIC SHARED-MEMORY:
CACHE COHERENCE



B649: Parallel Architectures and Programming, Spring 2009

Quotes

23



B649: Parallel Architectures and Programming, Spring 2009

Quotes

23

We are dedicating all of our future product development to 
multicore designs.  We believe this is a key inflection point for 
the industry.

Intel President Paul Otellini,
describing Intelʼs future direction at the Intel Developers Forum 

in 2005



B649: Parallel Architectures and Programming, Spring 2009

Quotes

23

We are dedicating all of our future product development to 
multicore designs.  We believe this is a key inflection point for 
the industry.

Intel President Paul Otellini,
describing Intelʼs future direction at the Intel Developers Forum 

in 2005

The turning away from conventional organization came in the 
middle 1960s, when the law of diminishing returns began to 
take effect in the effort to increase the operational speed of a 
computer ... Electronic circuits are ultimately limited in their 
speed of operation by the speed of light ... and many of the 
circuits were already operating in the nanosecond range.

W. Jack Bouknight et al.
The Illiac IV System (1972)



B649: Parallel Architectures and Programming, Spring 2009

Multiprocessor Cache Coherence

24

X is not in any cache initially.  The caches are write-through.



B649: Parallel Architectures and Programming, Spring 2009

Multiprocessor Cache Coherence

24

X is not in any cache initially.  The caches are write-through.

Proposed definition: Memory system is coherent if any read of a 
data item returns the most recently written value of that data item.



B649: Parallel Architectures and Programming, Spring 2009

Multiprocessor Cache Coherence

24

X is not in any cache initially.  The caches are write-through.

Proposed definition: Memory system is coherent if any read of a 
data item returns the most recently written value of that data item.

Too simplistic!



B649: Parallel Architectures and Programming, Spring 2009

Coherency: Take 2

25

• A memory system is coherent if:



B649: Parallel Architectures and Programming, Spring 2009

Coherency: Take 2

25

1. Writes and Reads 
by one processor

P Mx

P Mx

• A memory system is coherent if:



B649: Parallel Architectures and Programming, Spring 2009

Coherency: Take 2

25

1. Writes and Reads 
by one processor

P Mx

P Mx

P1 Mx

P2 Mx

2. Writes and Reads 
by two processors

• A memory system is coherent if:



B649: Parallel Architectures and Programming, Spring 2009

Coherency: Take 2

25

1. Writes and Reads 
by one processor

P Mx

P Mx

P1 Mx

P2 Mx

2. Writes and Reads 
by two processors

P1 Mx

P2 M
y

P3 Mx

P3 M
y

3. Writes by two processors 
(serialization)

• A memory system is coherent if:



B649: Parallel Architectures and Programming, Spring 2009

Coherence vs Consistency

• Coherence defines the behavior of reads and writes 
to the same memory location

• Consistency defines the behavior of reads and writes 
with respect to accesses to other memory locations
★ we will return to consistency later

• Working assumptions:
★ a write does not complete until all processors have seen the 

effect of that write
★ processor does not change the order of an write with 

respect to any other memory access

26



B649: Parallel Architectures and Programming, Spring 2009

What Needs to Happen for Coherence?

• Migration
★ data can move to local cache, when needed

• Replication
★ data may be replicated in local cache, when needed

• Need a protocol to maintain the coherence property
★ specialized hardware

27



B649: Parallel Architectures and Programming, Spring 2009

Coherence Protocols
• Directory based

★ central location (directory) maintains the sharing state of a 
block of physical memory

★ slightly higher implementation cost
★ scalable
★ most used for distributed-memory multiprocessors

• Snooping
★ each cache maintains sharing state of the blocks it contains
★ shared broadcast medium (e.g., bus)
★ each cache snoops on the medium to determine whether 

they a copy of the block that is requested
★ most used for shared-memory multiprocessors

28



B649: Parallel Architectures and Programming, Spring 2009

Snooping Protocols: Handling Writes

• Write invalidate
★ write requires exclusive access
★ any copy held by the reading processor is invalidated
★ if two processors attempt to write, one wins the race

• Write update (or write broadcast)
★ update all the cached copies of a data item when written
★ consumes substantially more bandwidth than invalidating-

based protocol
★ not used in recent multiprocessors

29



B649: Parallel Architectures and Programming, Spring 2009

Example of  Invalidation Protocol

30

Write-back caches



B649: Parallel Architectures and Programming, Spring 2009

Write Invalidate Protocol: Observations

31

• Serialization through access to the broadcast medium
• Need to locate data item upon miss

★ simple on write-through caches
✴ write-buffers may complicate this
✴ write-through increases the memory bandwidth requirement

★ more complex on write-back caches
✴ caches snoop for read addresses, supply matching dirty block
✴ no need to write back dirty block if cached elsewhere
✴ preferred approach on most modern multiprocessors, due to lower memory 

bandwidth requirements

• Cache tags and valid bits can do double duty
• Additional bit to indicate whether block shared
• Desirable to reduce contention on cache between processor 

and snooping



B649: Parallel Architectures and Programming, Spring 2009

Invalidation-Based Coherence Protocol for
Write-Back Caches with Allocate on Write

32



B649: Parallel Architectures and Programming, Spring 2009

Invalidation-Based Coherence Protocol for
Write-Back Caches with Allocate on Write

• Idea: Shared read, exclusive write

32



B649: Parallel Architectures and Programming, Spring 2009

Invalidation-Based Coherence Protocol for
Write-Back Caches with Allocate on Write

• Idea: Shared read, exclusive write
• Read

★ Hit: get from local cache
★ Miss: get from memory or another processor’s cache; write-

back existing block if needed

32



B649: Parallel Architectures and Programming, Spring 2009

Invalidation-Based Coherence Protocol for
Write-Back Caches with Allocate on Write

• Idea: Shared read, exclusive write
• Read

★ Hit: get from local cache
★ Miss: get from memory or another processor’s cache; write-

back existing block if needed

• Write
★ Hit: write in cache, mark the block exclusive (invalidate 

copies at other processors)
★ Miss: get from memory or another processor’s cache; write-

back existing block if needed

32



B649: Parallel Architectures and Programming, Spring 2009

Cache Coherence Mechanism (MESI or MOESI)

33



B649: Parallel Architectures and Programming, Spring 2009

Write Invalidate Cache Coherence Protocol
for Write-Back Caches

34



B649: Parallel Architectures and Programming, Spring 2009

Write Invalidate Cache Coherence Protocol
for Write-Back Caches

35



B649: Parallel Architectures and Programming, Spring 2009

Interconnection Network, Instead of  Bus

36



SYMMETRIC SHARED-MEMORY:
PERFORMANCE



B649: Parallel Architectures and Programming, Spring 2009

Performance Issues

• Cache misses
★ capacity
★ compulsory
★ conflict

• Cache coherence
★ true-sharing misses
★ false-sharing

38



B649: Parallel Architectures and Programming, Spring 2009

Performance Issues

• Cache misses
★ capacity
★ compulsory
★ conflict

• Cache coherence
★ true-sharing misses
★ false-sharing

38



B649: Parallel Architectures and Programming, Spring 2009

Performance: Alpha-Server
• Machine

★ Alpha-Server 4100, 4 processors: processor Alpha 21164 
(four issue)

• Three-level cache
★ L1: 8KB direct-mapped, separate instruction and data, 32-

byte block size, write through, on-chip
★ L2: 96KB 3-way set-associative, unified, 32-byte block size, 

write back, on-chip
★ L3: 2MB direct-mapped, unified, 64-byte block size, write 

back, off-chip

• Latencies
★ L2: 7 cycles, L3: 21 cycles, memory: 80 cycles

39



B649: Parallel Architectures and Programming, Spring 2009

Performance: Commercial Workload

• Online Transaction-Processing (OLTP)
★ modeled after TPC-B
★ client-server

• Decision Support System (DSS)
★ modeled after TPC-D
★ long-running queries against large complex data structures 
(obsoleted)

• Web index search
★ AltaVista, using 200 GB memory-mapped database

• I/O time ignored (substantial for these applications)

40



B649: Parallel Architectures and Programming, Spring 2009

Execution Time Breakdown

41



B649: Parallel Architectures and Programming, Spring 2009

OLTP with Different Cache Sizes

42



B649: Parallel Architectures and Programming, Spring 2009

OLTP: Contributing Causes of  L3 Cycles

43



B649: Parallel Architectures and Programming, Spring 2009

OLTP Mem. Access Cycles with Processor Count

44



B649: Parallel Architectures and Programming, Spring 2009

OLPT Misses with L3 Cache Block Size

45



B649: Parallel Architectures and Programming, Spring 2009

Multiprogramming and OS Workload

46

• Models user and OS activities
• Andrew benchmark, emulates software development

★ compiling
★ installing object files in a library
★ removing object files

• Memory hierarchy
★ L1 instruction cache: 32KB, 2-way set-associative, 64-byte 

block; L1 data cache: 32KB 2-way set-associative, 32-byte 
block

★ L2: 1MB unified, 2-way set assoc., 128-byte block
★ Memory: 100 clock cycles access



B649: Parallel Architectures and Programming, Spring 2009

Distribution of  Execution Time

47



B649: Parallel Architectures and Programming, Spring 2009

L1 Size and L1 Block Size

48



B649: Parallel Architectures and Programming, Spring 2009

Kernel Data Cache Miss Rates

49



B649: Parallel Architectures and Programming, Spring 2009

Memory Traffic Per Data Reference

50



DISTRIBUTED SHARED-MEMORY:
DIRECTORY-BASED COHERENCE



B649: Parallel Architectures and Programming, Spring 2009

Distributed Memory

52



B649: Parallel Architectures and Programming, Spring 2009

Distributed Memory+Directories

53



B649: Parallel Architectures and Programming, Spring 2009

Directory-Based Protocol States

54

• Shared
★ one or more processors have the block cached
★ memory has up to date value

• Uncached
★ no processor has a copy of the cache block

• Modified
★ exactly one processor has a copy of the cache block
★ memory copy is out of date
★ the processor with the copy is the block’s owner



B649: Parallel Architectures and Programming, Spring 2009

Possible Messages

55



B649: Parallel Architectures and Programming, Spring 2009

States for Individual Caches

56



B649: Parallel Architectures and Programming, Spring 2009

States for Directories

57



SYNCHRONIZATION



B649: Parallel Architectures and Programming, Spring 2009

Basic Idea

• Hardware support for atomically reading and writing 
a memory location
★ enables software to implement locks
★ a variety of synchronizations possible with locks

• Multiple (equivalent) approaches possible
• Synchronization libraries on top of hardware 

primitives

59



B649: Parallel Architectures and Programming, Spring 2009

Some Examples

• Atomic exchange
★ exchange a register and memory value atomically
★ return the register value if failed, memory value if 

succeeded

• Test-and-set
★ test a memory location and set its value if the test passed

• Fetch-and-increment

60



B649: Parallel Architectures and Programming, Spring 2009

Paired Instructions

• Problems with single atomic operations
★ complicates coherence

• Alternative: pair of special load and store 
instructions
★ load linked or load locked
★ store conditional
★ can implement atomic exchange with the pair

61



B649: Parallel Architectures and Programming, Spring 2009

Other Primitives can also be built
• Atomic exchange

• Fetch-and-increment

• Implemented with a link register to track the address 
of LL instruction

62



B649: Parallel Architectures and Programming, Spring 2009

Implementing Spin Locks: Uncached

63



B649: Parallel Architectures and Programming, Spring 2009

Implementing Spin Locks: Cached

64



B649: Parallel Architectures and Programming, Spring 2009

Cache Coherence Steps

65



B649: Parallel Architectures and Programming, Spring 2009

Implementing Spin Locks: Linked Load/Store

66



MEMORY CONSISTENCY



B649: Parallel Architectures and Programming, Spring 2009

Memory Consistency

• Related to accesses to multiple shared memory 
locations
★ coherence deals with accesses to a shared location

68

P1:      A = 0;
....

  A = 1;
L1:       if (B == 0) ...

P2:      B = 0;
....

  B = 1;
L2:       if (A == 0) ...



B649: Parallel Architectures and Programming, Spring 2009

Memory Consistency

• Related to accesses to multiple shared memory 
locations
★ coherence deals with accesses to a shared location

68

P1:      A = 0;
....

  A = 1;
L1:       if (B == 0) ...

P2:      B = 0;
....

  B = 1;
L2:       if (A == 0) ...

Sequential Consistency



B649: Parallel Architectures and Programming, Spring 2009

Programmer’s View

• Sequential consistency “easy” to reason about
• Most real programs use synchronization

★ synchronization primitives usually implemented in libraries
★ not using synchronization ⇒ data races

• Allowing sequential consistency for synchronization 
variables ensure correctness
★ can implement relaxed consistency for the rest

69



B649: Parallel Architectures and Programming, Spring 2009

Relaxed Consistency Models

• Idea: allow reads and writes to finish out of order, but 
use synchronization to enforce ordering

• Ways to relax consistency (weak consistency)
★ Relaxing W→R: processor consistency
★ Relaxing W→W: partial store order
★ Relaxing R→W and R→R: weak ordering, PowerPC 

consistency, release consistency

• Two approaches to optimize performance
★ use weak consistency, rely on synchronization for correctness
★ use sequential or processor consistency with speculative 

execution

70



FALLACIES AND PITFALLS



B649: Parallel Architectures and Programming, Spring 2009

Fallacies and Pitfalls

• Pitfall: Measuring performance of multiprocessors 
by linear speedup versus execution time
★ sequential vs parallel algorithms
★ superlinear speedups and cache effects
★ strong vs weak scaling

• Pitfall: Not developing software to take advantage 
of, or optimize for, a multiprocessor architecture

72


