
B649 Graduate Computer Architecture

 Lec 1 - Introduction

•  http://www.cs.indiana.edu/~achauhan/Teaching/
B649/2009-Spring/

1/12/09 b649, Lec 01-intro 2

1/12/09 b649, Lec 01-intro 3

Outline
•  Computer Science at a Crossroads
•  Computer Architecture v. Instruction Set Arch.
•  What Computer Architecture brings to table

1/12/09 b649, Lec 01-intro 4

•  Old Conventional Wisdom: Power is free, Transistors expensive
•  New Conventional Wisdom: “Power wall” Power expensive, Xtors free

(Can put more on chip than can afford to turn on)
•  Old CW: Sufficiently increasing Instruction Level Parallelism via

compilers, innovation (Out-of-order, speculation, VLIW, …)
•  New CW: “ILP wall” law of diminishing returns on more HW for ILP
•  Old CW: Multiplies are slow, Memory access is fast
•  New CW: “Memory wall” Memory slow, multiplies fast

(200 clock cycles to DRAM memory, 4 clocks for multiply)
•  Old CW: Uniprocessor performance 2X / 1.5 yrs
•  New CW: Power Wall + ILP Wall + Memory Wall = Brick Wall

–  Uniprocessor performance now 2X / 5(?) yrs

 ⇒ Sea change in chip design: multiple “cores”
 (2X processors per chip / ~ 2 years)
»  More simpler processors are more power efficient

Crossroads: Conventional Wisdom in Comp. Arch

1/12/09 b649, Lec 01-intro 5

Crossroads: Uniprocessor Performance

•  VAX : 25%/year 1978 to 1986
•  RISC + x86: 52%/year 1986 to 2002
•  RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 4th
edition, October, 2006

1/12/09 b649, Lec 01-intro 6

Sea Change in Chip Design
•  Intel 4004 (1971): 4-bit processor,

2312 transistors, 0.4 MHz,
10 micron PMOS, 11 mm2 chip

•  Processor is the new transistor?

•  RISC II (1983): 32-bit, 5 stage
pipeline, 40,760 transistors, 3 MHz,
3 micron NMOS, 60 mm2 chip

•  125 mm2 chip, 0.065 micron CMOS
= 2312 RISC II+FPU+Icache+Dcache

–  RISC II shrinks to ~ 0.02 mm2 at 65 nm
–  Caches via DRAM or 1 transistor SRAM (www.t-ram.com) ?
–  Proximity Communication via capacitive coupling at > 1 TB/s ?

(Ivan Sutherland @ Sun / Berkeley)

1/12/09 b649, Lec 01-intro 7

Déjà vu all over again?

•  Multiprocessors imminent in 1970s, ‘80s, ‘90s, …
•  “… today’s processors … are nearing an impasse as

technologies approach the speed of light..”
David Mitchell, The Transputer: The Time Is Now (1989)

•  Transputer was premature
⇒ Custom multiprocessors strove to lead uniprocessors
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years

•  “We are dedicating all of our future product development to
multicore designs. … This is a sea change in computing”

Paul Otellini, President, Intel (2004)
•  Difference is all microprocessor companies switch to

multiprocessors (AMD, Intel, IBM, Sun; all new Apples 2 CPUs)
⇒ Procrastination penalized: 2X sequential perf. / 5 yrs
⇒ Biggest programming challenge: 1 to 2 CPUs

1/12/09 b649, Lec 01-intro 8

Problems with Sea Change

•  Algorithms, Programming Languages, Compilers,
Operating Systems, Architectures, Libraries, … not
ready to supply Thread Level Parallelism or Data
Level Parallelism for 1000 CPUs / chip,

•  Architectures not ready for 1000 CPUs / chip
•  Unlike Instruction Level Parallelism, cannot be solved by just by

computer architects and compiler writers alone, but also cannot
be solved without participation of computer architects

•  4th Edition of textbook Computer Architecture: A
Quantitative Approach explores shift from
Instruction Level Parallelism to Thread Level
Parallelism / Data Level Parallelism

1/12/09 b649, Lec 01-intro 9

Outline
•  Computer Science at a Crossroads
•  Computer Architecture v. Instruction Set Arch.
•  What Computer Architecture brings to table

1/12/09 b649, Lec 01-intro 10

Instruction Set Architecture: Critical Interface

instruction set

software

hardware

•  Properties of a good abstraction
–  Lasts through many generations (portability)
–  Used in many different ways (generality)
–  Provides convenient functionality to higher levels
–  Permits an efficient implementation at lower levels

1/12/09 b649, Lec 01-intro 11

Example: MIPS
0 r0

r1
°
°
°
r31
PC
lo
hi

Programmable storage
 2^32 x bytes
 31 x 32-bit GPRs (R0=0)
 32 x 32-bit FP regs (paired DP)
 HI, LO, PC

Data types ?
Format ?
Addressing Modes?

Arithmetic logical
 Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU,
 AddI, AddIU, SLTI, SLTIU, AndI, OrI, XorI, LUI
 SLL, SRL, SRA, SLLV, SRLV, SRAV

Memory Access
 LB, LBU, LH, LHU, LW, LWL,LWR
 SB, SH, SW, SWL, SWR

Control
 J, JAL, JR, JALR
 BEq, BNE, BLEZ,BGTZ,BLTZ,BGEZ,BLTZAL,BGEZAL

32-bit instructions on word boundary

1/12/09 b649, Lec 01-intro 12

Instruction Set Architecture
“... the attributes of a [computing] system as seen by
the programmer, i.e. the conceptual structure and
functional behavior, as distinct from the organization
of the data flows and controls the logic design, and
the physical implementation.”

 – Amdahl, Blaauw, and Brooks, 1964

-- Organization of Programmable
 Storage

-- Data Types & Data Structures:
 Encodings & Representations

-- Instruction Formats

-- Instruction (or Operation Code) Set

-- Modes of Addressing and Accessing Data Items and Instructions

-- Exceptional Conditions

1/12/09 b649, Lec 01-intro 13

ISA vs. Computer Architecture
•  Old definition of computer architecture

= instruction set design
–  Other aspects of computer design called implementation
–  Insinuates implementation is uninteresting or less challenging

•  Our view is computer architecture >> ISA
•  Architect’s job much more than instruction set

design; technical hurdles today more challenging
than those in instruction set design

•  Since instruction set design not where action is,
some conclude computer architecture (using old
definition) is not where action is

–  We disagree on conclusion
–  Agree that ISA not where action is (ISA in CA:AQA 4/e appendix)

1/12/09 b649, Lec 01-intro 14

Comp. Arch. is an Integrated Approach

•  What really matters is the functioning of the complete
system

–  hardware, runtime system, compiler, operating system, and
application

–  In networking, this is called the “End to End argument”

•  Computer architecture is not just about transistors,
individual instructions, or particular implementations

–  E.g., Original RISC projects replaced complex instructions with a
compiler + simple instructions

1/12/09 b649, Lec 01-intro 15

Computer Architecture is
Design and Analysis

Architecture is an iterative process:
•  Searching the space of possible designs
•  At all levels of computer systems

Creativity

Mediocre Ideas Bad Ideas

Cost /
Performance
Analysis

1/12/09 b649, Lec 01-intro 16

Outline
•  Computer Science at a Crossroads
•  Computer Architecture v. Instruction Set Arch.
•  What Computer Architecture brings to table
•  Technology Trends

1/12/09 b649, Lec 01-intro 17

Outline
•  Computer Science at a Crossroads
•  Computer Architecture v. Instruction Set Arch.
•  What Computer Architecture brings to table

1/12/09 b649, Lec 01-intro 18

What Computer Architecture brings to Table
•  Other fields often borrow ideas from architecture
•  Quantitative Principles of Design

1.  Take Advantage of Parallelism
2.  Principle of Locality
3.  Focus on the Common Case
4.  Amdahl’s Law
5.  The Processor Performance Equation

•  Careful, quantitative comparisons
–  Define, quantity, and summarize relative performance
–  Define and quantity relative cost
–  Define and quantity dependability
–  Define and quantity power

•  Culture of anticipating and exploiting advances in
technology

•  Culture of well-defined interfaces that are carefully
implemented and thoroughly checked

1/12/09 b649, Lec 01-intro 19

1) Taking Advantage of Parallelism
•  Increasing throughput of server computer via

multiple processors or multiple disks
•  Detailed HW design

–  Carry lookahead adders uses parallelism to speed up computing
sums from linear to logarithmic in number of bits per operand

–  Multiple memory banks searched in parallel in set-associative
caches

•  Pipelining: overlap instruction execution to reduce
the total time to complete an instruction sequence.

–  Not every instruction depends on immediate predecessor ⇒
executing instructions completely/partially in parallel possible

–  Classic 5-stage pipeline:
1) Instruction Fetch (Ifetch),
2) Register Read (Reg),
3) Execute (ALU),
4) Data Memory Access (Dmem),
5) Register Write (Reg)

1/12/09 b649, Lec 01-intro 20

Pipelined Instruction Execution

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

1/12/09 b649, Lec 01-intro 21

Limits to pipelining

•  Hazards prevent next instruction from executing
during its designated clock cycle

–  Structural hazards: attempt to use the same hardware to do
two different things at once

–  Data hazards: Instruction depends on result of prior
instruction still in the pipeline

–  Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow
(branches and jumps).

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

1/12/09 b649, Lec 01-intro 22

2) The Principle of Locality

•  The Principle of Locality:
–  Program access a relatively small portion of the address space at

any instant of time.

•  Two Different Types of Locality:
–  Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon (e.g., loops, reuse)
–  Spatial Locality (Locality in Space): If an item is referenced, items

whose addresses are close by tend to be referenced soon
(e.g., straight-line code, array access)

•  Last 30 years, HW relied on locality for memory perf.

P MEM $

1/12/09 b649, Lec 01-intro 23

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
~$1 / GByte

Registers

L1 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
32-64 bytes

OS
4K-8K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

L2 Cache
cache cntl
64-128 bytes Blocks

1/12/09 b649, Lec 01-intro 24

3) Focus on the Common Case
•  Common sense guides computer design

–  Since its engineering, common sense is valuable
•  In making a design trade-off, favor the frequent

case over the infrequent case
–  E.g., Instruction fetch and decode unit used more frequently

than multiplier, so optimize it 1st
–  E.g., If database server has 50 disks / processor, storage

dependability dominates system dependability, so optimize it 1st

•  Frequent case is often simpler and can be done
faster than the infrequent case

–  E.g., overflow is rare when adding 2 numbers, so improve
performance by optimizing more common case of no overflow

–  May slow down overflow, but overall performance improved by
optimizing for the normal case

•  What is frequent case and how much performance
improved by making case faster => Amdahl’s Law

1/12/09 b649, Lec 01-intro 25

4) Amdahl’s Law

Best you could ever hope to do:

1/12/09 b649, Lec 01-intro 26

Amdahl’s Law example
•  New CPU 10X faster
•  I/O bound server, so 60% time waiting for I/O

•  Apparently, its human nature to be attracted by 10X
faster, vs. keeping in perspective its just 1.6X faster

1/12/09 b649, Lec 01-intro 27

5) Processor performance equation

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

 Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

inst count

CPI

Cycle time

1/12/09 b649, Lec 01-intro 28

What’s a Clock Cycle?

•  Old days: 10 levels of gates
•  Today: determined by numerous time-of-flight

issues + gate delays
–  clock propagation, wire lengths, drivers

Latch
or

register

combinational
logic

1/12/09 b649, Lec 01-intro 29

And in conclusion …
•  Computer Architecture >> instruction sets
•  Computer Architecture skill sets are different

–  5 Quantitative principles of design
–  Quantitative approach to design
–  Solid interfaces that really work
–  Technology tracking and anticipation

•  Computer Science at the crossroads from
sequential to parallel computing

–  Salvation requires innovation in many fields, including
computer architecture

•  Read Chapter 1, then Appendix A

