
MEMORY HIERARCHY
BASICS

B649
Parallel Architectures and Programming

B629: Practical Compiling for Modern Machines

BASICS

2

B629: Practical Compiling for Modern Machines

Why Do We Need Caches?

3

B629: Practical Compiling for Modern Machines

Overview

4

B629: Practical Compiling for Modern Machines

Terminology

5

cache
virtual memory
memory stall cycles
direct mapped
valid bit
block address
write through
instruction cache
average memory access time
cache hit
page
miss penalty

fully associative
dirty bit
block offset
write back
data cache
hit time
cache miss
page fault
miss rate
n-way set associative
least-recently used
tag field

write allocate
unified cache
misses per instruction
block
locality
address trace
set
random replacement
index field
no-write allocate
write buffer
write stall

B629: Practical Compiling for Modern Machines

Terminology

6

cache
virtual memory
memory stall cycles
direct mapped
valid bit
block address
write through
instruction cache
average memory access time
cache hit
page
miss penalty

fully associative
dirty bit
block offset
write back
data cache
hit time
cache miss
page fault
miss rate
n-way set associative
least-recently used
tag field

write allocate
unified cache
misses per instruction
block
locality
address trace
set
random replacement
index field
no-write allocate
write buffer
write stall

B629: Practical Compiling for Modern Machines

Four Memory-Hierarchy Questions

7

• Where can a block be placed in the upper level?
★ block placement

• How is a block found if it is in the upper level?
★ block identification

• Which block should be replaced on a miss?
★ block replacement

• What happens on a write?
★ write strategy

B629: Practical Compiling for Modern Machines

Where Can a Block Be Placed in a Cache?

• Only one place for each block
★ direct mapped

• Anywhere in the cache
★ fully associative

• Restricted set of places
★ set associative

8

(Block address) MOD (Number of blocks in cache)

(Block address) MOD (Number of sets in cache)

B629: Practical Compiling for Modern Machines

How is a Block Found if it is in Cache?

9

• “Tags” in each cache block gives the block address
★ all possible tags searched in parallel (associative memory)
★valid bit tells whether a tag match valid

• No “index” field in fully associative caches

Fields in a memory address

B629: Practical Compiling for Modern Machines

Which Block Should be Replaced on a Miss?

• Random
★ easy to implement

• Least-recently used (LRU)
★ idea: rely on the past to predict the future
★ replace the block unused for the longest time

• First in, First out (FIFO)
★ approximates LRU (oldest, rather than least recently used)
★ simpler to implement

10

B629: Practical Compiling for Modern Machines

What Happens on a Write?

• Write strategy
★ write through

✴ write to cache block and to the block in the lower-level memory
★ write back

✴ write only to cache block, update the lower-level memory when
block replaced

• Block allocation strategy
★ write allocate

✴ allocate a block on cache miss
★ no-write allocate

✴ do not allocate, no affect on cache

11

B629: Practical Compiling for Modern Machines

CACHE PERFORMANCE

12

B629: Practical Compiling for Modern Machines

Defining Performance

• Miss rate is attractive, but misleading

• Bottom line: CPU time
★ assume in-order execution for now

★ include hit clock cycles in memory cycles or execution
cycles?

13

B629: Practical Compiling for Modern Machines

Defining Performance

• Miss rate is attractive, but misleading

• Bottom line: CPU time
★ assume in-order execution for now

★ include hit clock cycles in memory cycles or execution
cycles?

13

Average memory access time = Hit time + Miss rate × Miss penalty

B629: Practical Compiling for Modern Machines

Defining Performance

• Miss rate is attractive, but misleading

• Bottom line: CPU time
★ assume in-order execution for now

★ include hit clock cycles in memory cycles or execution
cycles?

13

Average memory access time = Hit time + Miss rate × Miss penalty

CPU time = (CPU execution clock cycles + Memory stall clock cycles) × Clock cycle time

B629: Practical Compiling for Modern Machines

Example

• Assumptions
★ in-order execution
★ miss penalty = 200 cycles
★ cycles per instruction (w/o cache misses) = 1 cycle
★ average miss rate = 2%
★ average memory references per instruction = 1.5
★ cache misses per 1000 instructions = 30

• What is the impact of cache?

14

B629: Practical Compiling for Modern Machines

Impact of Cache

15

Assumptions
* in-order execution
* miss penalty = 200 cycles
* cycles per instruction (w/o cache misses) = 1 cycle
* average miss rate = 2%
* average memory references per instruction = 1.5
* cache misses per 1000 instructions = 30

CPU time = IC × (CPI + Memory stall cycle / instruction) × Clock cycle time

With cache = IC × (1.0 + (30/1000 × 200)) × Clock cycle time
 = IC × 7.0 × Clock cycle time

Without cache = IC × (1.0 + 200 × 1.5) × Clock cycle time
 = IC × 301 × Clock cycle time

B629: Practical Compiling for Modern Machines

Miss Penalty and Out-of-order Execution

16

• Some of the miss penalty is hidden

• Miss latency
★ What is start and end of a memory operation (memory

latency)?
★ What is the start of overlap with the processor (latency

overlap)?

B629: Practical Compiling for Modern Machines

Miss Penalty and Out-of-order Execution

16

• Some of the miss penalty is hidden

• Miss latency
★ What is start and end of a memory operation (memory

latency)?
★ What is the start of overlap with the processor (latency

overlap)?

Memory stall cycle / Instruction = (Misses / Instruction) × (Total miss latency − Overlapped miss latency)

B629: Practical Compiling for Modern Machines

VIRTUAL MEMORY

... a system has been devised to make the core drum
combination appear to the programmer as a single level
store, the requisite transfers taking place automatically.

Killburn et al. [1962]

17

B629: Practical Compiling for Modern Machines

Virtual Memory

18

B629: Practical Compiling for Modern Machines

Virtual Memory vs Cache

19

B629: Practical Compiling for Modern Machines

Why Virtual Memory?

20

• Ability to large programs with large data
★ earlier, users would need to use overlays manually

• Ability to share a machine among multiple
processes, with protection
★ very early Windows systems did not have this protection!

• Ease of relocation
★ alternatively, would need to use a special relocation register,

or do this is software

B629: Practical Compiling for Modern Machines

Virtual Memory: Terminology

• Cache block ⇒ page or segment

• Cache miss ⇒ page fault or address fault

• Address translation or memory mapping
★virtual address to physical address

• Differences between VM and caches
★ replacement controlled by software in VM
★ processor address determines the size of VM
★ secondary storage shared with file system

• Two flavors of VM: paged and segmented

21

B629: Practical Compiling for Modern Machines

Segmented vs Paged

22

B629: Practical Compiling for Modern Machines

Four Memory Hierarchy Questions

23

• Where can a block be placed in memory?
★ fully associative

B629: Practical Compiling for Modern Machines

Four Memory Hierarchy Questions

24

• Where can a block be placed in memory?
★ fully associative

• How is a block found if it is in main memory?
★ using a page table

B629: Practical Compiling for Modern Machines

Page Table

25

B629: Practical Compiling for Modern Machines

Four Memory Hierarchy Questions

26

• Where can a block be placed in memory?
★ fully associative

• How is a block found if it is in main memory?
★ using a page table

• Which block should be replaced on a virtual
memory miss?
★ LRU policy, implemented with a use bit or reference bit

B629: Practical Compiling for Modern Machines

Four Memory Hierarchy Questions

27

• Where can a block be placed in memory?
★ fully associative

• How is a block found if it is in main memory?
★ using a page table

• Which block should be replaced on a virtual
memory miss?
★ LRU policy, implemented with a use bit or reference bit

• What happens on a write?
★ always write back

B629: Practical Compiling for Modern Machines

• Virtualized page tables
• Inverted page tables

★ hash tables, as many entries as the number of allocated
pages

• Multilevel page tables

Optimizing Page Table

28

B629: Practical Compiling for Modern Machines

Multilevel Page Tables

29

Virtual address translation on Opteron

B629: Practical Compiling for Modern Machines

Translation Look-aside Buffers (TLBs)

30

TLB uses fully associative placement

B629: Practical Compiling for Modern Machines

Address Translation with Caches

31

B629: Practical Compiling for Modern Machines

SIX BASIC CACHE
OPTIMIZATIONS

32

B629: Practical Compiling for Modern Machines

Six Ideas

• Reducing the miss rate
★ larger block size
★ larger cache size
★ higher associativity

• Reducing the miss penalty
★ multilevel caches
★ prioritize read misses over writes

• Reducing the time to hit in cache
★ avoid address translation when indexing the cache

33

Average memory access time = Hit time + Miss rate × Miss penalty

B629: Practical Compiling for Modern Machines

Type of Cache Misses

• Compulsory
★ caused by the very first access to the block

• Capacity
★ if the cache cannot contain all the needed blocks, misses (in

addition to the compulsory misses) due to blocks being
discarded and retrieved later

• Conflict
★ if the block placement is not fully associative, misses (in

addition to the above two kinds) due to blocks being
discarded and later retrieved due to too many blocks being
mapped to the same set

• Coherency
34

B629: Practical Compiling for Modern Machines

Classical Approach: Reduce Miss Rate

35

SPEC2000 benchmarks

B629: Practical Compiling for Modern Machines

Optimizations

36

• Larger block size to reduce miss rate

B629: Practical Compiling for Modern Machines

Increasing Block Size

37

B629: Practical Compiling for Modern Machines

Example

38

• Memory access:
★ latency = 80 clock cycles
★ bandwidth: 16 bytes each 2 cycles, thereafter
★ thus, 16 bytes in 82 cycles, 32 bytes in 84 cycles, ...

B629: Practical Compiling for Modern Machines

Example

38

• Memory access:
★ latency = 80 clock cycles
★ bandwidth: 16 bytes each 2 cycles, thereafter
★ thus, 16 bytes in 82 cycles, 32 bytes in 84 cycles, ...

Average memory access time = Hit time + Miss rate × Miss penalty
For 16-byte block, 4K size cache = 1 + (8.57% × 82) = 8.027 clock cycles
For 256-byte block, 256K size cache = 1 + (0.49% × 112) = 1.549 clock cycles

B629: Practical Compiling for Modern Machines

Average Memory Access Times

39

B629: Practical Compiling for Modern Machines

Optimizations

40

• Larger block size to reduce miss rate
• Larger caches to reduce miss rate

B629: Practical Compiling for Modern Machines

Optimizations

41

• Larger block size to reduce miss rate
• Larger caches to reduce miss rate
• Higher associativity to reduce miss rate

B629: Practical Compiling for Modern Machines

Increasing Associativity

42

Lessons:

1. 8-way is as good as fully associative

2. 2:1 cache rule of thumb: direct
mapped cache of size N has about the
same miss rate as 2-way of size N/2

B629: Practical Compiling for Modern Machines

Example

43

Clock cycle time₂ = 1.36 × Clock cycle time₁
Clock cycle time₄ = 1.44 × Clock cycle time₂
Clock cycle time₈ = 1.52 × Clock cycle time₄
Hit time = 1 clock cycle
Miss penalty to L2 = 25 cycles

B629: Practical Compiling for Modern Machines

Example

43

Clock cycle time₂ = 1.36 × Clock cycle time₁
Clock cycle time₄ = 1.44 × Clock cycle time₂
Clock cycle time₈ = 1.52 × Clock cycle time₄
Hit time = 1 clock cycle
Miss penalty to L2 = 25 cycles

Average memory access time₈ = Hit time₈ + Miss rate₈ × Miss penalty₈
 = 1.52 + Miss rate₈ × 25
Average memory access time₄ = 1.44 + Miss rate₄ × 25
Average memory access time₂ = 1.36 + Miss rate₂ × 25
Average memory access time₁ = 1.00 + Miss rate₁ × 25

B629: Practical Compiling for Modern Machines

Average Memory Access Times

44

B629: Practical Compiling for Modern Machines

Optimizations

45

• Larger block size to reduce miss rate
• Larger caches to reduce miss rate
• Higher associativity to reduce miss rate
• Multilevel caches to reduce miss penalty

B629: Practical Compiling for Modern Machines

Computing Memory Access Time

46

Average memory access time = Hit time₁ + Miss rate₁ × Miss penalty₁

Miss penalty₁ = Hit time₂ + Miss rate₂ × Miss penalty₂

Average memory access time = Hit time₁ + Miss rate₁ ×
 (Hit time₂ + Miss rate₂ × Miss penalty₂)

B629: Practical Compiling for Modern Machines

Computing Memory Access Time

46

Average memory access time = Hit time₁ + Miss rate₁ × Miss penalty₁

Miss penalty₁ = Hit time₂ + Miss rate₂ × Miss penalty₂

Average memory access time = Hit time₁ + Miss rate₁ ×
 (Hit time₂ + Miss rate₂ × Miss penalty₂)

• Note: L2 misses are on leftovers from L1

B629: Practical Compiling for Modern Machines

Two Types of Miss Rates

47

• Local Miss Rate
★ number of misses / total number of memory accesses to this

cache

• Global Miss Rate
★ number of misses / total number of memory accesses

generated by the processor

• Local miss rate is large for second-level cache
★ Why?

B629: Practical Compiling for Modern Machines

Two Types of Miss Rates

47

• Local Miss Rate
★ number of misses / total number of memory accesses to this

cache

• Global Miss Rate
★ number of misses / total number of memory accesses

generated by the processor

• Local miss rate is large for second-level cache
★ Why?

Average memory stalls per instruction =
 L1 misses per instruction × L2 hit time +
 L2 misses per instruction × L2 miss penalty

B629: Practical Compiling for Modern Machines

Miss Rates vs Cache Sizes

48

B629: Practical Compiling for Modern Machines

Relative Execution Time by L2 Size

49

B629: Practical Compiling for Modern Machines

Questions to Consider

50

• Size of L2 cache
• Set-associativity
• Multi-level inclusion

★ different block sizes cause problems
★ what if size of L2 is only slightly bigger than L1?
★ AMD Opteron follows exclusion property

✴ swap L1 and L2 blocks on L1 miss

B629: Practical Compiling for Modern Machines

Optimizations

51

• Larger block size to reduce miss rate
• Larger caches to reduce miss rate
• Higher associativity to reduce miss rate
• Multilevel caches to reduce miss penalty
• Prioritizing read misses over writes to reduce miss

penalty

B629: Practical Compiling for Modern Machines

Example

52

SW R3, 512(R0) ;M[512]←R3 (cache index 0)
LW R1, 1024(R0) ;R1←M[1024] (cache index 0)
LW R2, 512(R0) ;R2←M[512] (cache index 0)

B629: Practical Compiling for Modern Machines

Example

• RAW data hazard
• Write through cache

★ write buffer can cause a problem
★ either let write finish or check the buffer and let read miss

proceed (preferred)

• Write back cache
★ either let writes of replaced dirty blocks to finish, or buffer

writes and let read misses proceed after checking the buffer
(preferred)

52

SW R3, 512(R0) ;M[512]←R3 (cache index 0)
LW R1, 1024(R0) ;R1←M[1024] (cache index 0)
LW R2, 512(R0) ;R2←M[512] (cache index 0)

B629: Practical Compiling for Modern Machines

Optimizations

53

• Larger block size to reduce miss rate
• Larger caches to reduce miss rate
• Higher associativity to reduce miss rate
• Multilevel caches to reduce miss penalty
• Prioritizing read misses over writes to reduce miss

penalty
• Avoiding address translation during indexing of the

cache to reduce hit time

B629: Practical Compiling for Modern Machines

Virtual Caches

54

B629: Practical Compiling for Modern Machines

Virtual Caches

• Use virtual address in caches to avoid translation

54

B629: Practical Compiling for Modern Machines

Virtual Caches

• Use virtual address in caches to avoid translation
• Reasons against:

★ Page-level protection (checked at address translation time)
★ Process switches might force flushes; or expand the cache

address tag with process-identifier (PID) tag

54

B629: Practical Compiling for Modern Machines

Miss Rate of Virtually Addressed Caches

55

B629: Practical Compiling for Modern Machines

Virtual Caches

• Use virtual address in caches to avoid translation
• Reasons against:

★ Page-level protection (checked at address translation time)
★ Process switches might force flushes; or expand the cache

address tag with process-identifier (PID) tag
★ Multiple virtual addresses might map to same physical

address (aliases or synonyms)
✴ need special hardware to ensure unique copy (e.g., Opteron has
64KB instruction cache, 2-way set associative, 4KB page size)

✴ page coloring simplifies the hardware (e.g., Sun OS required all
aliases to be identical in last 18 bits)

★ I/O often uses physical addresses
56

B629: Practical Compiling for Modern Machines

Best of Both Worlds

• Idea: Use part of page offset to index the cache
★ recall that page offset is identical in both virtual and

physical addresses

• Virtually indexed, physically tagged
• Limitation: direct-mapped cache size may not be

bigger than page size

★ increase associativity to get larger caches (e.g., IBM 3033
has 16-way set-associative cache to get over the limit of
4KB page size)

57

B629: Practical Compiling for Modern Machines

6 Optimizations: Recap

58

• Larger block size to reduce miss rate
• Larger caches to reduce miss rate
• Higher associativity to reduce miss rate
• Multilevel caches to reduce miss penalty
• Prioritizing read misses over writes to reduce miss

penalty
• Avoiding address translation during indexing of the

cache to reduce hit time

B629: Practical Compiling for Modern Machines

Watch Out for OS Performance

59

B629: Practical Compiling for Modern Machines

NEXT: MORE ON MEMORY
HIERARCHY

60

