
Large Scale Multiprocessors and
Scientific Applications

By

Pushkar Ratnalikar

Namrata Lele

• Introduction
• Interprocessor Communication
• Characteristics of Scientific Applications
• Synchronization: Scaling up
• Performance of Scientific Applications on Shared

Memory Multiprocessors
• Performance of Scientific Applications on Distributed

Memory Multiprocessors
• Implementing Cache Coherence
• Custom Cluster Approach: Blue Gene/L

Agenda

• Primary application of large-scale multiprocessors is
for true parallel programming

• Characteristics of parallel programs:

- Amount of parallelism

- Size of parallel tasks

- Frequency and nature of intertask communication

- Frequency and nature of synchronization

Introduction

• Performance metrics:

1. Communication bandwidth

2. Communication latency = Sender overhead +
Time of Flight + Transmission time + Receiver
overhead

3. Communication latency hiding

Interprocessor Communication

• Ease of programming for complex and dynamic
communication patterns among processors

• Lower overhead for communication and better
use of communication bandwidth when
communicating small items

• Ability to use hardware controlled caching to
reduce the frequency of remote communication
by supporting automatic caching of all data.

Advantages of Shared Memory
Communication Mechanism

• Hardware can be simpler compared to shared
memory

• Communication is explicit which means its simple
to understand

• Synchronization is naturally associated with
sending messages, reducing the possibility for
errors introduced by incorrect synchronization

Advantages of Message Passing
Communication Mechanism

• FFT kernel : Used in fields ranging from signal
processing to fluid flow to climate modeling

• LU kernel : LU factorization of a dense matrix

• Barnes Application : Solves a problem in galaxy
evolution

• Oceans Application : Simulates the influence of
eddy and boundary currents on large scale flow in
the ocean

Characteristics of Scientific
Applications

FFT Kernel

Sequential time for n data points O(n log n)

LU Kernel

Sequential time for n x n matrix is o(n3)

Barnes Application

Barnes Application

• Each processor is allocated a subtree

• Size of subtree allocated to a processor is based
on some measure of work it has to do(how many
other cells it needs to visit) rather than just on
the number of nodes in the subtree

Sequential time for n data points O(n log n)

• Red-black Gauss-Seidel colors points in grid to
consistently update points based on previous values
of adjacent neighbors.

• Each grid in hierarchy has fewer points than the grid
below and is an approximation to the lower grid.

• The entire ocean basin is partitioned into square
subgrids that are allocated to the portion of the
address space corresponding to the local memory of
individual processors

• Communication occurs when boundary points of a
subgrid are accessed by adjacent subgrid

• Sequential time for nxn grid: O(n2)

Oceans Application

• If the ratio of computation to communication is
high, it means the application has lots of
computation for each datum communicated.

• Knowing how the ratio changes as we increase
the processor count sheds light on how well the
application can be sped up.

Computation/Communication for
Parallel Programs

Computation/Communication for
Scientific applications

Computation/Communication
Example: Ocean Application

Computation/Communication
Example: Ocean Application

• Synchronization performance challenges:

Example: Suppose 10 processors on a bus try to lock
a variable simultaneously. Assume each bus
transaction read/write miss is 100 clock cycles long.
Determine the time required for all 10 processors to
acquire the lock, assuming they are all spinning when
the lock is released at time 0.

Synchronization: Scaling Up

Example continued

• A barrier forces all processes to wait until all the
processes reach the barrier and then releases all of the
processes

• A typical implementation of barrier can be done with two
spin locks (lock and unlock notation):

- One to protect a counter that tallies the processes
arriving at the barrier

- One to hold the processes until the last process arrives
at the barrier

• Barrier uses the ability to spin on a variable until it
satisfies a test; we use the spin(condition) notation

Barrier Synchronization

• total = No of processes that must reach the barrier

• count = Tally of how many processes have reached the barrier

• Lock and unlock are basic spin locks

• Release is used to hold the processes until the last one
reaches the barrier

Simple Barrier Code

Sense Reversing Barrier Code

If a process races ahead to the next instance of this barrier
while some other processes are still in the barrier, the fast
process cannot trap the other processes, since it does not
reset the value of release as it did before.

• Software Implementations:

-Spin Lock with exponential back-off

-Queuing Locks: Construct a queue of waiting processors;
whenever processor frees up the lock it causes the next
processor in the queue to attempt access

Synchronization Mechanisms for
Large-Scale Multiprocessors

• Hardware Implementation:

-Queuing Lock :

Has a synchronization controller. If the lock is free, it is
simply returned to the processor. If the lock is
unavailable the controller creates a record of the node’s
request and sends the processor back a locked value for
the variable which the processor then spins on. When
lock is freed, controller selects a processor to go ahead
from the list of waiting processors. It can then either
update the lock variable in the selected processors cache
or invalidate the copy, causing a miss and then fetch the
available copy of the lock.

Synchronization Mechanisms for
Large-Scale Multiprocessors

Performance of Scientific Workload on Shared-
Memory Multiprocessors

• Variables
– Processor Count

– Cache Size

– Block Size

• Metrics
– Coherence Misses

– Uniprocessor Misses
• Capacity Misses

• Conflict Misses

• Compulsory Misses

Varying Processor Count

Varying Cache Size

Varying Block Size

Bus Traffic for data misses

Performance of Scientific Workload on Distributed-
Memory Multiprocessors

• Variables

– Processor Count

– Cache Size

– Block Size

• Metrics

– Local Misses

– Remote Misses

Varying Processor Count

Varying Cache Size

Varying Block Size

Effective Latency

Implementing Cache Coherence

• Snoopy protocol(handling of upgrade miss)

• Contention to send invalidate message !

• e.g. processors P1 and P2 are attempting to
upgrade the same cache block at the same time!

Implementing Cache Coherence

• Race winner is decided by the ordering
imposed by the medium.

• What about the looser?

• Need to impose the condition that the
looser(or any other processor contending)
must handle any pending invalidates before it
can generate its own invalidate i.e. P2 should
handle any pending invalidates.

Implementing Cache Coherence in DSM-M’s

• No broadcast medium

• Need to overcome problems related to non-
atomic actions in snoopy protocols(W/O
broadcast medium).

• Write requests are easily serviced as the
unique directory which holds the block
processes requests and informs the requester
about success

• NAK is sent to the loser's in the race. This
causes the loser to regenerate the request.

Implementing Directory Controller

• Need to have the same capabilities as that in
the snoopy case

• Need to handle requests for independent
blocks while awaiting response to request
from a local processor

• Process requests in order.

• Directory should be multithreaded i.e. handle
requests for multiple blocks independently.

Implementing Directory Controller

• Directory controller should be reentrant i.e.
capable of suspending its execution while
waiting for reply and accept another
transaction.

• The major implementation difficulty is to
handle NAK’s(keep track of outstanding
transactions and the corresponding NAK’s)

• Usually there is a reply slot for each request. It
can hold ACK or a NAK.

Blue Gene/L

• Scalable distributed memory message-passing
supercomputer.

• Focus on Power consumption. Has the highest
throughput/cubic foot.

• The first Super Computer to give 100 TFLOPS
sustained on real-world applications like 3-D
molecular dynamics code, simulating
solidification of molten metal under high
pressure and temperature conditions.

Blue Gene/L node

• Customized processing node, each containing

two PowerPC 4000 chips.

• Each modestly clocked at 700 MHz(to reduce

power consumption)

• 2-issue superscalar and 7 stage pipeline.

• Consists of up to 64 K nodes, organized in 32

racks each taking approx. 50 cubic feet.

Blue Gene/L node

Blue Gene/L inter-connection network

• 3-D torus network- nodes connect to 6
nearest neighbors in a 3-D mesh.

• Provides high bandwidth nearest neighbor
connectivity.

• Cost-effective, scalable and directly applicable
to many scientific applications.

• Provides both dynamic and deterministic
routing with virtual buffering and cut-through
capability.

Blue Gene/L Performance on LINPACK

0

100

200

300

400

500

600

700

2004 2007(number of cabinets
doubled to 32)

Theoritical

Sustained

• Computer Architecture, A Quantitative Approach, 4th edition, J.L. Hennessy
and D.A. Patterson: Appendix H

• Into Wide Blue Yonder with BlueGene/L
(https://www.llnl.gov/str/April05/Seager.html)

• BlueGene/L torus interconnection
network(http://www.research.ibm.com/journal/rd/492/adiga.html)

• The Performance Advantages of Integrating Block Data Transfer

in Cache-Coherent Multiprocessors By-Steven Cameron Woo, Jaswinder Pal
Singh, and John L. Hennessy
https://eprints.kfupm.edu.sa/70813/1/70813.pdf

• CSUSB, K. E. Schubert

http://ftp.csci.csusb.edu/schubert/tutorials/csci610/w05/DTD_Ocean.pdf

• http://charm.cs.uiuc.edu/~bhatele/academics/uiuc/cs498lvk_report_bhatele.
pdf

References

https://www.llnl.gov/str/April05/Seager.html
http://www.research.ibm.com/journal/rd/492/adiga.html
https://eprints.kfupm.edu.sa/70813/1/70813.pdf
http://ftp.csci.csusb.edu/schubert/tutorials/csci610/w05/DTD_Ocean.pdf
http://charm.cs.uiuc.edu/~bhatele/academics/uiuc/cs498lvk_report_bhatele.pdf
http://charm.cs.uiuc.edu/~bhatele/academics/uiuc/cs498lvk_report_bhatele.pdf

Thank You!

