
Lifting for Parallelism
  Remove assumptions made by most

sequential algorithms:
  A single, shared address space.
  A single “thread” of execution.

  Our goal: Build the Parallel BGL by lifting
the sequential BGL.

Breadth-First Search

Parallellizing BFS?

Parallellizing BFS?

Distributed Graph
  One fundamental operation:

  Enumerate out-edges of a
given vertex

  Distributed adjacency list:
  Distribute vertices
  Out-edges stored with the

vertices

Parallellizing BFS?

Parallellizing BFS?

Distributed Queue
  Three fundamental operations:

  top/pop retrieves from queue
  push operation adds to queue
  empty operation signals

termination
  Distributed queue:

  Separate, local queues
  top/pop from local queue
  push sends to a remote queue
  empty waits for remote sends

Parallellizing BFS?

Parallellizing BFS?

Distributed Property Maps
  Two fundamental operations:

  put sets the value for a vertex/
edge

  get retrieves the value
  Distributed property map:

  Store data on same processor
as vertex or edge

  put/get send messages
  Ghost cells cache remote

values
  Resolver combines puts

  Generic interface from the Boost Graph Library
template<class IncidenceGraph, class Queue, class BFSVisitor,!
 class ColorMap>!
void breadth_first_search(const IncidenceGraph& g, !
 vertex_descriptor s, Queue& Q,!
 BFSVisitor vis, ColorMap color);!

  Effect parallelism by using appropriate types:
  Distributed graph
  Distributed queue
  Distributed property map

  Our sequential implementation is also parallel!
  Parallel BGL can just “wrap up” sequential BFS

“Implementing” Parallel BFS

BGL Architecture

Parallel BGL Architecture

