Large Scale Multiprocessors and

Scientific Applications

By
Pushkar Ratnalikar

Namrata Lele

* Introduction

* Interprocessor Communication

* Characteristics of Scientific Applications
* Synchronization: Scaling up

* Performance of Scientific Applications on Shared
Memory Multiprocessors

* Performance of Scientific Applications on Distributed
Memory Multiprocessors

* Implementing Cache Coherence
e Custom Cluster Approach: Blue Gene/L

Introduction

* Primary application of large-scale multiprocessors is
for true parallel programming

* Characteristics of parallel programs:
- Amount of parallelism
- Size of parallel tasks
- Frequency and nature of intertask communication
- Frequency and nature of synchronization

Interprocessor Communication

* Performance metrics:

1. Communication bandwidth

2. Communication latency = Sender overhead +
Time of Flight + Transmission time + Receiver
overhead

3. Communication latency hiding

Advantages of Shared Memory

Communication Mechanism

e Ease of programming for complex and dynamic
communication patterns among processors

e Lower overhead for communication and better
use of communication bandwidth when
communicating small items

* Ability to use hardware controlled caching to
reduce the frequency of remote communication
by supporting automatic caching of all data.

Advantages of Message Passing

Communication Mechanism

 Hardware can be simpler compared to shared
memory

 Communication is explicit which means its simple
to understand

* Synchronization is naturally associated with
sending messages, reducing the possibility for
errors introduced by incorrect synchronization

Characteristics of Scientific

Applications

* FFT kernel : Used in fields ranging from signal
processing to fluid flow to climate modeling

e LU kernel : LU factorization of a dense matrix

* Barnes Application : Solves a problem in galaxy
evolution

* Oceans Application : Simulates the influence of
eddy and boundary currents on large scale flow in
the ocean

FFT Kernel

The Six-Step FFT Algorithm Source Matrix I Destination Matrix

1. Transpose data matrix

2. Perform 1-D FFT on each row patch —
of data matnx

3. Apply roots of unity to data
matnx

4. Transpose data matrix
S. Perform 1-D FFT on each row

of data matrix __
6. Transpose data matrix Long cache line Long cache line
doesn’t cross traversal order crosses traversal order
(b) FFT Transpose Phase
(a) Algorithm Steps

FFT Algorithm and Transpose Phase.

Sequential time for n data points O(n log n)

LU Kernel

1. For k=0 to N-1 do Eﬂdicatcs f}fﬂi:cfks
9] " —e dafa towar
2. Factor diagonal block Ay » to be updated
3. Update all perimeter blocks 1n | _
column k and row k using A 4 é 1V Mapping of Blocks
- to Processors
4. For=k+1toN-1do - 7| (2D Scatter Decomposition)
5. For i=k+l to N—l do | stTpTr"T:a
/* Update 1nterior blocks using ! ' oy s g
comresponding perimeter blocks */ | i i 1 [P1] 2
(b) Pictorial Representation
(a) Algonithm Steps

Blocked Dense LU Factorization.

Sequential time for n x n matrix is o(n3)

Barnes Application

Replacing Clusters by their Centers of Mass Recursively
D

{magnify])

Applying the idea of force calculation recursively

Barnes Application

Sequential time for n data points O(n log n)

Octree

* Each processor is allocated a subtree

e Size of subtree allocated to a processor is based
on some measure of work it has to do(how many
other cells it needs to visit) rather than just on
the number of nodes in the subtree

Oceans Application

Red-black Gauss-Seidel colors points in grid to
consistently update points based on previous values
of adjacent neighbors.

Each grid in hierarchy has fewer points than the grid
below and is an approximation to the lower grid.

The entire ocean basin is partitioned into square
subgrids that are allocated to the portion of the
address space corresponding to the local memory of
individual processors

Communication occurs when boundary points of a
subgrid are accessed by adjacent subgrid

Sequential time for nxn grid: O(n?)

Computation/Communication for

Parallel Programs

* If the ratio of computation to communication is
high, it means the application has lots of
computation for each datum communicated.

* Knowing how the ratio changes as we increase
the processor count sheds light on how well the
application can be sped up.

Computation/Communication for

Scientific applications

Scaling of computation-

Application Scaling of computation Scaling of communication to-communication
FFT nlogn n
P p logn
LU g on A
Jp Jp

Barnes nlogn approximately ./n(logn) approximately |,/

P J}, N/;,
Ocean n Jn Jn

» A An

Jp Jp

Computation/Communication

Example: Ocean Application

Processors (p) Time (min) Computation Communication

1 1 58 1 0

2 1 40 Y sqrt(1)/sqrt(2)

32 2 ? 2/32=1/16 sqrt(2)/sqrt(32) =1/4

128 16 ? 16/128=1/8 sqrt(16)/sqrt(128) = 1/(2 * sqrt(2))
128 32 ? 32/128 =1/4 sqrt(32)/squt(128) = 1/2

256 128 ?

128/256 = 1/2__sqrt(128)/sqrt(256) = 1/2

From the table. if we call the base time of computation x, and the base time of
communication y then we get (using minutes to be consistent):

(1) 58=1x+0y
(2) 40 = .5x +1/(sqrt(2))v

From the first equation, we now know that x=58min. From this, we can solve for y in
equation 2, which 1s y=12 * sqrt(2).

Computation/Communication

Example: Ocean Application

From this we can solve for each of the times (Note: T, , where p is #processors and n is
size):

ng,g =1/16x + 1f4}f
= 1/16(58) + 1/4(12*sqrt(2))
=3.625+4.24
= 8min 26sec = 8 min

T133,1,§ =1/8x + 1;(2$Sql't(2})y
= 1/8(58) + 1/(2*sqrt(2))(12*sqrt(2))
=725+6

=13 min 25 sec = 13 min

Processors (p) Time (min) Computation Communication

1 1 58 1 0

2 1 40 Y2 sqrt(1)/sqrt(2)

32 2 8 2/32=1/16 sqrt(2)/sqrt(32) =1/4

128 16 13 16/128 =1/8 sqrt(16)/sqrt(128) = 1/(2 * sqrt(2))
128 32 23 32/128 =1/4 sqrt(32)/sqrt(128) = 1/2

256 128 37 128/256 = 1/2 sqrt(128)/squt(256) = 1/2

Synchronization: Scaling Up

* Synchronization performance challenges:

Example: Suppose 10 processors on a bus try to lock
a variable simultaneously. Assume each bus
transaction read/write miss is 100 clock cycles long.
Determine the time required for all 10 processors to
acquire the lock, assuming they are all spinning when
the lock is released at time 0.

Example continued

lockit: LL R2,0(R1) ;1oad 1linked
BNEZ RZ,1lockit ;hot available-spin
DADDUI RZ2,R0O,#1 ;locked value
SC R2,0(R1) :store
BEQZ RZ,lockit sbranch if store fails

When i processes are contending for the lock, they perform the following
sequence of actions, each of which generates a bus transaction:

i load linked operations to access the lock
i store conditional operations to try to lock the lock
1 store (to release the lock)
Thus for i processes, there are a total of 21 + 1 bus transactions.

Thus, for n processes, the total number of bus operations is:

n
Y @i+1) = n(n+1)+n = n’+2n

i=l

For 10 processes there are 120 bus transactions requiring 12,000 clock cycles or
120 clock cycles per lock acquisition!

Barrier Synchronization

* A barrier forces all processes to wait until all the
processes reach the barrier and then releases all of the
processes

* Atypical implementation of barrier can be done with two
spin locks (lock and unlock notation):

- One to protect a counter that tallies the processes
arriving at the barrier

- One to hold the processes until the last process arrives
at the barrier

* Barrier uses the ability to spin on a variable until it
satisfies a test; we use the spin(condition) notation

Simple Barrier Code

Tock (counterlock);/* ensure update atomic */
if (count==0) release=0;/* first=>reset release */
count = count + 1;/* count arrivals */
unlock(counterlock);/* release lock */
if (count==total) {/* all arrived */

count=0;/* reset counter */

release=1;/* release processes */

}

else {/* more to come */

spin (release==1);/* wait for arrivals */

}
total = No of processes that must reach the barrier

count = Tally of how many processes have reached the barrier
Lock and unlock are basic spin locks

Release is used to hold the processes until the last one
reaches the barrier

Sense Reversing Barrier Code

lTocal sense =! Tocal sense; /* toggle local sense */
lock (counterlock);/* ensure update atomic */
count=count+l;/* count arrivals */
if (count==total) {/* all arrived */

count=0;/* reset counter */

release=local sense;/* release processes */

}

unlock (counterlock);/* unlock */
spin (release==local _sense);/* wait for signal */

}

If a process races ahead to the next instance of this barrier
while some other processes are still in the barrier, the fast
process cannot trap the other processes, since it does not

reset the value of release as it did before.

Synchronization Mechanisms for

Large-Scale Multiprocessors

e Software Implementations:
-Spin Lock with exponential back-off

DADDUI R3,R0,#1 ;R3 = initial delay

lockit: LL R2,0(R1) :load 1inked
BNEZ R2,Tockit :not available-spin
DADDUI RZ2,R2,#1 ;get locked value
SC R2,0(R1) -store conditional
BNEZ R2,gotit sbranch if store succeeds
DSLL R3,R3,#1 ;increase delay by factor of 2
PAUSE R3 ;delays by value in R3
J lTockit
gotit: use data protected by lock

-Queuing Locks: Construct a queue of waiting processors;
whenever processor frees up the lock it causes the next
processor in the queue to attempt access

Synchronization Mechanisms for

Large-Scale Multiprocessors

 Hardware Implementation:
-Queuing Lock :

Has a synchronization controller. If the lock is free, it is
simply returned to the processor. If the lock is
unavailable the controller creates a record of the node’s
request and sends the processor back a locked value for
the variable which the processor then spins on. When
lock is freed, controller selects a processor to go ahead
from the list of waiting processors. It can then either
update the lock variable in the selected processors cache
or invalidate the copy, causing a miss and then fetch the
available copy of the lock.

4

| Performance of Scientific Workload on Shared-

/

Memory Multiprocessors

\

* Variables
— Processor Count

— Cache Size
— Block Size

* Metrics
— Coherence Misses

— Uniprocessor Misses
* Capacity Misses
* Conflict Misses
* Compulsory Misses

Varying Processor Count

FFT LU
8% [T 2%
7% H |-l Miss rate 1%
6% H || | | [|- 0%
1 2 4 8 16
5% |-

Processor count

Miss rate 456

3% -
2%
195 L Ocean
. 20 [rommmmmeeeee e
O T 4 8 16 18% f-om-emo e
16% -+
Processor count 14% |—.- N —
12% H || [|- e
Barnes Miss rate 109 S I R
124 8%
Miss rate 6%
0% A%
1 2 4 8 16 2%
Processor count 0%

1 2 4 8 16

Processor count

B Coherence miss rate [1 Capacity miss rate

Varying Cache Size

109% s
LU

8% L e

6% 2.0%
Miss rate

4% Miss rate 1.5%
2% 1.0%
0% 0%

32 64 128 256 32 64 128 256

Cache size (KB) Cache size (KB)
Ocean

149 rr—y "

5 0 Barnes 1294 | leemee
e 10%
o 8%

1.5% Miss rate o

Miss rate 6%
1.0% 4%
2%
0% 0%

32 64 128 256 32 64 128 256

Cache size (KB) Cache size (KB)

B Coherence miss rate [1 Capacity miss rate

Varying Block Size

149 o LU
12%
40.-"’0 r-—--~"~""~""""""""°"°"°"°"°"~°";";";,TETTOC
10%
) g4 3%
Miss rate
6% Miss rate 2%
4%
L=}
ooy, 1%
0%6 0%
16 32 64 128 16 32 64 128
Block size (bytes) Block size (bytes)
Ocean
1496 -
129% H |-
109 |-
8%
1% Miss rate -
Miss rate 6%
4%
2%
026 0%
16 32 64 128 16 32 64 128
Block size (bytes) Block size (bytes)

M Coherence miss rate 1 Capacity miss rate

Bus Traffic for data misses

Bytes per data reference

Y SO

FFT
LU
Barnes
Ocean |------mmoeeem e

1 IS

0.09—

16

Block size (bytes)

| Performance of Scientific Workload on Distributed-

Memory Multiprocessors

e Variables
— Processor Count

— Cache Size
— Block Size

* Metrics
— Local Misses
— Remote Misses

Varying Processor Count

69
5%
495
Miss rate 3%
2%
19
06

0.5%
Miss rate

0.0%6

a8 16 32 64

Processor count

a8 16 32 64

Processor count

Miss rate

Miss rate

1.0%

0.5%

0.0%

8%

6%

4%

2%

0%

8 16 32 64

Processor count

Ocean

8 16 32 64

Processor count

B Local misses

1 Remote misses

Varying Cache Size

10%

8%

&%

Miss rate
4%
2%
0%
1.5%
1.0%%
Miss rate

0.5%

0.0%

22 64 128 256 512
Cache size (KB)

Barnes

22 64 128 256 512
Cache size (KB)

Miss rate

Miss rate

2.9%

2.0%

1.5%

1.0%

0.5%

0.0%

20%

15%

10%

2%

0%

32 64 128 256 512
Cache size (KB)

Ocean

32 64 128 256 512
Cache size (KB)

M Local misses

OO0 Remote misses

Varying Block Size

12%
L
10% A e em e
8%
3%
Miss rate 6%
T o
vy Miss rate 2%
2% 1%
0% 0%
16 32 64 128 16 32 64 128
Block size (bytes) Block size (bytes)
Ocean
0.3%0 15% -
0.2% Miss rate 10%
Miss rate
0.1% 5%
0.0% 0%
16 32 54 128 16 32 54 128
Block size (bytes) Block size (bytes)

B Local misses 0 Remote misses

Effective Latency

T T L T
4.5 |- Sorroemenssnssinoioiees B
4.0 |- T

Average cycles 20 [Average cycles 3-0 [TrTirromiomosmossmssmonsonenon e
per reference 2.5 per reference 2.5 -

2.0 |- “eeeee b o RERGIEEECEECEEPELPPEPE

1.5 - --e-e- 1.5 - --

1.0 - --e-e- 1.0 - R RRREEE --

0.5 |- “oeee 05 |- - --
1 1 1 1 1

0.0 0.0

16 32 &4
Processor count Processor count

T 5.0 I
B B B et I ek
4.0 [retrtrmeiemeeeeesssesossssosseoseeoneees 4.0 [

A . 5 0> T el G705 T il
verage cycles L o o il .. U o N
er megm:f 3.0 Average cycles 3.0

P y TTTTTTTTTTTTooTTmomsomoosssomoomssonsomees ference 2.5
reference per re 2‘0 N
1.5 -
1.0 -
0.5 1
0.0

16 32 654

Processor count Processor count

B Cache hit O Leocal miss 0O Remote miss WM Three-hop miss to remote cache

l Implementing Cache Coherence

* Snoopy protocol(handling of upgrade miss)

e Contention to send invalidate message !

* e.g. processors P1 and P2 are attempting to
upgrade the same cache block at the same time!

Implementing Cache Coherence

* Race winner is decided by the ordering
imposed by the medium.

e What about the looser?

* Need to impose the condition that the
looser(or any other processor contending)
must handle any pending invalidates before it
can generate its own invalidate i.e. P2 should
handle any pending invalidates.

Implementing Cache Coherence in DSM-M'’s

e No broadcast medium

* Need to overcome problems related to non-
atomic actions in snoopy protocols(W/O
broadcast medium).

* Write requests are easily serviced as the
unique directory which holds the block
processes requests and informs the requester
about success

e NAK is sent to the loser's in the race. This
causes the loser to regenerate the request.

Implementing Directory Controller

* Need to have the same capabilities as that in
the snoopy case

* Need to handle requests for independent
blocks while awaiting response to request
from a local processor

* Process requests in order.

* Directory should be multithreaded i.e. handle
requests for multiple blocks independently.

Implementing Directory Controller

* Directory controller should be reentrant i.e.
capable of suspending its execution while

waiting for reply and accept another
transaction.

 The major implementation difficulty is to
handle NAK’s(keep track of outstanding

transactions and the corresponding NA

K’s)

e Usually there is a reply slot for each rec
can hold ACK or a NAK.

uest. It

l Blue Gene/LL

 Scalable distributed memory message-passing
supercomputer.

* Focus on Power consumption. Has the highest
throughput/cubic foot.

* The first Super Computer to give 100 TFLOPS
sustained on real-world applications like 3-D
molecular dynamics code, simulating
solidification of molten metal under high
pressure and temperature conditions.

Blue Gene/L node

 Customized processing node, each containing
two PowerPC 4000 chips.

« Each modestly clocked at 700 MHz(to reduce
power consumption)

 2-Issue superscalar and 7 stage pipeline.

 Consists of up to 64 K nodes, organized in 32
racks each taking approx. 50 cubic feet.

Blue Gene/L node

o 256
foa] 11 GBrsec
[] =
3IZ2Kr32K L1 =y =
w | 2
PFPC 440 -+ Shared L3
CPU = B |- directory for a4 MB
o = embedded embedded
Double-issue b DRAM DRAM
FFPU — 256 P
» Includes E L3 cache
Snoop error T o ar
¥ correction — _;g"}_? memory
32K/32K L1 o control - 5
8 | S| .56 (ECC) & o
— = — od
PFPC 440 =
CcPU =
‘= 2586
Double-issue = 11 GB/sec
FPU ==
] A7 128
|
i | | | !
Ethernet JTAG Torus Collective Global DDR
Ghit access interrupt’ control
lockbox with ECC
I I I I I I 5.5 GBrsec
Gigabit IEEE & out and 3 out and 4 global 144-bit-wide
Ethernet 11491 & in, each at 3 in, each at barriers or DDR
(JTAG) 1.4 GB/sec 2.8 GB/sec interrupts 256/ 512 MB

link link

] Blue Gene/L inter-connection network |

Blue Gene/L Performance on LINPACK

700

600
500

400

M Theoritical
M Sustained

300 -

200 -

100 -

2004 2007(number of cabinets
doubled to 32)

References

Computer Architecture, A Quantitative Approach, 4th edition, J.L. Hennessy
and D.A. Patterson: Appendix H

Into Wide Blue Yonder with BlueGene/L
(https://www.lInl.gov/str/April05/Seager.html)

BlueGene/L torus interconnection
network(http://www.research.ibm.com/journal/rd/492/adiga.html)

The Performance Advantages of Integrating Block Data Transfer

in Cache-Coherent Multiprocessors By-Steven Cameron Woo, Jaswinder Pal
Singh, and John L. Hennessy
https://eprints.kfupm.edu.sa/70813/1/70813.pdf

CSUSB, K. E. Schubert
http://ftp.csci.csusb.edu/schubert/tutorials/csci610/w05/DTD Ocean.pdf
http://charm.cs.uiuc.edu/~bhatele/academics/uiuc/cs498Ivk report bhatele.

pdf

https://www.llnl.gov/str/April05/Seager.html
http://www.research.ibm.com/journal/rd/492/adiga.html
https://eprints.kfupm.edu.sa/70813/1/70813.pdf
http://ftp.csci.csusb.edu/schubert/tutorials/csci610/w05/DTD_Ocean.pdf
http://charm.cs.uiuc.edu/~bhatele/academics/uiuc/cs498lvk_report_bhatele.pdf
http://charm.cs.uiuc.edu/~bhatele/academics/uiuc/cs498lvk_report_bhatele.pdf

Thank You!

