Parallel Graphs circa
2009:

Concepts, Hardware Platforms, and
Communication Infrastructure (oh my!)

Niclk Edmonds

Qutline

® |ntroduction to BGL

® Machines as they were, motivation for the
existing architecture

® New architectures, new resources, new
insights, new directions

® Future worlk, a little something for
everybody

What we’ve got now, and where we’re going...

Introduction

The Boost Graph Library
(BGL)

® Graph library developed with the generic
programming paradigm

The Boost Graph Library

User Guide and Reference Manual

Jeremy G. Siek
Lie-Quan Lee
Andrew Lumsdaine

Foreword by Alexander Stepanov

Generic Programming

o Study the concrete implementations of an
algorithm
e Lift away unnecessary requirements to

produce a more abstract algorithm
e (Catalog these requirements.
e Bundle requirements into concepts.

e Repeat the lifting process until we have
obtained a generic algorithm that:

e |nstantiates to efficient concrete implementations.

e (Captures the essence of the “higher truth” of that
algorithm.

BGL Genericity

e Algorithms lift away requirements on:
e Specific graph structure
e How properties are associated with vertices

and edges
e Algorithm-specific data structures (queues,
etC) Graph

Concepts

Graph Data
Structures

BGL

Graph
Property Map Algorlth ms

Concepts
Vertex/Edge
Properties

Important: Proper abstractions allow for efficient concrete implementations

Sequential Programming

D Programming

BGL + SPMD = PBGL

The Parallel BGL As It Is

Current Work

® Target architectures
® Anatomy of a distributed graph

® Performance

June 2003 Top 500

[he Earth Simulator Center Earth-Simulator
Japan NEC

Los Alamos Mational Laboratory Asl] Q- Alphaserver 5045, 1.25 GHz
United States Hewlett-Fackard

Lawrence Livermore National Laboratory MUR Linux Cluster Xeon 2.4 GHz - Quadncs
United States Linux Networy/Quadrics

Lawrence Livermore National Laboratory AsL] White, 5P Powerad 375 MRz
United States IBM

MERSLU/LBMNL seaborg - 5F Powerd 375 MHz 16 way
United States IBM

Lawrence Livermore National Laboratory xaenes Cluster Xeon 2.4 GHz - Quadrics
United States IBM/Quadrics

Mational Aerospace Laboratory of Japan FRIMEFPOWER HFLZ2500 (1.3 GHEz)

Japan Fujitsu

Facific Morthwest Mabonal Laboratory Cluster Plattorm 6000 nc2g0l Hamum 1 GHz Cluster - Quadrics
United States Hewlett-Fackard

Fittsburgh Supercomputing Center Alphaserver 3045, 1 GHz
United States Hewlatt-Fackard

Commissariat a 'Energie Atomigue (CEA) AlphaServer SC45, 1 GHz
France Hewlett-Fackard

IBM POWER systems have some additional L3 cache, otherwise fairly normal memory system

June 2004 Top 500

I'he Earth Simulator Center Earth-Simulator
Japan MEC

Lawrence Livermore Mational Laboratory Thunder - Intel HaniumZ Tigerd 1.45Hz - Quadrics
United States California Digital Corporation

Los Alamos National Laboratory ASGl Q- AlphaServer SC45, 1.25 GHz
United States Hewlett-Packard

BM - Hochester Bluelsene/L DD Prototype (0.50GHz FowerF L 440 wiCustom)
United States IBMY LLNL

Mo A Tungsten - Powerbdge 1750, P4 Xeon 3.06 GHz, Myrinet
United States Dell

ECMWE eserver psenes 630 (1.8 GHz Fowerd+)
United Kingdom 1B

nstitute of Physical and Chemical Res. (RIKEM) RIKEM Super Combined Cluster
Japan Fujitsu

BM Thomas J. Watson Research Center Blueltsene/L DDZ Prototype (0.7 sHz PowerF L 440)
United States IBMS LLNL

Facific Morthwest Mational Laboratory Mpp2 - Cluster Platform 8000 rxZ2600 taniumZ 1.5 GHz, Quadrics
United States Hewlett-Packard

Shanghail Supercomputer Center Dawning 40004, Opteron 2.2 GHz, Myrinet
China Dawning

BlueGene/L - Torus interconnect network

June 2005 Top 500

DOE/MNMNSALLML Bluelsene/l - eserver Blue Gene Solution
United States 1B

IBM Thomas J. Watson Feseanch Center Bi=W - ezerver Blue Gene Solution
United States 1B

MASAlAMes Research Center™MAS Columbia - S0l Altix 1.5 GHz, Voltaire Infinibanad
United States sGI

e Earth Simulator Center Earth-=imulator
Japan MEC

Barcelona supercomputer Center MareMostrum - JS20 Cluster, FPC 970, 2.2 GHz, Mynnet
Spain |1BM

ASTROM/University Groningen =tella - eserver Blue Gene Solution
Metherlands 1B2M

Lawrence Livermore Mational Laboratory Thunder - Intel taniumz Tigerd 1.40Hz - Quadnics
United States California Digital Corporation

LComputational Biology Research Center, Als1 Blue Protein - eserver Blue Gene Solution
Japan 12M

Ecole Folvtechnigue Federale de Lausanne exerver Blue sene Solution
Switzerand IBM

=andia Mational Laboratones
United States

Columbia -> Cluster of Altixes, beginning of interesting architecture trend

HPC circa ~2005

® (Clusters of workstations
® | ots of FLOPs

® Commodity memory subsystem

® Single core, possibly a few sockets

Concepts circa 2005

® ProcessGroup - coordinating group of
communicating processes

® GlobalDescriptor, DistributedGraph + BGL
concepts

® Data handling similar to DSM with weak
consistency

/ ™
Process Group

Distributed Memaory

Linear Process Messaging
Process Group Group Process Group

CAS Process MP| Process
Group Group

Immediate is exactly what it sounds like, lots of small messages, handed to MPI layer as soon as

they are created

Linear Process Group - requires that process numbers are in the range [0, num_processes)
DistributedGraph - graph with vertices and edges that model GlobalDescriptor
GlobalDescriptor - a descriptor that identifies a data object (local descriptor) and it’s owner

(processor id)

Data Distribution

® Row-wise distribution of adjacency matrix
® Owner-computes model
® Cache non-local data

® Various consistency models for cached data

Owner computes -> either move data to work, or work to data, we do the latter (moving data is
expensive)

Every data element has a single owner, at the end of a superstep that process has the authoritative
value for any properties associated with that data.

Structural information only available to processes that own vertices or (one) endpoint of an edge.
Consistency models for cached data never proved very useful.

Performance Characteristics

® Dense Numerical Codes
® Good locality
e FLOPS
® Memory bandwidth
® Graphs
® little to no locality

® Memory latency

Interface Compatible w/ BGL

template <typename IncidenceGraph, typename Queue,
typename BFSVisitor,/typename ColorMap?>

void breadth_first_search(const IncidenceGraph& g, vertex descriptor s,
Queue& Q, BFSVisitor vis, ColorMap color);

Process Group

Communication Concepts
R = Abstractions 1 Parallel BGL
Parallelism effected by (MPI, Threads) Graph

Algorithms

supplying appropriate types

o o Concepts
® Distributed Graph Data
Structures "

® Distributed quecue BeL
rap

Parallel Property Map A|gOrltth

® Distributec v
" _ Properties

Parallel Graph

Algorithms

Strongly connected components PageRank

Crauser et al. shortest paths Fruchterman-Reingold
Eager Dijkstra shortest paths Betweenness Centrality
Delta-Stepping shortest paths Depth-first search

Biconnected components s-t connectivity
Boman et al. graph coloring Minimum Spanning tree
Connected Components Breadth-first search

*Other experimental algorithm implementations exist, this is the list from the latest release.

Multiple variants of MST, Betweenness Centrality, and CC
These are the algorithms in the release, more experimental algorithms.

Performance

—
(2]
T
o
Q
O
()]
n
~
Q
£
—
X
(6]
e
(@)
e

Crauser et al. —+—
Eager Dijkstra

L PR |
10
of Processors

Erdos-Renyi graph with 2.5M vertices and 12.5M (directed) edges per processor. Maximum graph
size is 240M vertices and |1.2B edges on 96 processors.

Performance

—
(2]
T
o
Q
O
()]
n
~
Q
£
—
X
(6]
e
(@)
e

2128 vertices ——+—
1.5%(2/28) vertices

2729 vertices ---%---
1.5%(2729) vertices

2730 vertices

of Processors

Delta-Stepping on an Erdos-Renyi graph with average degree 4. The largest problem solved is
| B vertices and 4B edges using 96 processors.

Performance

—
(2]
T
o
Q
O
()]
n
~
Q
£
—
X
(6]
e
(@)
e

=
o

Crauser et al. Random —+—
Crauser et al. RMAT
Eager Random ---%---
Eager RMAT
Delta-Stepping Random
Delta-Stepping RMAT ---©- -

PR |
10
of Processors

Performance of three SSSP algorithms on fixed-size graphs with ~24M vertices and ~58M edges.

Performance

—
(2]
T
o
Q
O
()]
n
~
Q
£
—
X
(6]
e
(@)
e

Crauser et al. Random —+— |
Crauser et al. RMAT
Eager Random ---%---
Eager RMAT
Delta-Stepping Random
Delta-Stepping RMAT ---©- -
Ideal

PR |
10
of Processors

Weak scalability of three SSSP algorithms using graphs with an average of |M vertices and 10M
edges per processor.

Perfomance Issues

® Good scaling (generally)
® Able to solve very large problems

® *Somewhat* faster than sequential
algorithms for small numbers of processors

Performance Issues

® Distributing data gets problems in core so
we can work on them

® Move the work to the data
® | ow ratio of computation to communication

® High ratio of network latency to CPU
resources

Low CPU utilization

Performance: Latency

Network/Memory latency dominates performance

® Hide latency
® Perform additional work, greedy algorithms

® Cache aggressively

® Exploit known communication patterns

Hiding latency is easier said than done, but large numbers of slow(er) processors performing
asynchronous work is a good start

Conceptual Issues

® | ocking process group requires buffering which isn’t
strictly necessary

® |mmediate ProcessGroup only suitable for some
algorithms, sends lots of small messages

® BSP ProcessGroup doesn’t effectively overlap
communication and computation

® DSM doesn’t work

Process groups define communication style
User must be aware of PG implementation to get good performance
PG implementation should be more dependent on hardware

Conceptual Issues

® | ocking process group requires buffering which isn’t
strictly necessary

® |mmediate ProcessGroup only suitable for some
algorithms, sends lots of small messages

® BSP ProcessGroup doesn’t effectively overlap
communication and computation

® DSM doesn’t work

Pl
P2 %gg
P3
This is BSP
Communication phase length determined by work imbalance, forces alignment rather than letting

algorithm recover on it’s own

Conceptual Issues

® | ocking process group requires buffering which isn’t
strictly necessary

® |mmediate ProcessGroup only suitable for some
algorithms, sends lots of small messages

® BSP ProcessGroup doesn’t effectively overlap
communication and computation

® DSM doesn’t work

—m—

Statistically random data distribution will load balance... eventually (This does NOT apply on small
timescales)

Conceptual Issues

® | ocking process group requires buffering which isn’t
strictly necessary

® |mmediate ProcessGroup only suitable for some
algorithms, sends lots of small messages

® BSP ProcessGroup doesn’t effectively overlap
communication and computation

® DSM doesn’t work

o e A

Would rather defer synchronization as long as possible, sending data along the way does this
Overlaps communication and computation, helps to hide latency

Release History
® (0.5.0 - October 2005

® Adjacency List, BSP & Immediate
ProcessGroups, handful of algorithms

® 0.6.0 - ~January 2007

e Updated process group, more efficient
data structures and communication, more
algorithms

e 0.7.0 - March 2009

® More algorithms, more tests, more docs, in
Boost!

New process group provides better overlap of communication and computation (something like
Nagle’s algorithm), also provides out-of-band (immediate) interface and allows for blocking
communication

The Parallel BGL As It
Will Be!?

New Directions

® New architectures
® New types of parallelism
® New concepts

® New infrastructure

November 2008 Top 500

Roadrunner - BladeCenter Q5220521 Cluster, PowerXLell 81 3.2 Ghz /
Dpteron DG 1.8 GHz | Voltaire Infimiband
[BM

DOEMMSALLAML
Lnited States

Uak Hidge Mational Laboratory Jaguar - Cray XT5 QL 2.3 GHz
Lnited States Cray Inc.

MASAlAmes Hesearch CenterrMAS Hleiades - 506 Altx ICE B200EX, Xeon QL 3.0/2.66 GHz
United States SGI

DOEMNNSALLNL Bluelsenel/l - eServer Blue (sene Solution
United States |1BM

Argonne Mational Laboratory Blue Gene/F Solution
United States 1BM

lexas Advanced Computing
LenterrUniv. of Texas
Linited States

Ranger - sunbBlade x6420, Upteron QL 2.3 Ghz, Infiniband
Sun Microsystems

MERSU/LBML Franklin - Cray XT4 GQuadlore 2.3 GHz
Linited States Cray Inc.

Uak Ridge National Laboratory Jaguar - Cray AT4 Quadlore 2.1 GHz
Linited States Cray Inc.

MMNSA/Sandia Mational Laboratones Red Storm - Sandial Cray Red Storm, T34, 2.4/2.2 GHz dual'quad core
United States Cray Inc.

Dawning 50004 - Dawning S000A, G Opteron 1.9 Ghz, Infiniband, Windows
HFC 2008
Dawning

=hanghal Supercomputer Center
China

XT4/5 - Multicore, custom interconnect network
Roadrunner includes Mercury blades
Red Storm - 8 cores/node

Performance Measures

! P——
HPC CHALLENGE

system Information G—HPL G-Random
System - Processor - Speed - Count - Threads - Processes Access

Cray Inc. XT5 AMD Opteron ; 745 2 74529 9n1.999uuuu‘ 16.6115000

IBM Blue Gene'F PowarPL 450 0.85G 32T 1131072|191.3250000 B, .-'"Ei':*.-f:l'_'n[';"j‘

SiConex SCH832 Ices 0.7k 1 5760 4.7258700 3.9976000

XTS5, BG/L, Power5, SiCortex
Various benchmarks
Different machines, different performance balances

New Architectures

® Commodity multi-core, multi-socket nodes
® Many-core nodes (Niagra, SiCortex, etc.)
® Heterogeneous systems (Roadrunner)

® Massively multithreaded architectures (Tera
MTA, Cray XMT)

e SIMD, GPUs

These architectures actually exist now!

SiCortex is only 6 cores/node, but there are a lot of cores physically close together (and the

network should reflect this logically)

MPI SM interface?

® Further subdivides data structures
® | oad balancing issues

® N nodes, P processes/node = NP message
buffers

® Contention for network resources

Reasonable evidence that adding more MPI processes doesn’t work for unstructured problems.

Another Level of Parallelism?

® MPIl is hard
® [hreads are harder

® MPI| + Threads is too hard

Conclusion: Limit abstractions to a single level of
parallelism

e.g. Processes own data, Threads perform tasks

Processes and threads, *at the same time* are too hard
Tasks are the unit of work, Processes determine data ownership
Process and thread are arbitrary names

Exposing Parallelism

Decomposing work into tasks exposes parallelism

® Data ownership determines where tasks are

executed (Coarse-grained

® How tasks are executed de

barallelism)

bends on the

architecture (Fine-grained parallelism)

Is the ‘owner-computes’ model still appropriate?
Does data need an ‘owner’

Tasks are Active Messages

® Route to data and run

® Eliminate most of the data caching from
current DSM-style model by chaining AMs

PropertyMap pl, p2; PropertyMap pl, p2, owner;

GloballD x; GloballD x;

Closure f; Closure f;

request(pl, x); send_AM(get(owner, x),
synchronize(pl); A0 (put(p2, x, f(get(pl, x))))

put(p2, x, f(get(pl, x))); quiesce()

Lightweight first-class functions over the wire (static binding)
The request()ing process no longer has to cache get(p1, x)
Caching may still be useful, but it will eliminate caching when it’s unnecessary, and managing

caches is hard.
Quiesce() potentially gives us a longer phase-time, and more opportunities for load balancing

Where AMs Run is Irrelevant

Address Space Processing Unit
BT AE iE WE EEEEEEE
“TmT m EEEEEEE
| | | EEEEEEE
BN ~> AN EE Em) EEEEEEE
EE EE EE EEEEEEER
| | | EEEEEEE
e EE EEN EE EEEEEEE
EE EE EE EEEEEEE
AMs are routed to address space determined by data

distribution.

AM handling depends on architecture, can be routed
to specialized resources based on work

Massive Multi-Threading

® Cray XMT provides massive numbers of
hardware threads (8K processors, 128
threads/proc)

® Single-cycle thread switching
® | oop-parallelism (similar OpenMP)

® Extended memory semantics

® Operates like a QRQW PRAM

Single cycle thread switching hides memory latency
Extended semantics —> Futures, Full/Empty bits, sync variables
Different balance than multicore, similar abstractions

Contention is the major performance issue (operates like a QRQW PRAM)

Massive Multi-Threading

® | oop iterations map |:l to Active Messages
® Static parallelism avoids contention

® Dynamic parallelism provides load balancing

® (Good) Parallelizing compilers are... difficult

® Code generation is one option to divorce
genericity from the tool chain...

New Concepts

1BD

® Data distribution/ownership
® Work decomposition
® Hybrid collectives!?

® | ocality

Toss out locality info within an address space, can we recover it?

New Infrastructure

® Higher level communication abstractions
® | ower level interface

® |nterface directly with network hardware

® | everage MPI_THREAD FUNNELED for
now

® Collectives

Future Directions

Concepts

® New conceptual framework for parallel
communication

® |dentify high-level communication
abstractions

® ‘Fixed’ or ‘known’ communication schedules
® Concepts for 2D data distribution

® Who ‘owns’ vertices and what does it mean
® Relax ‘owner computes’ requirements!?

® Semantic Graphs

Mention fixed-point option

Theoretical Models

® Map theoretical performance of algorithms
amongst different types of machines

® | ogGP, PRAM useful but difficult to unify

® |ncorporate data locality

® Account for network topology

In papers we normally end up providing both LogGP and PRAM analysis

Algorithms

® Subgraph isomorphism

® Kernighan-Lin partitioning

® Multi-level partitioning

® Dynamic/Incremental algorithms

® ..and algorithms you find interesting

Hypergraphs

® Hypergraph: A graph where edges can be
incident to >2 vertices

® Data structure
® Traversal algorithms

® Partitioning

Infrastructure

® Map high level abstractions to low level (network
hardware) implementations

e MPI THREAD FUNNELED vs.
MPI THREAD MULTIPLE

® 7D data distribution - distribute blocks instead of
rows of adjacency matrix

® Push data for ‘known’ communication patterns

e CPU time/memory usage accounting

® AM buffering, coalescing, and demultiplexing

Pushing data is a one-RTT operation, pulling takes 2 RTTs.

Visualization

e VTK/Titan

® Streaming Visualizations (Stencil?)
® Cluster back end to Viz front end

® Dimensionality reduction !?!

Questions!

http://www.osl.iu.edu/research/pbgl
http://www.boost.org

ngedmond@cs.indiana.edu

http://www.osl.iu.edu/research/pbgl
http://www.osl.iu.edu/research/pbgl
mailto:ngedmond@cs.indiana.edu
mailto:ngedmond@cs.indiana.edu

Performance

200

150

100

50

© Crauser et al.
O Eager Dijkstra

| p 4 8 16 32 64 96

Erdos-Renyi graph with 2.5M vertices and 12.5M (directed) edges per processor. Maximum graph
size is 240M vertices and |.2B edges on 96 processors.

