PIPELINING

B649
Parallel Architectures and Programming



Announcements

* Blogs
* Presentation topics and teams

* already taken:
*x ISA (App. )
* Hardware and software for VLIW and EPIC (App. G)
* Large Scale Multiprocessors and Scientific Applications (App. H)
* Heads-up
* Blog question

* Assignment I

B649: Parallel Architectures and Programming, Spring 2009



Why Pipelining?

® Instruction-Level Parallelism (ILP)
® Reducing Cycles Per Instruction (CPI)

* if instructions may take multiple cycles

u = Time per instruction on unpipelined machine
n = Number of pipelined stages
time per pipelined instruction =u / n

* Decreasing the clock cycle time

* if each instruction takes one (long) cycle

* Invisible to the programmer

B649: Parallel Architectures and Programming, Spring 2009



Basics of a RISC Instruction Set

* All operations on data registers
® Only load and store access memory
® All instructions are of one (fixed) size

®* MIPS64 (64-bit) instructions for example

B649: Parallel Architectures and Programming, Spring 2009



Instruction Set Overview

* ALU instructions
* R1 <— R2 op R3
* Ri, R2, R3: registers
* Rt <— R2op 1
* I: signed extended 16-bit immediate
* [.oad and store instructions
* LD R1:O, R2
* Ri, Ra: registers, O: 16-bit signed extended 16-bit immediate
® Branch and jump instructions
* comparison between two registers, or register and zero

* no unconditional jump

B649: Parallel Architectures and Programming, Spring 2009






Digression: Sign Extension

e Positive Number: extend with zeroes

X (16 bits) = |0 X

X (32 bits) = [0/000000000000000 X

* Negative number: extend with ones

-X (16 bits) =1 X

-X (32 bits) =|1]111111111111111 X

B649: Parallel Architectures and Programming, Spring 2009



Digression: Sign Extension

e Positive Number: extend with zeroes

X (16 bits) = |0 X

X (32 bits) = [0/000000000000000 X

* Negative number: extend with ones

-X (16 bits) =1 X

-X (32 bits) =|1]111111111111111 X

X (16 bits) = (216 —x—1)
x (extended) = (216 —x—1) + 216(216 _1)
( 1)
)

B649: Parallel Architectures and Programming, Spring 2009



Simple Implementation

® [F: Instruction fetch cycle
* ID: Instruction decode / register fetch cycle
* EX: Execute / effective address cycle

* MEM: Memory access cycle
* WB: Write-back cycle

B649: Parallel Architectures and Programming, Spring 2009



Simple Implementation

® [F: Instruction fetch cycle

* fetch current instruction from PC, add 4 to PC
* ID: Instruction decode / register fetch cycle
e EX: Execute / effective address cycle

* MEM: Memory access cycle
* WB: Write-back cycle

B649: Parallel Architectures and Programming, Spring 2009



Simple Implementation

® [F: Instruction fetch cycle

* ID: Instruction decode / register fetch cycle

*x decode instruction, read registers (fixed field decoding)

* do equality test on registers for possible branch

* sign extend offset field, in case it is needed

* add oftset to possible |

pbranch target address

e EX: Execute / effective address cycle

* MEM: Memory access cycle
* W B: Write-back cycle

B649: Parallel Architectures and Programming, Spring 2009

10



Simple Implementation

® [F: Instruction fetch cycle
* ID: Instruction decode / register fetch cycle

* EX: Execute / effective address cycle

* memory reference: base address+offset to compute effective
address

* register-register ALU instruction: perform the operation

* register-immediate ALU instruction: perform the operation

* MEM: Memory access cycle
* WB: Write-back cycle

B649: Parallel Architectures and Programming, Spring 2009 11



Simple Implementation

® [F: Instruction fetch cycle

* ID: Instruction decode / register fetch cycle
* EX: Execute / effective address cycle

* MEM: Memory access cycle

* read or write based on effective address computed in last
cycle

* W B: Write-back cycle

B649: Parallel Architectures and Programming, Spring 2009

12



Simple Implementation

® [F: Instruction fetch cycle
* ID: Instruction decode / register fetch cycle
* EX: Execute / effective address cycle

* MEM: Memory access cycle
* WB: Write-back cycle

* register-register ALU instruction or Load: write result
(computed or loaded from memory) into register file

B649: Parallel Architectures and Programming, Spring 2009

13



Simple Implementation

® [F: Instruction fetch cycle
* ID: Instruction decode / register fetch cycle
* EX: Execute / effective address cycle

* MEM: Memory access cycle
* WB: Write-back cycle

branch = 2 cycles
store =4 cycles
all else =5 cycles
CPIl = 4.54, assuming 12% branches, 10% stores

B649: Parallel Architectures and Programming, Spring 2009

14



© 2007 Elsavier, Inc. All rights




Some Considerations

® Resource evaluation

* avoid resource conflicts across stages

® Separate instruction and data memories

* typically, with separate I and D caches

® Register access
* write in first half, read in second half

® PC not shown

* also need an adder to compute branch target

* branch does not change PC until ID (second) stage

* ignore for now!

B649: Parallel Architectures and Programming, Spring 2009 16



© 2007 Elsavier, Inc. All rights




Observations

* Each instruction takes the same number of cycles
* Instruction throughput increases
* hence programs run faster

* Imbalance among pipeline stages reduces
performance

® Overheads

* pipeline delays (register setup time)

* clock skew (clock cycle > clock skew + latch overhead)

® Hazards ahead!

B649: Parallel Architectures and Programming, Spring 2009

18



Pipeline Hazards

® Structural hazards

* not all instruction combinations possible in parallel

® Data hazards

* data dependence

® Control hazards

* control dependence

B649: Parallel Architectures and Programming, Spring 2009

19



Pipeline Hazards

® Structural hazards

* not all instruction combinations possible in parallel

® Data hazards

* data dependence

® Control hazards

* control dependence

Hazards make it necessary to stall the pipeline

B649: Parallel Architectures and Programming, Spring 2009

19



Quantitying the Stall Cost

Average instruction time unpipelined

Speedup =
Average instruction time pipelined

CPI unpipelined x Clock cycle unpipelined

CPI pipelined x Clock cycle pipelined
CPI pipelined = Ideal CPI + Pipeline stall cycles per instruction
= 1 + Pipeline stall cycles per instruction
Ignoring pipeline overheads, assuming balanced stages,
Clock cycle unpipelined = Clock cycle pipelined

CPI Unpipelined (= Pipeline depth)

Speedup =
1 + Pipeline stall cycles per instruction

B649: Parallel Architectures and Programming, Spring 2009

20






£ 2007 Elsavier, Inc. All rights




DATA HAZARDS




Data Hazard Types
* RAW!: Read After Write

* true dependence

e WAR: Write After Read

* anti-dependence

e WAR: Write After Write

* output dependence

®* RAR: Read After Read

* input dependence

B649: Parallel Architectures and Programming, Spring 2009

24



Data Hazard Types
* RAW!: Read After Write

* true dependence

e WAR: Write After Read

* anti-dependence

e WAR: Write After Write

* output dependence

*RARReadAtterRead-
——tptt-dependerrce——

B649: Parallel Architectures and Programming, Spring 2009

24



DADD R1,R2, R3

DSUB R4, R1, RS

AND R6, R1, R7

w
c
S
o
&
g
S
o
&
3
@
B
®
£
s
g

OR R8, R1, R9

XOR R10, R1, R11

© 2007 Elsavier, Inc. All rights resarved.




Ameliorating Data Hazards

¢ [dea:

* ALU results from EX/MEM and MEM/WB registers fed
back to ALU inputs

* if previous ALU operation wrote the register needed by the
current operation, select the forwarded result

B649: Parallel Architectures and Programming, Spring 2009

26



DADD R1, R2, R3

DSUB R4, R1, RS

?
&
S
=
g
c
2
3
:
§
o
e

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

© 2007 Elsavier, Inc. All rights resarved.




¢ [dea:

* ALU re
back to

Ameliorating Data Hazards

sults from EX/MEM and MEM/WB registers fed
ALU inputs

* if previous ALU operation wrote the register needed by the

current

operation, select the forwarded result

® Observations:

*x forwarc

ing needed across multiple cycles (how many?)

*x forwarc

ing may be implemented across functional units

* e.g., output of one unit may be forwarded to input of another,
rather than the input of just the same unit

B649: Parallel Architectures and Programming, Spring 2009 28



DADD R1, R2, R3 “

LD R4, O(R1)

w
c
o
S
2
-
w
=
S
—
@
o
c
o
%
®
E
g
o
<4

SD R4,12(R1)

© 2007 Elsavier, Inc. All rights




Time (in clock cycles)

CC1

LD R1,0(R2)

DSUB R4, R1, RS

AND R6, R1, R7

—
(2]
c
2
°
=
-
(7]
=
S
—
N
@
o
o
=
2
—
g
>
@
€
o
[=))
4
o

OR R8, R1,R9

© 2007 Elsavier, Inc. All rights







Handling Branch Hazard

Branch instruction IF ID EX MEM WB

Branch successor IF IF ID EX MEM WB
Branch successor + | [F ID EX MEM
Branch successor + 2 IF ID EX

B649: Parallel Architectures and Programming, Spring 2009



Reducing Branch Penalty

*“Freeze” or “flush” the pipeline

* Treat every branch as not-taken (“predicted-untaken”)
* need to handle taken branches by roll-back

® Treat every branch as taken (“predicted-taken”)
* Delayed branch

B649: Parallel Architectures and Programming, Spring 2009 33



Untaken branch instruction
Instruction 7 + 1
Instruction 7 + 2
Instruction i + 3
Instruction i + 4

Taken branch instruction
Instruction 7 + 1

Branch target

Branch target + 1
Branch target + 2

idle
MEM
EX

WB
MEM WB
EX MEM

WB




Delayed Branch

branch 1nstruction
sequential successor_1
branch target 1f taken

B649: Parallel Architectures and Programming, Spring 2009

35



Behavior of Delayed Branch

Untaken branch instruction IF ID EX MEM WB

Branch delay instruction (i + 1) IF ID EX MEM WB

Instruction 7 + 2 IF ID EX MEM WB

Instruction 7 + 3 [F ID EX MEM WB
Instruction 7 + 4 IF ID EX MEM WB
Taken branch instruction IF ID EX MEM WB

Branch delay instruction (i + 1) IF ID EX MEM WB

Branch target IF ID EX MEM WB

Branch target + 1 [F ID EX MEM WB

Branch target + 2 IF ID EX MEM WB

B649: Parallel Architectures and Programming, Spring 2009

36



a) rrom peiore

DADD R1, R2, R3

if R2 = 0 then

becomes

if R2 = 0 then

D) From target

DSUB R4, R5, R6

DADD R1, R2, R3

if R1 = 0 then

becomes

DSUB R4, R5, R6

DADD R1, R2, R3

if R1 =0 then

© 2007 Elsavier, Inc. All rights resaerved.

c) From fall-through

DADD R1, R2, R3

if R1 =0 then

OR R7, R8, R9

DSUB R4, R5, R6

becomes

DADD R1, R2, R3

if R1 =0 then

DSUB R4, R5, R6




a) rrom peiore

DADD R1, R2, R3

if R2 = 0 then

becomes

if R2 = 0 then

D) From target

\

DSUB R4, R5, R6

DADD R1, R2, R3

if R1 = 0 then

becomes

DSUB R4, R5, R6

DADD R1, R2, R3

if R1 =0 then

© 2007 Elsavier, Inc. All rights resaerved.

c) From fall-through

DADD R1, R2, R3

if R1 =0 then

OR R7, R8, R9

DSUB R4, R5, R6

becomes

DADD R1, R2, R3

if R1 =0 then

DSUB R4, R5, R6




B

- ——
=

—

S
s —

IMPLEMENTED?

©
&
Z
—
63
=
—
2
=
O
T




Simple MIPS Implementation

® [nstruction fetch cycle (IF)
* [nstruction decode/register fetch cycle (ID)
* Execution / effective address cycle (EX)

* Memory access / branch completion cycle (MEM)
® Write-back cycle (WB)

B649: Parallel Architectures and Programming, Spring 2009

39



Simple MIPS Implementation: IF
IF = ID = EX = MEM = WB)

* Fetch

IR <« Mem[P(C];
NPC « PC + 4;

B649: Parallel Architectures and Programming, Spring 2009

40



Simple MIPS Implementation: ID
IF = ID = EX = MEM = WB)

® Decode

A < Regs[rs];
B « Regsl[rt];
Imm <« sign-extended immediate field of IR;

B649: Parallel Architectures and Programming, Spring 2009

41



Simple MIPS Implementation: ID
IF = ID = EX = MEM = WB)

® Kxecution

* Memory reference
ALUOutput « A + Imm;

* Register-Register ALU instruction
ALUOutput <« A func B;

* Register-Immediate ALU instruction
ALUOutput <« A op Imm;

* Branch

ALUOutput « NPC + (Imm << 2);
Cond « (A == 0);

B649: Parallel Architectures and Programming, Spring 2009

42



Simple MIPS Implementation: ID
IF = ID = EX = MEM = WB)

®* Memory access / branch completion

* Memory reference

LMD « Mem[ALUOutput] or
Mem[ALUOutput] <« B;

* Branch
1f (cond) PC « ALUOutput;

B649: Parallel Architectures and Programming, Spring 2009

43



Simple MIPS Implementation: ID
IF = ID = EX = MEM = WB)

e Write-back

* Register-Register ALU instruction
Regs[rd] <« ALUOutput;

* Register-Immediate ALU instruction
Regs[rt] « ALUOutput;

* LLoad instruction
Regs[rt] « LMD;

B649: Parallel Architectures and Programming, Spring 2009

44



; Execute/
Instruction decode/ : address

register fetch calculation

Instruction fetch

g
-~

Instruction
memory

C=DGE=D




Instruction
memory

ID/EX

EX/MEM

Zero?
0
u S
X
)
M Data
u memory
&
S

MEM/WB

© 2007 Elsavier, Inc. All rig

3 resarved.




Situations for Data Hazard

Example code
Situation sequence Action

No dependence LD R1,45(R2) No hazard possible because no dependence
DADD R5,R6,R7 exists on R1 in the immediately following
DSUB R8,R6,R7 three instructions.
OR  R9,R6,R/

Dependence LD R1,45(R2) Comparators detect the use of R1 in the DADD
requiring stall DADD R5,R1,R/ and stall the DADD (and DSUB and OR) before
DSUB R8,R6,R7 the DADD begins EX.
OR  R9,R6,R7

Dependence LD R1,45(R2) Comparators detect use of R1 in DSUB and
overcome by DADD R5,R6,R7 forward result of load to ALU in time for DSUB
forwarding DSUB R8,R1,R/ to begin EX.

OR  R9,R6,R7

Dependence with LD  R1,45(R2) No action required because the read of R1 by

accesses in order DADD R5,R6,R7 OR occurs in the second half of the ID phase,
DSUB R8,R6,R7 while the write of the loaded data occurred in
OR  R9,R1,R7 the first half.

B649: Parallel Architectures and Programming, Spring 2009 477



Logic to Detect Data Hazards

Opcode field of ID/EX Opcode field of IF/ID

(ID/EX.IRg_5) (IF/ID.IRg_.5) Matching operand fields

Load Register-register ALU ID/EX.IR[rt] ==1F/
ID.IR[rs]

Load Register-register ALU ID/EX.IR[rt] ==IF/
ID.IR[rt]

Load Load, store, ALU immediate, ID/EX.IR[rt] ==1F/

or branch IDIR[rs

B649: Parallel Architectures and Programming, Spring 2009

48



~ Pipeline register
- containing source
~ instruction

Opcode
of source
instruction

Pipeline
register
containing
destination
instruction

Opcode of destination

instruction

Destination
of the
forwarded
result

Comparison (if
equal then forward)

~ EX/MEM

Register-
register ALU

ID/EX

Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

EX/MEM.IR [rd] ==
ID/EX.IR[rs]

Register-
register ALU

Register-register ALU

Bottom ALU
input

EX/MEM.IR [rd] ==
ID/EX.IR[rt]

Register-
register ALU

Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

MEM/WB.IR[rd] ==
ID/EX.IR[rs]

Register-
register ALU

Register-register ALU

Bottom ALU
input

MEM/WB.IR [rd] ==
ID/EX.IR[rt] -

ALU
immediate

Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

EX/MEM.IR[rt] ==
ID/EX.IR[rs]

ALU
immediate

Register-register ALU

Bottom ALU
input

EX/MEM.IR[rt] ==
ID/EX.IR[rt]

ALU
immediate

Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

MEM/WBL.IR[rt] ==
ID/EX.IR[rs]

ALU
immediate

Register-register ALU

Bottom ALU
input

MEM/WBL.IR [rt] ==
ID/EX.IR[rt]

Load

Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

MEM/WB.IR[rt] ==
ID/EX.IR[rs]

Register-register ALU

Bottom ALU
input

MEM/WBL.IR [rt] ==
ID/EX.IR[rt]




Pipeline register

~ containing source
~ instruction

Opcode
of source
instruction

Pipeline
register
containing
destination
instruction

Opcode of destination

instruction

Destination
of the
forwarded
result

Comparison (if
equal then forward)

Register-
register ALU

ID/EX

Register-
register ALU

Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

ID/EX.IR[rs]

Register-register ALU

Bottom ALU
input

EX/MEM.IR [rd] ==
ID/EX.IR[rt]

Register-
register ALU

Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

MEM/WB.IR[rd] ==
ID/EX.IR[rs]

Register-
register ALU

Register-register ALU

Bottom ALU
input

MEM/WB.IR [rd] ==
ID/EX.IR[rt]

ALU
immediate

Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

EX/MEM.IR[rt] ==
ID/EX.IR[rs]

ALU
immediate

Register-register ALU

Bottom ALU
input

EX/MEM.IR[rt] ==
ID/EX.IR[rt]

ALU
immediate

Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

MEM/WBL.IR[rt] ==
ID/EX.IR[rs]

ALU
immediate

Register-register ALU

Bottom ALU
input

MEM/WB.IR[rt] ==
ID/EX.IR[rt]

Load

Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

MEM/WB.IR[rt] ==
ID/EX.IR[rs]

Register-register ALU

Bottom ALU
input

MEM/WB.IR[rt] ==
ID/EX.IR[rt]




£ 2007 Elsavier, Inc. All rig




ADD

MEM/WE.IR | Registers

Zero?

pr—
16 [ Sign- \ 32
extend [~

ID/EX

EX/MEM MEM/WEB

Data
memory

© 2007 Elsavier, Inc. All rig

3 resarved.




EXCEPTIONS




Types of Exceptions

* [/O device request

* Invoking an OS service

* ‘Iracing

* Breakpoint

* Integer arithmetic overflow
* IP arithmetic anomaly

* Page fault

* Misaligned memory access

¢ Memory protection violation
* Undefined or unimplemented instruction
* Hardware malfunction

e Power failure

B649: Parallel Architectures and Programming, Spring 2009

33



Exception Categories

* Synchronous vs Asynchronous
* User requested vs coerced

® User maskable vs nonmaskable
* Within vs between instructions

® Resume vs terminate

B649: Parallel Architectures and Programming, Spring 2009

34



Exception Categorization

User Within vs.
Synchronousvs.  User request maskable vs. between Resume vs.

Exception type asynchronous vs.coerced  nonmaskable instructions terminate
[/O device request Asynchronous Coerced Nonmaskable Between Resume
Invoke operating system Synchronous User request  Nonmaskable Between Resume
Tracing instruction execution  Synchronous User request  User maskable  Between Resume
Breakpoint Synchronous User request  User maskable  Between Resume
Integer arithmetic overflow Synchronous Coerced User maskable ~ Within Resume
Floating-point arithmetic Synchronous Coerced User maskable  Within Resume
overflow or underflow

Page fault Synchronous Coerced Nonmaskable Within Resume
Misaligned memory accesses  Synchronous Coerced User maskable  Within Resume
Memory protection violations  Synchronous Coerced Nonmaskable Within Resume
Using undefined instructions ~ Synchronous Coerced Nonmaskable Within Terminate
Hardware malfunctions Asynchronous Coerced Nonmaskable Within Terminate
Power failure Asynchronous Coerced Nonmaskable Within Terminate

B649: Parallel Architectures and Programming, Spring 2009

35



Handling Exceptions

* Force a “trap” into the pipeline on the next IF

* Turn of all writes until the trap is taken oft

* place zeros into pipeline latches of instructions following
the one causing exception

* Exception handler saves PC and returns to it

* Delayed branches cause a problem

* need to save delay slots plus one number of PCs

B649: Parallel Architectures and Programming, Spring 2009

56



(Precise) Exceptions in MIPS

Pipeline stage Problem exceptions occurring

[F Page fault on instruction fetch; misaligned memory access; memory
protection violation

[D Undefined or illegal opcode

o

EX Arithmetic exception

MEM Page fault on data fetch; misaligned memory access; memory
protection violation

WB None

B649: Parallel Architectures and Programming, Spring 2009

37



(Precise) Exceptions in MIPS

Pipeline stage Problem exceptions occurring

[F Page fault on instruction fetch; misaligned memory access; memory
protection violation
[D Undefined or illegal opcode
EX Arithmetic exception
MEM Page fault on data fetch; misaligned memory access; memory
protection violation
WB None
LD [F D EX MEM WB
DADD [F ID EX MEM WB

B649: Parallel Architectures and Programming, Spring 2009

37



(Precise) Exceptions in MIPS

Pipeline stage Problem exceptions occurring

[F Page fault on instruction fetch; misaligned memory access; memory
protection violation
[D Undefined or illegal opcode
EX Arithmetic exception
MEM Page fault on data fetch; misaligned memory access; memory
protection violation
WB None
LD [F D EX MEM WB
DADD [F D EX MEM WB

Use exception status vector for each instruction

B649: Parallel Architectures and Programming, Spring 2009

37



Complications due to Complex Instructions

* Instructions that change processor states before
they are committed

* qutoincrement

* string copy (change memory state)

¢ State bits

* implicitly condition codes (flags)

* instructions setting condition codes not allowed in delay slots

® Multicycle operations

* use of microinstructions

B649: Parallel Architectures and Programming, Spring 2009

38



- N
—— = -

g
e

)

it

h:__.m }




Functional Unaits

®* Main integer unit

* handles loads, stores, integer ALU operations, branches
* I'P and integer multiplier
* P adder

* handles FP add, subtract, and conversion

* I'P and integer divider

B649: Parallel Architectures and Programming, Spring 2009

60






nteger unit

IF

D

FP/integer multiply

FP/integer divider

i uii

© 2007 Elsavier, Inc. All ri

MEM










Additional CGomplications

¢ Structural hazard because divide unit is not

pipelined

* Number of register writes in a cycle may more than
one

* WAW hazards possible
* WAR hazards not possible

®* Maintaining precise exceptions

* out-of-order completion

® More number of stalls due to RAW hazards, due to
longer pipeline

B649: Parallel Architectures and Programming, Spring 2009

63



Example: RAW Hazard

Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

L.D F4,0(R2) IF ID EX MEM WB

MUL.D FO,F4,F6 IF ID stall MI M2 M3 M4 MS M6 M7 MEM WB

ADD.D F2,FO0,F8 [F stall ID stall stall stall stall stall stall Al A2 A3 A4 MEM WB
S.D  F2,0(R2) [F stall stall stall stall stall stall ID EX stall stall stall MEM

B649: Parallel Architectures and Programming, Spring 2009 64



Clock cycle number

Instruction 6 7

MUL.D FO,F4,F6 M4 M5
WB

ADD.D F2,F4,F6

L.D F2,0(R2)




EM or W B stage

Integer unit

FP/integer multiply

FP/integer divider

TN

© 2007 Elsavier, Inc. Al ri




Handling the Problems

* Register file conflict detection

* detect at 1D stage, or
* detect at MEM or W B stage

e WAW hazard detection

* delay the issue of second instruction, or

* stamp out the result of the first instruction (convert it into
noop)

B649: Parallel Architectures and Programming, Spring 2009 67



_f} or WAW data hazard

Integer unit

FP/integer divider

T

© 2007 Elsavier, Inc. Al ri




Maintaing Precise Exceptions

DIV.D FO,F2,F4
ADD.D F10,F10,F8
SUB.D F12,F12,F14

e [gnore the problem

* settle for imprecise exceptions

e Buffer the results
* simple buffer could be very big

* history file
* future file

* [ et trap handling routines clean up

* Hybrid scheme: allow issue when earlier instructions can
no longer raise exception

B649: Parallel Architectures and Programming, Spring 2009

09






Idea Behind Dynamic Scheduling

* Split ID stage:

* Issue - decode, check for structural hazards

* Read operands - wait until no data hazards, then read

* Other stages remain as before

B649: Parallel Architectures and Programming, Spring 2009 7



Idea Behind Dynamic Scheduling

* Split ID stage:

* Issue - decode, check for structural hazards

* Read operands - wait until no data hazards, then read

* Other stages remain as before

DIV.D FO, F2, F4
ADD.D F10,FO,F8
SUB.D F8,F8,F14

Must take care of WAR and WAW hazards.

B649: Parallel Architectures and Programming, Spring 2009



Registers Data buses

| -

Control/
status

£ 2007 Elsavier, Inc. All rights reserved.




Registers

Scoreboarding (GDC 6600)

® [ssue

* check for free functional units I

oooooooo

*x check if another instruction has the same destination

register (WAW hazard detection)

* Read operands

* monitor availability of source operands (RAW hazard
detection)

® Fxecution

* functional unit notifies scoreboard of completion

e Write result

* check for WAR hazards, stall write if necessary

B649: Parallel Architectures and Programming, Spring 2009 73



Scoreboarding: Eftectiveness

* Relative easy to implement the logic
* only as much as a functional unit

* but four times as many buses as without scoreboard

® Reduces Clocks Per Instruction (CPI)

* tries to make use of the available Instruction Level
Parallelism (ILP)

* 1.7x speedup for Fortran, 2.5x for hand-coded assembly

B649: Parallel Architectures and Programming, Spring 2009

74



Scoreboarding: Limitations

* Overlapping instructions must be picked from a

single basic block
* Window: number of scoreboard entries
* Number and types of functional units

* Presence of anti- and output-dependences

B649: Parallel Architectures and Programming, Spring 2009

75



Pitfalls

* Unexpected execution sequences may cause
unexpected hazards

BNEZ R1, foo
DIV.D FO,F2,F4

foo: L.D FO,grs

* Extensive pipelining can impact other aspects of a

design

* Evaluating dynamic or static scheduling on the basis
of unoptimized code

B649: Parallel Architectures and Programming, Spring 2009

76



