
Parallel Graphs circa
2009:

Concepts, Hardware Platforms, and
Communication Infrastructure (oh my!)

Nick Edmonds

Outline

• Introduction to BGL

• Machines as they were, motivation for the
existing architecture

• New architectures, new resources, new
insights, new directions

• Future work, a little something for
everybody

What we’ve got now, and where we’re going...

Introduction

The Boost Graph Library
(BGL)

• Graph library developed with the generic
programming paradigm

Generic Programming

• Study the concrete implementations of an
algorithm

• Lift away unnecessary requirements to
produce a more abstract algorithm

• Catalog these requirements.
• Bundle requirements into concepts.

• Repeat the lifting process until we have
obtained a generic algorithm that:

• Instantiates to efficient concrete implementations.
• Captures the essence of the “higher truth” of that

algorithm.

BGL Genericity
• Algorithms lift away requirements on:

• Specific graph structure
• How properties are associated with vertices

and edges
• Algorithm-specific data structures (queues,

etc.)

BGL

Graph

Algorithms

Graph Data

Structures

Graph
Concepts

Vertex/Edge

Properties

Property Map
Concepts

Important: Proper abstractions allow for efficient concrete implementations

Sequential Programming

SPMD Programming

BGL + SPMD = PBGL

The Parallel BGL As It Is

Current Work

• Target architectures

• Anatomy of a distributed graph

• Performance

June 2003 Top 500

IBM POWER systems have some additional L3 cache, otherwise fairly normal memory system

June 2004 Top 500

BlueGene/L - Torus interconnect network

June 2005 Top 500

Columbia -> Cluster of Altixes, beginning of interesting architecture trend

HPC circa ~2005

• Clusters of workstations

• Lots of FLOPs

• Commodity memory subsystem

• Single core, possibly a few sockets

Concepts circa 2005
• ProcessGroup - coordinating group of

communicating processes

• GlobalDescriptor, DistributedGraph + BGL
concepts

• Data handling similar to DSM with weak
consistency

Immediate is exactly what it sounds like, lots of small messages, handed to MPI layer as soon as
they are created
Linear Process Group - requires that process numbers are in the range [0, num_processes)
DistributedGraph - graph with vertices and edges that model GlobalDescriptor
GlobalDescriptor - a descriptor that identifies a data object (local descriptor) and it’s owner
(processor id)

Data Distribution
• Row-wise distribution of adjacency matrix

• Owner-computes model

• Cache non-local data

• Various consistency models for cached data

a b

c

h

g
i

d
f

e

a

b

c

d

e

f

h

g

i

b d

c h

h

c e

f

c

g i

g

f

Owner computes -> either move data to work, or work to data, we do the latter (moving data is
expensive)
Every data element has a single owner, at the end of a superstep that process has the authoritative
value for any properties associated with that data.
Structural information only available to processes that own vertices or (one) endpoint of an edge.
Consistency models for cached data never proved very useful.

Performance Characteristics

• Dense Numerical Codes

• Good locality

• FLOPS

• Memory bandwidth

• Graphs

• Little to no locality

• Memory latency

Interface Compatible w/ BGL

Parallel BGL

Graph

Algorithms

Parallel

Parallel

Communication

Abstractions

(MPI, Threads)

Process Group
Concepts

BGL

Graph

Algorithms

Graph Data

Structures

Graph
Concepts

Vertex/Edge

Properties

Property Map
Concepts

template <typename IncidenceGraph, typename Queue,
 typename BFSVisitor, typename ColorMap>
void breadth_first_search(const IncidenceGraph& g, vertex_descriptor s,
 Queue& Q, BFSVisitor vis, ColorMap color);

Parallelism effected by
supplying appropriate types

• Distributed graph

• Distributed queue

• Distributed property map

Algorithms

Strongly connected components PageRank
Crauser et al. shortest paths Fruchterman-Reingold
Eager Dijkstra shortest paths Betweenness Centrality
Delta-Stepping shortest paths Depth-first search

Biconnected components s-t connectivity

Boman et al. graph coloring Minimum Spanning tree

Connected Components Breadth-first search

*Other experimental algorithm implementations exist, this is the list from the latest release.

Multiple variants of MST, Betweenness Centrality, and CC
These are the algorithms in the release, more experimental algorithms.

Performance

Erdos-Renyi graph with 2.5M vertices and 12.5M (directed) edges per processor. Maximum graph
size is 240M vertices and 1.2B edges on 96 processors.

 10

 100

 1000

 1 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

Crauser et al.
Eager Dijkstra

Performance

 10

 100

 1000

 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

2^28 vertices
1.5*(2^28) vertices

2^29 vertices
1.5*(2^29) vertices

2^30 vertices

Delta-Stepping on an Erdos-Renyi graph with average degree 4. The largest problem solved is
1B vertices and 4B edges using 96 processors.

Performance

 1

 10

 100

 1000

 1 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

Crauser et al. Random
Crauser et al. RMAT

Eager Random
Eager RMAT

Delta-Stepping Random
Delta-Stepping RMAT

Performance of three SSSP algorithms on fixed-size graphs with ~24M vertices and ~58M edges.

Performance

 1

 10

 100

 1000

 1 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

Crauser et al. Random
Crauser et al. RMAT

Eager Random
Eager RMAT

Delta-Stepping Random
Delta-Stepping RMAT

Ideal

Weak scalability of three SSSP algorithms using graphs with an average of 1M vertices and 10M
edges per processor.

Perfomance Issues

• Good scaling (generally)

• Able to solve very large problems

• *Somewhat* faster than sequential
algorithms for small numbers of processors

Performance Issues

• Distributing data gets problems in core so
we can work on them

• Move the work to the data

• Low ratio of computation to communication

• High ratio of network latency to CPU
resources

Low CPU utilization

Performance: Latency

• Hide latency

• Perform additional work, greedy algorithms

• Cache aggressively

• Exploit known communication patterns

Network/Memory latency dominates performance

Hiding latency is easier said than done, but large numbers of slow(er) processors performing
asynchronous work is a good start

Conceptual Issues
• Locking process group requires buffering which isn’t

strictly necessary

• Immediate ProcessGroup only suitable for some
algorithms, sends lots of small messages

• BSP ProcessGroup doesn’t effectively overlap
communication and computation

• DSM doesn’t work

Process groups define communication style
User must be aware of PG implementation to get good performance
PG implementation should be more dependent on hardware

Conceptual Issues
• Locking process group requires buffering which isn’t

strictly necessary

• Immediate ProcessGroup only suitable for some
algorithms, sends lots of small messages

• BSP ProcessGroup doesn’t effectively overlap
communication and computation

• DSM doesn’t work

P1
P2
P3

This is BSP
Communication phase length determined by work imbalance, forces alignment rather than letting
algorithm recover on it’s own

Conceptual Issues
• Locking process group requires buffering which isn’t

strictly necessary

• Immediate ProcessGroup only suitable for some
algorithms, sends lots of small messages

• BSP ProcessGroup doesn’t effectively overlap
communication and computation

• DSM doesn’t work

P1
P2
P3

Statistically random data distribution will load balance... eventually (This does NOT apply on small
timescales)

Conceptual Issues
• Locking process group requires buffering which isn’t

strictly necessary

• Immediate ProcessGroup only suitable for some
algorithms, sends lots of small messages

• BSP ProcessGroup doesn’t effectively overlap
communication and computation

• DSM doesn’t work

P1
P2
P3

P1
P2
P3

Would rather defer synchronization as long as possible, sending data along the way does this
Overlaps communication and computation, helps to hide latency

Release History
• 0.5.0 - October 2005

• Adjacency List, BSP & Immediate
ProcessGroups, handful of algorithms

• 0.6.0 - ~January 2007

• Updated process group, more efficient
data structures and communication, more
algorithms

• 0.7.0 - March 2009

• More algorithms, more tests, more docs, in
Boost!

New process group provides better overlap of communication and computation (something like
Nagle’s algorithm), also provides out-of-band (immediate) interface and allows for blocking
communication

The Parallel BGL As It
Will Be?

New Directions

• New architectures

• New types of parallelism

• New concepts

• New infrastructure

November 2008 Top 500

XT4/5 - Multicore, custom interconnect network
Roadrunner includes Mercury blades
Red Storm - 8 cores/node

Performance Measures

XT5, BG/L, Power5, SiCortex
Various benchmarks
Different machines, different performance balances

New Architectures

• Commodity multi-core, multi-socket nodes

• Many-core nodes (Niagra, SiCortex, etc.)

• Heterogeneous systems (Roadrunner)

• Massively multithreaded architectures (Tera
MTA, Cray XMT)

• SIMD, GPUs

These architectures actually exist now!

SiCortex is only 6 cores/node, but there are a lot of cores physically close together (and the
network should reflect this logically)

MPI SM interface?

• Further subdivides data structures

• Load balancing issues

• N nodes, P processes/node = NP message
buffers

• Contention for network resources

Reasonable evidence that adding more MPI processes doesn’t work for unstructured problems.

Another Level of Parallelism?

• MPI is hard

• Threads are harder

• MPI + Threads is too hard

Conclusion: Limit abstractions to a single level of
 parallelism

e.g. Processes own data, Threads perform tasks

Processes and threads, *at the same time* are too hard
Tasks are the unit of work, Processes determine data ownership
Process and thread are arbitrary names

Exposing Parallelism

• Data ownership determines where tasks are
executed (Coarse-grained parallelism)

• How tasks are executed depends on the
architecture (Fine-grained parallelism)

Decomposing work into tasks exposes parallelism

Is the ‘owner-computes’ model still appropriate?
Does data need an ‘owner’

Tasks are Active Messages

• Route to data and run

• Eliminate most of the data caching from
current DSM-style model by chaining AMs

PropertyMap p1, p2;
GlobalID x;
Closure f;

request(p1, x);
synchronize(p1);
put(p2, x, f(get(p1, x)));

PropertyMap p1, p2, owner;
GlobalID x;
Closure f;

send_AM(get(owner, x),
 () (put(p2, x, f(get(p1, x))))
quiesce()

λ

Lightweight first-class functions over the wire (static binding)
The request()ing process no longer has to cache get(p1, x)
Caching may still be useful, but it will eliminate caching when it’s unnecessary, and managing
caches is hard.
Quiesce() potentially gives us a longer phase-time, and more opportunities for load balancing

Where AMs Run is Irrelevant
Address Space Processing Unit

AMs are routed to address space determined by data
distribution.

AM handling depends on architecture, can be routed
to specialized resources based on work

Massive Multi-Threading

• Cray XMT provides massive numbers of
hardware threads (8K processors, 128
threads/proc)

• Single-cycle thread switching

• Loop-parallelism (similar OpenMP)

• Extended memory semantics

• Operates like a QRQW PRAM

Single cycle thread switching hides memory latency
Extended semantics -> Futures, Full/Empty bits, sync variables
Different balance than multicore, similar abstractions
Contention is the major performance issue (operates like a QRQW PRAM)

Massive Multi-Threading

• Loop iterations map 1:1 to Active Messages

• Static parallelism avoids contention

• Dynamic parallelism provides load balancing

• (Good) Parallelizing compilers are... difficult

• Code generation is one option to divorce
genericity from the tool chain...

New Concepts

TBD

• Data distribution/ownership

• Work decomposition

• Hybrid collectives?

• Locality

Toss out locality info within an address space, can we recover it?

New Infrastructure

• Higher level communication abstractions

• Lower level interface

• Interface directly with network hardware

• Leverage MPI_THREAD_FUNNELED for
now

• Collectives

Future Directions

Concepts
• New conceptual framework for parallel

communication

• Identify high-level communication
abstractions

• ‘Fixed’ or ‘known’ communication schedules

• Concepts for 2D data distribution

• Who ‘owns’ vertices and what does it mean

• Relax ‘owner computes’ requirements?

• Semantic Graphs
Mention fixed-point option

Theoretical Models

• Map theoretical performance of algorithms
amongst different types of machines

• LogGP, PRAM useful but difficult to unify

• Incorporate data locality

• Account for network topology

In papers we normally end up providing both LogGP and PRAM analysis

Algorithms

• Subgraph isomorphism

• Kernighan-Lin partitioning

• Multi-level partitioning

• Dynamic/Incremental algorithms

• ...and algorithms you find interesting

Hypergraphs

• Hypergraph: A graph where edges can be
incident to >2 vertices

• Data structure

• Traversal algorithms

• Partitioning

Infrastructure
• Map high level abstractions to low level (network

hardware) implementations

• MPI_THREAD_FUNNELED vs.
MPI_THREAD_MULTIPLE

• 2D data distribution - distribute blocks instead of
rows of adjacency matrix

• Push data for ‘known’ communication patterns

• CPU time/memory usage accounting

• AM buffering, coalescing, and demultiplexing

Pushing data is a one-RTT operation, pulling takes 2 RTTs.

Visualization

• VTK/Titan

• Streaming Visualizations (Stencil?)

• Cluster back end to Viz front end

• Dimensionality reduction !?!

Questions?

We always need good students for PBGL

http://www.osl.iu.edu/research/pbgl
http://www.boost.org

ngedmond@cs.indiana.edu

http://www.osl.iu.edu/research/pbgl
http://www.osl.iu.edu/research/pbgl
mailto:ngedmond@cs.indiana.edu
mailto:ngedmond@cs.indiana.edu

Performance

Erdos-Renyi graph with 2.5M vertices and 12.5M (directed) edges per processor. Maximum graph
size is 240M vertices and 1.2B edges on 96 processors.

0

50

100

150

200

1 2 4 8 16 32 64 96

Crauser et al.
Eager Dijkstra

