Vector Processors

Abhishek Kulkarni

Girish Subramanian

Classification of Parallel Architectures

i

It

l-seq |-pipe [|-repl

_02- [04 | [04 | _06_ _06_
--- -w- -—- --- ---
--- -02- --- --- ---
01 01_ _01_ _02_ _03_

Parallel Architectures

[T

Data Parallel Instruction-Level Parallel Process-Level Parallel
(Data Parallelism) (Fine-Grained Control Parallelism)

A TNA 2%

Vector Processor ~ Superscalar VLIW Multiprocessor Multicomputer

Processor Array P|pe||ned (Replication) (Shared Memory) (Distributed Memory)

(Pipelining) ~ (Replication) (Pipelining+Replication) (Replication)
Multimedia Extensions ---»Multi-Level Parallelism

Hennessy and Patterson 199Q;

)

Sima, Fountain, and Kacsuk 1997

(Coarse-Grained Control Parallelism)

http://bert.lib.indiana.edu:3847/viewer.asp?bkid=21360&destid=513
http://bert.lib.indiana.edu:3847/viewer.asp?bkid=21360&destid=562

Why Vector Processors?

e Difficulties in exploiting ILP
* Deeper the pipeline, more complex circuitry required
(reorder buffer, register renaming etc.)
* Deep pipeline implies more instructions in-flight
(partially executed) hence more control hazards, data
hazards etc.

* Even with VLIW complex circuitry is involved and also
increases compiler complexity.

e Cache Hit Rate

e Scalar processors depend upon cache hit for
performance. Scientific applications have very large
data sets with poor memory locality.

Vector Processing Model

* Vector processors have high-level operations that work
on linear arrays of numbers: "vectors"

SCALAR VECTOR
(1 operation) (N operations)

©
V
- A:tor
length
add r3, rl, r2 add.vv v3, vl1l, v2

Professor David A. Patterson, Prof. Jan Rabaey Computer Science 252, Spring 2000

Basic Vector Processor Architecture

Components of vector processors

Main memary

Vector Registers
Vector Functional Units
Vector Load-Store Units
Scalar Registers

o 0 T W

Vector | FP addrsubtract
load-store
B FP multiply .—»
. FP divide '—~

:LZ?;?QS I Integer '—— Styles of Vector Architecture
B Legical
_' a. memory-memory vector

processors : all vector
Scalar .
registers operations are memory to
memory
b. Vector-register processors :
all vector operations
between vector registers.

Appendix F

Vector Registers

* Consists a fixed number of vector register. (typically 8-
32)

* Each register is an array of elements, each holding 64-
128 64bit elements

* Has at least 2 read and 1 write ports.

 Example : Cray X1 has 32 vector registers each having
64 bit elements.
* Types
— General Purpose registers
— Flag Registers
— Control registers

Vector Functional Units

* Fully pipelined, start new operation every
clock.

* Typically 2-8 Functional units.
 Multiple parallel execution units called “lanes”

4 lanes, 2 vector functional units

Lane. /="""7777°" 3 ST %

P | g % ;gi__.o;peffne

T T T vean

i If*—v " .fi oy \—L\/—i—f r ?Lv_"_; r z Reglsters

== e .
VFU HqH — | Ul Professor David A. Patterson
E\E?Eﬁz’"a'él___l__j___lil R S e B N Computer Science 252, Spring 1998

To Memory Subsystem

Vector Load Store Units

* Fully pipelined unit to load or store a vector;
may have multiple LSUs.

e Uses the advantage of memory bank
— support multiple loads/stores per cycle
— multiple banks & address banks independently
— support non-sequential accesses (see soon)

* Example

Memory architecture for Vector
Processors

Bank
Cycle no. 0 1 2 3 4 5 6 7

0 136 1 fetch per cycle
1 busy 144
2 busy busy 152
3 busy busy busy 160
+ busy busy busy busy | 68
3 busy busy busy busy busy 176
6 busy busy busy busy busy 184
7 192 busy busy busy busy busy
8 busy 200 busy busy busy busy
9 busy busy 208 busy busy busy
10 busy busy busy 216 busy busy

busy busy busy busy 224 busy
12 busy busy busy busy busy 232
13 busy busy busy busy busy 240
14 busy busy busy busy busy 248
15 256 busy busy busy busy busy

16 busy 264 busy busy busy busy

SPECIAL-
PURPOSE
MEMORY
E-UNIT MAIN
MEMORY

Cache By Passing

REGISTER CACHE Bypace
FILE
VIRTUAL
- (2) e INTER-
:?%Egg; ON-CHIP éﬁ!ﬁ; L3/L4 CONNECTION MEMORY
L2 CACHE CACHE NETWORK
DISK FILES &
TLB DATABASES
SPECIAL-
PURPOSE e
CACHES b-Ro
OTHER etc.
COMPUTERS
& WWW

* Do not depend upon cache.

» Scalar Processors have to depend on cache , hence occur cost
while a cache-line miss occurs

» Good for Scientific applications

18-548/15-548 Memovy System Architecture
Philip Koopman
November 4, 1998

Scalar Registers

* Typically Vector Processors have
— 32 general purpose registers

— 32 floating point registers

* Provide data as input to Vector Functional
Units.

L.D
DADDIU
Loop: L.D
MUL.D
L.D
ADD.D
S.D
DADDIU
DADDIU
DSUBU
BNEZ

A Sample MIPS CODE

F0,a

R4,Rx,#512

F2,0(Rx)
F2,F2,F0
F4,0(Ry)
F4,F4,F2
0(Ry),F4
Rx,Rx,#8
Ry,Ry,#8
R20,R4,Rx
R20, Loop

sToad scalar a
slast address to load

:Toad X(1)
sa x X(1)
:Toad Y(1)

sa x X(1) +Y(1)
sstore into Y(i)
sincrement index to X
sincrement index to Y
scompute bound

scheck 1f done

L.D

LV
MULVS.D
LV
ADDV.D
SV

Example (daxpy)

FO,a
V1,Rx
V2,V1,F0
V3,Ry
Va,ve V3
Ry, V4

;Toad scalar a

s Toad vector X
svector-scalar multiply
s1oad vector Y

sadd

;store the result

A Sample Code in VMIPS

Example Vector Instruction

Instruction Operands Function

ADDV.D V1,v2,\V3 Add elements of V2 and V3, then put each result in V1.
ADDVS.D V1,V2,Fo Add FO to each element of V2, then put each result n V1.
SUBY.D V1,v2,\V3 Subtract elements of V3 from V2, then put each result in V1.
SUBVS.D V1,vz,Fo Subtract FO from elements of V2, then put each result in V1.
SUBSV.D V1,F0,V2 Subtract elements of V2 from FO, then put each result in V1.
MULV.D Vi,ve,v3 Multiply elements of V2 and V3, then put each result in V1.
MULVS.D V1,V2,Fo Multiply each element of V2 by FO, then put each result in V1.
DIVV.D Vi,ve,v3 Divide elements of V2 by V3, then put each result n V1,
DIVVS.D V1,V2,Fo Divide elements of VZ by F0, then put each result in V1.
DIVSV.D V1,F0,V2 Divide FO by elements of V2, then put each result n VI,

Properties of Vector Instructions

* Single Instruction implies lot of operations.

— Hence reduce the number of instruction fetch and
decode

* Each operation is independent of each other
— Simple design
— Multiple Operations can be run in parallel

e Data hazards has to be checked for each
vector operation and not each operation

* Reduces Control hazards by reducing branches
* Knows memory access pattern

Vector Execution Time

* Time taken by each vector operation depends
on — Vector Length, Data and Structural
hazards

* Each operation has a startup time (pipelining
latency)

e Startup time gets amortized as vector length
tends to infinity. (One of the metrics for vector
Processors)

Convoy and Chime

S w N

Convoy — A set of vector instruction that could
potentially begin execution together in one
clock period.

Chime — unit of time to execute one convoy

LV V1, Rx ; load vector X

MULVS.D V2,V1,F0 ;scaling vec.

Lv V3,Ry ;load vector Y
ADDV.D v4,vV2,V3 ;add
SV Ry,V4 ;store result
LV m-convoy take m-chimes (when startup time = 0)
. MULVS.D LV 4 convoy 4 chimes = (4 x 64 clock cycles)
. ADDV.D 4 clock cycle for 1 result

SV

Startup overhead

Unit Start-up overhead (cycles)

Load and store unit 12

Multiply unit 7
Add unit 6

Figure F.4 Start-up overhead.

Convoy Starting time First-result time Last-result time
1. LV 0 12 11 +n
2.MULVS.D LV 2+n 12 +n+ 12 23+ 2n
3. ADDV.D 24+ 2n 2442n+6 29 + 3n
4.5V 30 + 3n 30+ 3n+ 12 41 + 4n

Figure F.5 Starting times and first- and last-result times for convoys 1 through 4.
The vector length is n.

4 + (42/64) = 4.65 clock cycles per result

Vector Length

* Consider a operation as shown below :

do 10 i = 1,n
10 Y(i) = a * X(1) + Y (1)

* Problem occurs when n is not equal length of
the vector registers (64 in case of VMIPS)

* VLR — Vector Length Registers can be used
when value of n is not known.

Strip mining

* Continuing the previous example. Problem
may occur when size of ‘n” > MVL (Maximum

Vector Length)

e Strip mining generates code such that each
vector operation is less than or equal to MVL

Tow =1
VL = (n mod MVL) /*find the odd-size piece*/
do1j=20,(n/ ML) /*outer loop*/
do 10 i = Tow, Tow + VL - 1 /*runs for Tength VL*/
Y(i) = a = X(i) + Y(i) /*main operation*/
10 continue
low = Tow + VL /*start of next vector®/
VL = MVL /*reset the length to max*/

1 continue

Vector execution time with Strip
mining
* Factors
— Number of convoys in the loop = Teme

— Overhead for each strip-mined convoy = T, + Teen
Twr = cost of executing the scalar code in loop.

T... =vector startup cost.

_ n \
T”) |:P*1\J L:| 8 {TIOOP + T-‘*tﬂtl'tj T X Tchjme

Example

chime

n
T, = {m} b {Tlmp + T) trxT

= 60+(4xT

)+ 200 x 3

)+ 600 = 660+ (4 xT

start

start

Number of Convoy = 3
Number of chimes = 3
n =200

MVL = 64

)

start

Loop:

DADDUI
DADDU
DADDUI
MTC1
DADDUI
DADDUI
LV
MULVS.D
SV
DADDU
DADDU
DADDUI
MTC1
DSUBU
BNEZ

R2,R0,#1600 ;total # bytes in vector

R2,R2,Ra saddress of the end of A vector
R1,R0,#8 ;1oads Tength of Ist segment
VLR,RI ;1oad vector Tength in VLR
R1,R0,#64 ;length 1n bytes of 1st segment
R3,R0,#64 ;vector Tength of other segments
V1,Rb ;1oad B

VZ2,V1,Fs svector % scalar

Ra,V? sstore A

Ra,Ra,R1 ;address of next segment of A
Rb,Rb,R1 ;address of next segment of B
R1,R0,#512 ;load byte offset next segment
VLR,R3 ;set length to 64 elements
R4,R2,Ra sat the end of A?

R4, Loop ;1 not, go back

Stride

* Consider a simple matrix multiplication
program.

do 10 17 = 1,100
do 10 j = 1,100
A(i,j3) = 0.0
do 10 k = 1,100
10 A(1,3) = A(1,3)+B(3,k)«C(k,J)

At each iteration we access the i th column of
B and k th column on C.

e Stride = distance separating the elements that
are to be merged into a single vector.

Stride (contd)

* Two types of addressing possible with Strides
— Unit Stride
— Non-Unit (constant) stride

e Example - LVWS V1, (R1,R2)
R1 = base address , R2 = stride,
V1[i]=R1 +R2 X i

* One more mechanism for addressing is

Indexed. (vector equivalent of register
indirect)

Outline

Enhancing vector performance
Performance of vector processors

Programming vector computers
— Compiler vectorization

Advantages
Future of vector processors

Enhancing vector performance

* Vector Chaining

* Conditionally Executed Statements
* Sparse Matrices

* Multiple Lanes

* Pipelined instruction Start-Up

Vector Chaining

* Forwarding extended to vector
reqgisters

* Eliminates data dependences by
register bypassing

LV V2, R1 LV

MULV.D V1, V2, V3 MULV.D

ADDV.D

ADDV.D V4, V1, V5

VL*3 + LVstartup + ADDVstartup + MULVstartup

Vector Chaining

* Forwarding extended to vector
registers

* Eliminates data dependences by
register bypassing

LV

LV V2, R1

MULV.D
MULV.D V1, V2, V3
\ ADDV.D

ADDV.D V4, V1, V5

VL + LVstartup + ADDVstartup + MULVstartup

Vector Chaining

* Flexible chaining

— Can chain any two vector instructions, if
there is no structural hazard

— Simultaneous access to the same vector
register

* Reduces the number of chimes
(How?)

* No convoy can contain a structural
hazard

Conditionally Executed
Statements

* Inhibitors for effective vectorization
— Presence of conditionals
— Use of sparse matrices

* Branch statements introduce control
dependences

Can this loop be vectorized?

do 100 1 = 1, 64
if (A(i).ne. 0) then
A(i) = A(1) - B(1)
endif
100 continue

Vector-mask register

Boolean vector of length MVL to control
the execution of a vector instruction

Vector instructions operate only on
elements defined by VM

Vector-mask can be set or unset based on
the result of a condition

Disadvantages

— Instructions can take time even if their
mask entry is set to O

— Some processors just disable the stores,
but execute the actual instruction

Vector-mask example

100

LV

LV

L.D
SNEVS.D
SUBV.D
CVM

SV

do 100 1 = 1, 64

if (A(i).ne. 0) then
A(i) = A(i) = B(1)
endif
continue
V1,Ra :1oad vector A into VI
VZ,Rb ;1oad vector B
FO,#0 :1oad FP zero into FO
V1,FO ssets YM(i) to 1 if V1(i)1=FO
V1,V1,V2 ssubtract under vector mask

:set the vector mask to all 1s
Ra,Vl sstore the result in A

Sparse Matrices

* Vector elements stored compactly,
Indirect accesses

* Indexed Load (Gather) / Indexed Store
(Scatter)

« Sparse vector sum

do 100 i = 1,n
on arrays A & C 100 AGK(1)) = ACK(1)) + C(M(1))
LV Vk, Rk .Toad K
LVI Va, (Ra+Vk) ;load A(K(I))
K and M are LV Vm, Rm :1oad M
. LVI Vc, (Rc+Vm) :Toad C(M(I))
iIndex vectors ADDV.D Va,Va,Vc .add thenm

SVI (Ra+Vk),Va :store A(K(I))

Scatter Gather example

100

LV

L.D
SNEVS.D
CVI
POP
MTC1
CVM
LVI
LVI
SUBV.D
SVI

do 100 1 1, 64
if (A(i).ne. 0) then
A(i) = A(i) - B(i)
endif
continue
V1,Ra :1oad vector A into V1
FO,#0 :1oad FP zero into FO
V1,FO ;sets the VWM to 1 if V1(i)!=F0
V2,#8 :generates indices in V2
R1,VM :find the number of 1's in VM
VLR,R1 :1oad vector-lTength register
;clears the mask
V3, (Ra+V2) -Toad the nonzero A elements
V4, (Rb+V2) :1oad corresponding B elements
V3,V3,v4 ;do the subtract

(Ra+Vv2),V3

;store A back

Multiple Lanes

* Lanes are multiple parallel pipelines
* Reduce structural hazards

Al9] B[9]

A[8] B8]

Al7] B[7]

A[B] B[6]

e = C=A+1B
Al4] B[4]

Al3] Bl3]

Al2] B[2] Al8] B[8]| | A[2] B[9]
Al1] B[1] Al4] B4]| | A[5] B[5] | |Al8] Bl&]| |AL7] B[7]
| L

T/

clo]

Element group

Single add pipeline Four add pipelines

Vector unit with four lanes

Lane 0 Lane 1 Lane 2 Lane 3
FP add FP add FP add FP add
pipe 0 pipe 1 pipe 2 pipe 3
1 i A ' 1 | 1 A

Yy Yy Yy L
Vector Vector Vector Vector
registers: registers: reqisters: registers:
elements elemeants alements elements
048,... 159, ... 2.610,... 37.11,...
A A A A | B | A A
1 3 L] 1 1 | | i Y
FP mul. FP mul. FP mul. FP mul.
pipe 0 pipe 1 pipe 2 pipe 3

L

/

Vector load-store unit

Pipelined Instruction Start-Up

* Chaining does not eliminate the
start-up time for a vector instruction

* Some recovery time (dead time)
required between two vector
instructions

* Allow start of one instruction to
overlap with the completion of the
preceding instruction

Pipelined Instruction Start-Up

Start-up
latency
R X1 X2[X3|W it ;
irst vector
R | X1]X2|X3) W instruction
Element 63 | B [X1|X2[X3|W J,
Dead cycle | R | X1|x2|x3| w f
Dead cycle | B [X1]|X2| X3 W Dead time
Dead cycle | R [X1| X2\ X3| W
Dead cycle | B [X1 X2 X3 W ¥
Element 0 | B [X1[X2[X3| W s ! t
econd vector
Element 1 | R [X1 X2[X3|W instruction
F X1 X2| X3 W ¥

Start-up latency and dead time for a single vector pipeline

Performance measurements

* Measure the execution time of a vector
loop

* Consider the start-up cost and the
sustained rate of the operation

* Behavior of vector pipelines and
instructions characterized by

— R« MLOPS rate on an infinite-length vector

— N4 Vector length needed to reach half of
R

R-infinity n-half vector model

* For a vector loop with n elements:

_ 1 . _
Tr.r o {MVL s {T]m]} + Tﬁ:-ta\u'tJI X Tchjme

* Calculate asymptotic performance R«

R_ = Iim(

Lt
H— oo

Operations per iteration x Clock |‘;llr:)
Clock cycles per iteration

* Compute N to find performance r

n P

T~ t (1+ny/n)

qn
r=—

R-infinity n-half vector model

r=r_ . T T
o ; r=rypipe(n/n, ;)
: s
g | con
-E ! n=9n, ,,
: =007
a. ! ‘ ®
N L R e
I
I
I
1
;
r=I.n |
0 |
: 1 1 1
n=n, , Vector Length n=0n, /5

Figure 3.2: Performance against vector (or Fortran DO-loop) length for a pipelined
arithmetic unit, showing the geometric definition of the {rm,n*] parameters.

Source: The Science of Computer Benchmarking By Roger W. Hockney

Programming vector
computers

* TWO main approaches

—Writing data-parallel programs in
native languages

* UPC, X10, Chapel

—Relying on compilers
— Automatic
— Hinted

Compiler Vectorization

* Why compiler cannot vectorize loops?
— Branches
— Recurrences
— System calls

- Subscript ambiguities
- Techniques adopted
* Force maximum work in inner loop
* Eliminate false dependences
* Use vectorization directives

Compiler Vectorization

 Vectorization Directives

— To aid the compiler in vectorizing a
particular section of code

!DECS$ VECTOR ALWAYS !DECS$ NOVECTOR

do i =1, 100, 2 do i =1, 100

a(i) = b(1i) a(i) = b(i) + c(1i)
enddo enddo

* Autovectorization
— Dependence analysis
— Finding sufficient parallelism
— Loop unrolling, fusion/jamming

Advantages

Vector supercomputers offer greater
inherent parallelism versus the limited
Issue of superscalar microprocessors

Very high memory bandwidths

Smaller program size reduces
complexity

Low power consumption

Work exceptionally well for a certain
set of scientific applications

Decline of vector processors?

Processor Architecture Statistics (Top500)

— \ECTOr Processar E_y"StEFT"IS
on Top500

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

