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• Primary application of large-scale multiprocessors is 
for true parallel programming

• Characteristics of parallel programs:

- Amount of parallelism

- Size of parallel tasks

- Frequency and nature of intertask communication

- Frequency and nature of synchronization

Introduction



• Performance metrics:

1. Communication bandwidth

2. Communication latency  = Sender overhead + 
Time of Flight + Transmission time + Receiver 
overhead

3. Communication latency hiding

Interprocessor Communication



• Ease of programming for complex and dynamic 
communication patterns among processors

• Lower overhead for communication and better 
use of communication bandwidth  when 
communicating small items

• Ability to use hardware controlled caching to 
reduce the frequency of remote communication 
by supporting automatic caching of all data.

Advantages of Shared Memory 
Communication Mechanism



• Hardware can be simpler compared to shared 
memory

• Communication is explicit which means its simple 
to understand

• Synchronization is naturally associated with 
sending messages, reducing the possibility for 
errors introduced by incorrect synchronization

Advantages of Message Passing 
Communication Mechanism



• FFT kernel : Used in fields ranging from signal 
processing to fluid flow to climate modeling

• LU kernel : LU factorization of a dense matrix

• Barnes Application : Solves a problem in galaxy 
evolution

• Oceans Application : Simulates the influence of 
eddy and boundary currents on large scale flow in 
the ocean

Characteristics of Scientific 
Applications



FFT Kernel

Sequential time for n data points O(n log n)



LU Kernel

Sequential time for n x n matrix is o(n3)



Barnes Application



Barnes Application

• Each processor is allocated a subtree

• Size of subtree allocated to a processor is based 
on some measure of work it has to do(how many 
other cells it needs to visit) rather than just on 
the number of nodes in the subtree

Sequential time for n data points O(n log n)



• Red-black Gauss-Seidel colors points in grid to 
consistently update points based on previous values 
of adjacent neighbors.

• Each grid in hierarchy has fewer points than the grid 
below and is an approximation to the lower grid.

• The entire ocean basin is partitioned into square 
subgrids that are allocated to the portion of the 
address space corresponding to the local memory of 
individual processors

• Communication occurs when boundary points of a 
subgrid are accessed by adjacent subgrid

• Sequential time for nxn grid: O(n2)

Oceans Application



• If the ratio of computation to communication is 
high, it means the application has lots of 
computation for each datum communicated.

• Knowing how the ratio changes as we increase 
the processor count sheds light on how well the 
application can be sped up.

Computation/Communication for 
Parallel Programs



Computation/Communication for 
Scientific applications



Computation/Communication 
Example: Ocean Application



Computation/Communication 
Example: Ocean Application



• Synchronization performance challenges:

Example: Suppose 10 processors on a bus try to lock 
a variable simultaneously. Assume each bus 
transaction read/write miss is 100 clock cycles long. 
Determine the time required for all 10 processors to 
acquire the lock, assuming they are all spinning when 
the lock is released at time 0.

Synchronization: Scaling Up



Example continued



• A barrier forces all processes to wait until all the 
processes reach the barrier and then releases all of the 
processes

• A typical implementation of barrier can be done with two 
spin locks (lock and unlock notation):

- One to protect a counter that tallies the processes 
arriving at the barrier

- One to hold the processes until the last process arrives 
at the barrier

• Barrier uses the ability to spin on a variable until it 
satisfies a test; we use the spin(condition) notation

Barrier Synchronization



• total = No of processes that must reach the barrier

• count = Tally of how many processes have reached the barrier

• Lock and unlock are basic spin locks

• Release is used to hold the processes until the last one 
reaches the barrier 

Simple Barrier Code



Sense Reversing Barrier Code

If a process races ahead to the next instance of this barrier 
while some other processes are still in the barrier, the fast 
process cannot trap the other processes, since it does not 
reset the value of release as it did before.



• Software Implementations:

-Spin Lock with exponential back-off

-Queuing Locks: Construct a queue of waiting processors; 
whenever processor frees up the lock it causes the next 
processor in the queue to attempt access

Synchronization Mechanisms for 
Large-Scale Multiprocessors



• Hardware Implementation:

-Queuing Lock :

Has a synchronization controller. If the lock is free, it is 
simply returned to the processor. If the lock is 
unavailable the controller creates a record of the node’s 
request and sends the processor back a locked value for 
the variable which the processor then spins on. When 
lock is freed, controller selects a processor to go ahead 
from the list of waiting processors. It can then either 
update the lock variable in the selected processors cache 
or invalidate the copy, causing a miss and then fetch the 
available copy of the lock.

Synchronization Mechanisms for 
Large-Scale Multiprocessors



Performance of Scientific Workload on Shared-
Memory Multiprocessors

• Variables
– Processor Count

– Cache Size

– Block Size

• Metrics
– Coherence Misses

– Uniprocessor Misses
• Capacity Misses

• Conflict Misses

• Compulsory Misses



Varying Processor Count



Varying Cache Size



Varying Block Size



Bus Traffic for data misses



Performance of Scientific Workload on Distributed-
Memory Multiprocessors

• Variables

– Processor Count

– Cache Size

– Block Size

• Metrics

– Local Misses

– Remote Misses



Varying Processor Count



Varying Cache Size



Varying Block Size



Effective Latency



Implementing Cache Coherence

• Snoopy protocol(handling of upgrade miss)

• Contention to send invalidate message !     

• e.g. processors P1 and P2 are attempting to 
upgrade the same cache block at the same time!



Implementing Cache Coherence

• Race winner is decided by the ordering 
imposed by the medium.

• What about the looser?

• Need to impose the condition that the 
looser(or any other processor contending) 
must handle any pending invalidates before it 
can generate its own invalidate i.e. P2 should 
handle any pending invalidates. 



Implementing Cache Coherence in DSM-M’s

• No broadcast medium

• Need to overcome problems related to non-
atomic actions in snoopy protocols(W/O 
broadcast medium).

• Write requests are easily serviced as the 
unique directory which holds the block 
processes requests and informs the requester 
about success

• NAK is sent to the loser's in the race. This 
causes the loser to regenerate the request.



Implementing Directory Controller

• Need to have the same capabilities as that in 
the snoopy case

• Need to handle requests for independent 
blocks while awaiting response to request 
from a local processor

• Process requests in order.

• Directory should be multithreaded i.e. handle 
requests for multiple blocks independently.



Implementing Directory Controller

• Directory controller should be reentrant i.e. 
capable of suspending its execution while 
waiting for reply and accept another 
transaction.

• The major implementation difficulty is to 
handle NAK’s( keep track of outstanding 
transactions and the corresponding NAK’s)

• Usually there is a reply slot for each request. It 
can hold ACK or a NAK.



Blue Gene/L

• Scalable distributed memory message-passing 
supercomputer.

• Focus on Power consumption. Has the highest 
throughput/cubic foot.

• The first Super Computer to give 100 TFLOPS 
sustained on real-world applications like 3-D 
molecular dynamics code, simulating 
solidification of molten metal under high 
pressure and temperature conditions.



Blue Gene/L node

• Customized processing node, each containing 

two PowerPC 4000 chips.

• Each modestly clocked at 700 MHz(to reduce 

power consumption)

• 2-issue superscalar and 7 stage pipeline.

• Consists of up to 64 K nodes, organized in 32 

racks each taking approx. 50 cubic feet.



Blue Gene/L node



Blue Gene/L inter-connection network

• 3-D torus network- nodes connect to 6 
nearest neighbors in a 3-D mesh.

• Provides high bandwidth nearest neighbor 
connectivity.

• Cost-effective, scalable and directly applicable 
to many scientific applications.

• Provides both dynamic and deterministic 
routing with virtual buffering and cut-through 
capability.



Blue Gene/L Performance on LINPACK

0

100

200

300

400

500

600

700

2004 2007(number of cabinets 
doubled to 32)

Theoritical

Sustained



• Computer Architecture, A Quantitative Approach, 4th edition, J.L. Hennessy 
and D.A. Patterson: Appendix H

• Into Wide Blue Yonder with BlueGene/L 
(https://www.llnl.gov/str/April05/Seager.html )

• BlueGene/L torus interconnection 
network(http://www.research.ibm.com/journal/rd/492/adiga.html )

• The Performance Advantages of Integrating Block Data Transfer

in Cache-Coherent Multiprocessors By-Steven Cameron Woo, Jaswinder Pal 
Singh, and John L. Hennessy  
https://eprints.kfupm.edu.sa/70813/1/70813.pdf

• CSUSB, K. E. Schubert

http://ftp.csci.csusb.edu/schubert/tutorials/csci610/w05/DTD_Ocean.pdf

• http://charm.cs.uiuc.edu/~bhatele/academics/uiuc/cs498lvk_report_bhatele.
pdf
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