
PIPELINING

B649
Parallel Architectures and Programming

B629: Practical Compiling for Modern Machines

Why Pipelining?

• Instruction-Level Parallelism (ILP)
• Reducing Cycles Per Instruction (CPI)

★ if instructions may take multiple cycles

• Decreasing the clock cycle time
★ if each instruction takes one (long) cycle

• Invisible to the programmer

2

u = Time per instruction on unpipelined machine
n = Number of pipelined stages
time per pipelined instruction = u / n

B629: Practical Compiling for Modern Machines

Basics of a RISC Instruction Set

• All operations on data registers
• Only load and store access memory
• All instructions are of one (fixed) size
• MIPS64 (64-bit) instructions for example

3

B629: Practical Compiling for Modern Machines

Instruction Set Overview

• ALU instructions
★ R1 ← R2 op R3

✴ R1, R2, R3: registers
★ R1 ← R2 op I

✴ I: signed extended 16-bit immediate

• Load and store instructions
★ LD R1:O, R2

✴ R1, R2: registers, O: 16-bit signed extended 16-bit immediate

• Branch and jump instructions
★ comparison between two registers, or register and zero
★ no unconditional jump

4

B629: Practical Compiling for Modern Machines

Digression: Recall Multiplexer

5

B629: Practical Compiling for Modern Machines

• Positive Number: extend with zeroes

• Negative number: extend with ones

Digression: Sign Extension

6

x (16 bits) =

x (32 bits) =

0 x

0 000000000000000 x

-x (16 bits) =

-x (32 bits) =

1 x

1 111111111111111 x

B629: Practical Compiling for Modern Machines

• Positive Number: extend with zeroes

• Negative number: extend with ones

Digression: Sign Extension

6

x (16 bits) =

x (32 bits) =

0 x

0 000000000000000 x

-x (16 bits) =

-x (32 bits) =

1 x

1 111111111111111 x

-x (16 bits) = (2¹⁶−x)
-x (extended) = (2¹⁶−x) + 2¹⁶(2¹⁶−1)
 = (2³²−x)
 = -x (32 bits)

B629: Practical Compiling for Modern Machines

Simple Implementation

• IF: Instruction fetch cycle
• ID: Instruction decode / register fetch cycle
• EX: Execute / effective address cycle
• MEM: Memory access cycle
• WB: Write-back cycle

7

B629: Practical Compiling for Modern Machines

Simple Implementation

• IF: Instruction fetch cycle
★ fetch current instruction from PC, add 4 to PC

• ID: Instruction decode / register fetch cycle
• EX: Execute / effective address cycle
• MEM: Memory access cycle
• WB: Write-back cycle

8

B629: Practical Compiling for Modern Machines

Simple Implementation

• IF: Instruction fetch cycle
• ID: Instruction decode / register fetch cycle

★ decode instruction, read registers (fixed field decoding)
★ do equality test on registers for possible branch
★ sign extend offset field, in case it is needed
★ add offset to possible branch target address

• EX: Execute / effective address cycle
• MEM: Memory access cycle
• WB: Write-back cycle

9

B629: Practical Compiling for Modern Machines

Simple Implementation

• IF: Instruction fetch cycle
• ID: Instruction decode / register fetch cycle
• EX: Execute / effective address cycle

★ memory reference: base address+offset to compute effective
address

★ register-register ALU instruction: perform the operation
★ register-immediate ALU instruction: perform the operation

• MEM: Memory access cycle
• WB: Write-back cycle

10

B629: Practical Compiling for Modern Machines

Simple Implementation

• IF: Instruction fetch cycle
• ID: Instruction decode / register fetch cycle
• EX: Execute / effective address cycle
• MEM: Memory access cycle

★ read or write based on effective address computed in last
cycle

• WB: Write-back cycle

11

B629: Practical Compiling for Modern Machines

Simple Implementation

• IF: Instruction fetch cycle
• ID: Instruction decode / register fetch cycle
• EX: Execute / effective address cycle
• MEM: Memory access cycle
• WB: Write-back cycle

★ register-register ALU instruction or Load: write result
(computed or loaded from memory) into register file

12

B629: Practical Compiling for Modern Machines

Simple Implementation

• IF: Instruction fetch cycle
• ID: Instruction decode / register fetch cycle
• EX: Execute / effective address cycle
• MEM: Memory access cycle
• WB: Write-back cycle

13

branch = 2 cycles
store = 4 cycles
all else = 5 cycles
CPI = 4.54, assuming 12% branches, 10% stores

B629: Practical Compiling for Modern Machines

Simple Pipelined Implementation

14

B629: Practical Compiling for Modern Machines

Some Considerations

15

• Resource evaluation
★ avoid resource conflicts across stages

• Separate instruction and data memories
★ typically, with separate I and D caches

• Register access
★ write in first half, read in second half

• PC not shown
★ also need an adder to compute branch target
★ branch does not change PC until ID (second) stage

✴ ignore for now!

B629: Practical Compiling for Modern Machines

Prevent Interference

16

B629: Practical Compiling for Modern Machines

Observations

17

• Each instruction takes the same number of cycles
• Instruction throughput increases

★ hence programs run faster

• Imbalance among pipeline stages reduces
performance

• Overheads
★ pipeline delays (register setup time)
★ clock skew (clock cycle ≥ clock skew + latch overhead)

• Hazards ahead!

B629: Practical Compiling for Modern Machines

Pipeline Hazards

• Structural hazards
★ not all instruction combinations possible in parallel

• Data hazards
★ data dependence

• Control hazards
★ control dependence

18

B629: Practical Compiling for Modern Machines

Pipeline Hazards

• Structural hazards
★ not all instruction combinations possible in parallel

• Data hazards
★ data dependence

• Control hazards
★ control dependence

18

Hazards make it necessary to stall the pipeline

B629: Practical Compiling for Modern Machines

Quantifying the Stall Cost

19

 Average instruction time unpipelined
Speedup =
 Average instruction time pipelined

 CPI unpipelined × Clock cycle unpipelined
 =
 CPI pipelined × Clock cycle pipelined

CPI pipelined = Ideal CPI + Pipeline stall cycles per instruction
 = 1 + Pipeline stall cycles per instruction

Ignoring pipeline overheads, assuming balanced stages,

Clock cycle unpipelined = Clock cycle pipelined

 CPI Unpipelined (≈ Pipeline depth)
Speedup =
 1 + Pipeline stall cycles per instruction

B629: Practical Compiling for Modern Machines

STRUCTURAL HAZARDS

20

B629: Practical Compiling for Modern Machines

Structural Hazard Example: Mem. Port Conflict

21

B629: Practical Compiling for Modern Machines

DATA HAZARDS

22

B629: Practical Compiling for Modern Machines

Data Hazard Types

• RAW: Read After Write
★ true dependence

• WAR: Write After Read
★ anti-dependence

• WAR: Write After Write
★ output dependence

• RAR: Read After Read
★ input dependence

23

B629: Practical Compiling for Modern Machines

Data Hazard Types

• RAW: Read After Write
★ true dependence

• WAR: Write After Read
★ anti-dependence

• WAR: Write After Write
★ output dependence

• RAR: Read After Read
★ input dependence

23

B629: Practical Compiling for Modern Machines

Data Hazard Example

24

B629: Practical Compiling for Modern Machines

Ameliorating Data Hazards

25

• Idea:
★ ALU results from EX/MEM and MEM/WB registers fed

back to ALU inputs
★ if previous ALU operation wrote the register needed by the

current operation, select the forwarded result

B629: Practical Compiling for Modern Machines

Forwarding

26

B629: Practical Compiling for Modern Machines

Ameliorating Data Hazards

27

• Idea:
★ ALU results from EX/MEM and MEM/WB registers fed

back to ALU inputs
★ if previous ALU operation wrote the register needed by the

current operation, select the forwarded result

• Observations:
★ forwarding needed across multiple cycles (how many?)
★ forwarding may be implemented across functional units

✴ e.g., output of one unit may be forwarded to input of another,
rather than the input of just the same unit

B629: Practical Compiling for Modern Machines

Forwarding Across Multiple Units

28

B629: Practical Compiling for Modern Machines

Not All Stalls Avoided

29

B629: Practical Compiling for Modern Machines

CONTROL HAZARDS

30

B629: Practical Compiling for Modern Machines

Handling Branch Hazard

31

B629: Practical Compiling for Modern Machines

Reducing Branch Penalty

32

• “Freeze” or “flush” the pipeline
• Treat every branch as not-taken (“predicted-untaken”)

★ need to handle taken branches by roll-back

• Treat every branch as taken (“predicted-taken”)
• Delayed branch

B629: Practical Compiling for Modern Machines

Freezing Pipeline

33

B629: Practical Compiling for Modern Machines

Delayed Branch

34

branch instruction
sequential successor_1
branch target if taken

B629: Practical Compiling for Modern Machines

Behavior of Delayed Branch

35

B629: Practical Compiling for Modern Machines

Schedule of Branch Delay Slot

36

B629: Practical Compiling for Modern Machines

Schedule of Branch Delay Slot

36

B629: Practical Compiling for Modern Machines

HOW IS PIPELINING
IMPLEMENTED?

37

B629: Practical Compiling for Modern Machines

Simple MIPS Implementation

• Instruction fetch cycle (IF)
• Instruction decode/register fetch cycle (ID)
• Execution / effective address cycle (EX)
• Memory access / branch completion cycle (MEM)
• Write-back cycle (WB)

38

B629: Practical Compiling for Modern Machines

Simple MIPS Implementation: IF
(IF ➙ ID ➙ EX ➙ MEM ➙ WB)

• Fetch

39

IR ← Mem[PC];
NPC ← PC + 4;

B629: Practical Compiling for Modern Machines

Simple MIPS Implementation: ID
(IF ➙ ID ➙ EX ➙ MEM ➙ WB)

• Decode

40

A ← Regs[rs];
B ← Regs[rt];
Imm ← sign-extended immediate field of IR;

B629: Practical Compiling for Modern Machines

Simple MIPS Implementation: ID
(IF ➙ ID ➙ EX ➙ MEM ➙ WB)

• Execution
★ Memory reference

★ Register-Register ALU instruction

★ Register-Immediate ALU instruction

★ Branch

41

ALUOutput ← A + Imm;

ALUOutput ← A func B;

ALUOutput ← A op Imm;

ALUOutput ← NPC + (Imm << 2);
Cond ← (A == 0);

B629: Practical Compiling for Modern Machines

Simple MIPS Implementation: ID
(IF ➙ ID ➙ EX ➙ MEM ➙ WB)

• Memory access / branch completion
★ Memory reference

★ Branch

42

LMD ← Mem[ALUOutput] or
Mem[ALUOutput] ← B;

if (cond) PC ← ALUOutput;

B629: Practical Compiling for Modern Machines

Simple MIPS Implementation: ID
(IF ➙ ID ➙ EX ➙ MEM ➙ WB)

• Write-back
★ Register-Register ALU instruction

★ Register-Immediate ALU instruction

★ Load instruction

43

Regs[rd] ← ALUOutput;

Regs[rt] ← ALUOutput;

Regs[rt] ← LMD;

B629: Practical Compiling for Modern Machines

MIPS Data Path

44

B629: Practical Compiling for Modern Machines

MIPS Data Path: Pipelined

45

B629: Practical Compiling for Modern Machines

Situations for Data Hazard

46

B629: Practical Compiling for Modern Machines

Logic to Detect Data Hazards

47

B629: Practical Compiling for Modern Machines

Forwarding

48

B629: Practical Compiling for Modern Machines

Forwarding

48

B629: Practical Compiling for Modern Machines

Forwarding Implemented

49

B629: Practical Compiling for Modern Machines

Reducing the Branch Delay

50

B629: Practical Compiling for Modern Machines

EXCEPTIONS

51

B629: Practical Compiling for Modern Machines

Types of Exceptions

• I/O device request
• Invoking an OS service
• Tracing
• Breakpoint
• Integer arithmetic overflow
• FP arithmetic anomaly
• Page fault
• Misaligned memory access
• Memory protection violation
• Undefined or unimplemented instruction
• Hardware malfunction
• Power failure

52

B629: Practical Compiling for Modern Machines

Exception Categories

• Synchronous vs Asynchronous
• User requested vs coerced
• User maskable vs nonmaskable
• Within vs between instructions
• Resume vs terminate

53

B629: Practical Compiling for Modern Machines

Exception Categorization

54

B629: Practical Compiling for Modern Machines

Handling Exceptions

55

• Force a “trap” into the pipeline on the next IF
• Turn of all writes until the trap is taken off

★ place zeros into pipeline latches of instructions following
the one causing exception

• Exception handler saves PC and returns to it
• Delayed branches cause a problem

★ need to save delay slots plus one number of PCs

B629: Practical Compiling for Modern Machines

(Precise) Exceptions in MIPS

56

B629: Practical Compiling for Modern Machines

(Precise) Exceptions in MIPS

56

B629: Practical Compiling for Modern Machines

(Precise) Exceptions in MIPS

56

Use exception status vector for each instruction

B629: Practical Compiling for Modern Machines

Complications due to Complex Instructions

57

• Instructions that change processor states before
they are committed
★ autoincrement
★ string copy (change memory state)

• State bits
★ implicitly condition codes (flags)

✴ instructions setting condition codes not allowed in delay slots

• Multicycle operations
★ use of microinstructions

B629: Practical Compiling for Modern Machines

ADDING FLOATING POINT
SUPPORT

58

B629: Practical Compiling for Modern Machines

Functional Units

• Main integer unit
★ handles loads, stores, integer ALU operations, branches

• FP and integer multiplier
• FP adder

★ handles FP add, subtract, and conversion

• FP and integer divider

59

B629: Practical Compiling for Modern Machines

Extended Pipeline

60

B629: Practical Compiling for Modern Machines

Extended Pipeline: Expanded View

61

B629: Practical Compiling for Modern Machines

Extended Pipeline: Expanded View

61

B629: Practical Compiling for Modern Machines

Extended Pipeline: Expanded View

61

B629: Practical Compiling for Modern Machines

Additional Complications

62

• Structural hazard because divide unit is not
pipelined

• Number of register writes in a cycle may more than
one

• WAW hazards possible
★ WAR hazards not possible

• Maintaining precise exceptions
★ out-of-order completion

• More number of stalls due to RAW hazards, due to
longer pipeline

B629: Practical Compiling for Modern Machines

Example: RAW Hazard

63

B629: Practical Compiling for Modern Machines

Example 2

64

B629: Practical Compiling for Modern Machines

Handling the Problems

65

• Register file conflict detection
★ detect at ID stage
★ detect at MEM or WB stage

B629: Practical Compiling for Modern Machines

Handling the Problems

66

• Register file conflict detection
★ detect at ID stage, or
★ detect at MEM or WB stage

• WAW hazard detection
★ delay the issue of second instruction, or
★ stamp out the result of the first instruction (convert it into

noop)

B629: Practical Compiling for Modern Machines

Summary of Checks

• Check for structural hazards
• Check for RAW data hazard
• Check for WAW data hazard

67

B629: Practical Compiling for Modern Machines

Maintaing Precise Exceptions

• Ignore the problem
★ settle for imprecise exceptions

• Buffer the results
★ simple buffer could be very big
★ history file
★ future file

• Let trap handling routines clean up
• Hybrid scheme: allow issue when earlier instructions can

no longer raise exception

68

B629: Practical Compiling for Modern Machines

DYNAMIC SCHEDULING

69

B629: Practical Compiling for Modern Machines

Idea Behind Dynamic Scheduling

• Split ID stage:
★ Issue -- decode, check for structural hazards
★ Read operands -- wait until no data hazards, then read

• Other stages remain as before

70

B629: Practical Compiling for Modern Machines

Idea Behind Dynamic Scheduling

• Split ID stage:
★ Issue -- decode, check for structural hazards
★ Read operands -- wait until no data hazards, then read

• Other stages remain as before

70

DIV.D F0, F2, F4
ADD.D F10,F0,F8
SUB.D F8,F8,F14

Must take care of WAR and WAW hazards.

B629: Practical Compiling for Modern Machines

Scoreboarding (CDC 6600)

71

B629: Practical Compiling for Modern Machines

Scoreboarding (CDC 6600)

72

• Issue
★ check for free functional units
★ check if another instruction has the same destination

register (WAW hazard detection)

• Read operands
★ monitor availability of source operands (RAW hazard

detection)

• Execution
★ functional unit notifies scoreboard of completion

• Write result
★ check for WAR hazards, stall write if necessary

B629: Practical Compiling for Modern Machines

Scoreboarding: Effectiveness

• Relative easy to implement the logic
★ only as much as a functional unit
★ but four times as many buses as without scoreboard

• Reduces Clocks Per Instruction (CPI)
★ tries to make use of the available Instruction Level

Parallelism (ILP)
★ 1.7x speedup for Fortran, 2.5x for hand-coded assembly

73

B629: Practical Compiling for Modern Machines

Scoreboarding: Limitations

• Overlapping instructions must be picked from a
single basic block

• Window: number of scoreboard entries
• Number and types of functional units
• Presence of anti- and output-dependences

74

B629: Practical Compiling for Modern Machines

Pitfalls

• Unexpected execution sequences may cause
unexpected hazards

• Extensive pipelining can impact other aspects of a
design

• Evaluating dynamic or static scheduling on the basis
of unoptimized code

75

 BNEZ R1, foo
 DIV.D F0,F2,F4
 ...
 ...
foo: L.D F0,qrs

