
MEMORY HIERARCHY
DESIGN

B649
Parallel Architectures and Programming

B629: Practical Compiling for Modern Machines

Basic Optimizations

2

• Larger block size to reduce miss rate
• Larger caches to reduce miss rate
• Higher associativity to reduce miss rate
• Multilevel caches to reduce miss penalty
• Prioritizing read misses over writes to reduce miss

penalty
• Avoiding address translation during indexing of the

cache to reduce hit time

Average memory access time = Hit time + Miss rate × Miss penalty

B629: Practical Compiling for Modern Machines

ADVANCED OPTIMIZATIONS

3

B629: Practical Compiling for Modern Machines

Eleven Advanced Optimizations

• Reducing the hit time
★ small and simple caches, way prediction, trace caches

• Increasing cache bandwidth
★ pipelined caches, multibanked caches, non-blocking caches

• Reducing the miss penalty
★ critical word first, merging write buffers

• Reducing the miss rate
★ compiler optimizations

• Reducing miss penalty / miss rate via parallelism
★ hardware prefetching, compiler prefetching

4

Average memory access time = Hit time + Miss rate × Miss penalty

B629: Practical Compiling for Modern Machines

#1: Small and Simple Caches
(To Reduce Hit Time)

• Small caches can be faster
★ reading tags and comparing is time-consuming
★ L1 should be fast enough to be read in 1-2 cycles
★ desirable to keep L2 small enough to fit on chip

✴ could keep data off-chip and tags on-chip

• Simpler caches can be faster
★ direct-mapped caches: can overlap tag check and

transmission of data
✴ Why is this not possible with set-associative caches?

5

B629: Practical Compiling for Modern Machines

Access Times on a CMOS Cache (CACTI)

6

B629: Practical Compiling for Modern Machines 7

• Extra bits per block to predict the way (block
within the set) of the next cache access
★ can set the multiplexer early
★ can match the tag and read data in parallel
★ miss results in matching other blocks in next clock cycle

• Prediction accuracy > 85% suggested by simulations
★ good match for speculative processors
★ used in Pentium 4

#2: Way Prediction
(To Reduce Hit Time)

B629: Practical Compiling for Modern Machines 8

#3: Trace Caches
(To Reduce Hit Time)

A[i] = A[i] + B[i]

T F

XB[i] =

A[i] = 0?

C[i] =

B629: Practical Compiling for Modern Machines

• Goal: to enhance instruction-level parallelism (find
sufficient number of instructions without
dependencies)
★ trace = dynamic sequence of executed instructions

• Using traces
★ branches folded into traces, hence need to be validated
★ more complicated address mapping (?)
★ better utilize long blocks
★ conditional branches cause duplication of instructions

across traces
★ used in Pentium 4 (in general, benefits not obvious)

9

#3: Trace Caches
(To Reduce Hit Time)

B629: Practical Compiling for Modern Machines

• Pipeline results in fast clock cycle time and high
bandwidth, but slow hits
★ Pentium 1: 1 clock cycle for instruction cache
★ Pentium Pro / III: 2 clock cycles
★ Pentium 4: 4 clock cycles

10

#4: Pipelined Cache Access
(To Increase Cache Bandwidth)

B629: Practical Compiling for Modern Machines

• Nonblocking or lockup-#ee cache increases the
potential benefit of out-of-order processors by
continuing to serve hits while a miss is outstanding
★ called hit-under-miss optimization

• Further optimization if multiple outstanding misses
allowed
★ hit-under-miltiple-miss or miss-under-miss optimization
★ useful only if memory system can serve multiple misses
★ recall that outstanding misses can limit achievable ILP

• In general, L1 misses possible to hide, but L2 misses
extremely difficult to hide

11

#5: Nonblocking Caches
(To Increase Cache Bandwidth)

B629: Practical Compiling for Modern Machines 12

#5: Nonblocking Caches
(To Increase Cache Bandwidth)

Ratio of average memory stall time for a blocking cache to
hit-under-miss schemes for SPEC92 programs

B629: Practical Compiling for Modern Machines 13

• Originally used for memory, but also applicable to
caches
★ L2: Opteron has two banks, Sun Niagara has four banks

• Sequential interleaving works well

#6: Multibanked Caches
(To Increase Cache Bandwidth)

B629: Practical Compiling for Modern Machines

• Observation: cache usually needs one word of the
block at a time
★ show impatience!

• Critical word first
★ fetch the missed word from the memory first and sent it to

processor as soon as it arrives

• Early restart
★ fetch words in normal order, but send the requested word

to the processor as soon as it arrives

• Useful for large block sizes

14

#7: Critical Word First and Early Restart
(To Reduce Miss Penalty)

B629: Practical Compiling for Modern Machines 15

#8: Merging Write Buffers
(To Reduce Miss Penalty)

B629: Practical Compiling for Modern Machines 16

#8: Merging Write Buffers
(To Reduce Miss Penalty)

• Write merging
★ used in Sun Niagara

• Helps reduce stalls due to write buffers being full
• Uses memory more efficiently

★ multi-word writes are faster than writes performed one
word at a time

• The block replaced in a cache is called the victim
★ AMD Opteron calls its write buffer victim buffer
★ do not confuse with victim cache!

B629: Practical Compiling for Modern Machines

• Reordering procedures to reduce conflict misses
• Aligning basic blocks at cache block boundaries
• Branch straightening

17

#9: Compiler Optimizations: Code
(To Reduce Miss Rate)

B629: Practical Compiling for Modern Machines

• Reordering procedures to reduce conflict misses

18

#9: Compiler Optimizations: Code
(To Reduce Miss Rate)

B629: Practical Compiling for Modern Machines

• Reordering procedures to reduce conflict misses

19

#9: Compiler Optimizations: Code
(To Reduce Miss Rate)

Memory

Direct-mapped
cache

B629: Practical Compiling for Modern Machines

• Reordering procedures to reduce conflict misses

19

#9: Compiler Optimizations: Code
(To Reduce Miss Rate)

Memory

Direct-mapped
cache

B629: Practical Compiling for Modern Machines

• Reordering procedures to reduce conflict misses

19

#9: Compiler Optimizations: Code
(To Reduce Miss Rate)

Memory

Direct-mapped
cache

B629: Practical Compiling for Modern Machines

• Reordering procedures to reduce conflict misses

19

#9: Compiler Optimizations: Code
(To Reduce Miss Rate)

Memory

Direct-mapped
cache

B629: Practical Compiling for Modern Machines

• Reordering procedures to reduce conflict misses

19

#9: Compiler Optimizations: Code
(To Reduce Miss Rate)

Memory

Direct-mapped
cache

B629: Practical Compiling for Modern Machines

• Reordering procedures to reduce conflict misses
• Aligning basic blocks at cache block boundaries

20

#9: Compiler Optimizations: Code
(To Reduce Miss Rate)

B629: Practical Compiling for Modern Machines

• Reordering procedures to reduce conflict misses
• Aligning basic blocks at cache block boundaries

20

#9: Compiler Optimizations: Code
(To Reduce Miss Rate)

B629: Practical Compiling for Modern Machines

• Reordering procedures to reduce conflict misses
• Aligning basic blocks at cache block boundaries

20

#9: Compiler Optimizations: Code
(To Reduce Miss Rate)

B629: Practical Compiling for Modern Machines

• Reordering procedures to reduce conflict misses
• Aligning basic blocks at cache block boundaries
• Branch straightening

21

#9: Compiler Optimizations: Code
(To Reduce Miss Rate)

B629: Practical Compiling for Modern Machines

• Reordering procedures to reduce conflict misses
• Aligning basic blocks at cache block boundaries
• Branch straightening

21

#9: Compiler Optimizations: Code
(To Reduce Miss Rate)

B629: Practical Compiling for Modern Machines

• Loop interchange
★ to effectively leverage spatial locality

• Blocking
★ to improve temporal locality

22

#9: Compiler Optimizations: Data
(To Reduce Miss Rate)

B629: Practical Compiling for Modern Machines 23

#9: Compiler Optimizations: Loop Interchange
(To Reduce Miss Rate)

for (j=0; j < 100; j++)
 for (i=0; i < 5000; i++)

 x[i][j] = 2*x[i][j];

B629: Practical Compiling for Modern Machines 23

#9: Compiler Optimizations: Loop Interchange
(To Reduce Miss Rate)

for (j=0; j < 100; j++)
 for (i=0; i < 5000; i++)

 x[i][j] = 2*x[i][j];

B629: Practical Compiling for Modern Machines 23

#9: Compiler Optimizations: Loop Interchange
(To Reduce Miss Rate)

for (j=0; j < 100; j++)
 for (i=0; i < 5000; i++)

 x[i][j] = 2*x[i][j];

Column-major ordering

B629: Practical Compiling for Modern Machines 23

#9: Compiler Optimizations: Loop Interchange
(To Reduce Miss Rate)

for (j=0; j < 100; j++)
 for (i=0; i < 5000; i++)

 x[i][j] = 2*x[i][j];

Column-major ordering

Only one cache miss

B629: Practical Compiling for Modern Machines

for (j=0; j < 100; j++)
 for (i=0; i < 5000; i++)

 x[i][j] = 2*x[i][j];

24

#9: Compiler Optimizations: Loop Interchange
(To Reduce Miss Rate)

Row-major ordering

B629: Practical Compiling for Modern Machines

for (j=0; j < 100; j++)
 for (i=0; i < 5000; i++)

 x[i][j] = 2*x[i][j];

24

#9: Compiler Optimizations: Loop Interchange
(To Reduce Miss Rate)

Row-major ordering

B629: Practical Compiling for Modern Machines

for (j=0; j < 100; j++)
 for (i=0; i < 5000; i++)

 x[i][j] = 2*x[i][j];

24

#9: Compiler Optimizations: Loop Interchange
(To Reduce Miss Rate)

Row-major ordering

B629: Practical Compiling for Modern Machines

for (i=0; i < 5000; i++)
 for (j=0; j < 100; j++)

 x[i][j] = 2*x[i][j];

24

#9: Compiler Optimizations: Loop Interchange
(To Reduce Miss Rate)

Row-major ordering

B629: Practical Compiling for Modern Machines 25

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

for (i=0; i < N; i++)
 for (j=0; j < N; j++)
 {
 r = 0.0;
 for (k=0; k < N; k++)
 r = r + y[i][k]*z[k][j];
 x[i][j] = r;
 }

B629: Practical Compiling for Modern Machines 25

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

for (i=0; i < N; i++)
 for (j=0; j < N; j++)
 {
 r = 0.0;
 for (k=0; k < N; k++)
 r = r + y[i][k]*z[k][j];
 x[i][j] = r;
 }

Accesses = anywhere between 3N2 and (2N³+N²)

B629: Practical Compiling for Modern Machines 26

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

for (i=0; i < N; i++)
 for (j=0; j < N; j++)
 {
 r = 0.0;
 for (k=0; k < N; k++)
 r = r + y[i][k]*z[k][j];
 x[i][j] = r;
 }

B629: Practical Compiling for Modern Machines 26

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

for (i=0; i < N; i++)
 for (j=0; j < N; j++)
 {
 r = 0.0;
 for (k=0; k < N; k++)
 r = r + y[i][k]*z[k][j];
 x[i][j] = r;
 }

B629: Practical Compiling for Modern Machines 27

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

B629: Practical Compiling for Modern Machines 27

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

for (ii=0; ii < N/B; ii++)
 for (jj=0; jj < N/B; jj++)
 {
 R = ZEROS(B,B);
 for (kk=0; kk < N/B; kk++)
 R = R ⊞ Y[ii][kk]⊠Z[kk][jj];
 X[ii][jj] = R;
 }

B629: Practical Compiling for Modern Machines 28

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate) for (ii=0; ii < N/B; ii++)

 for (jj=0; jj < N/B; j++)
 {
 R = ZEROS(B,B);
 for (kk=0; kk < N/B; kk++)
 R = R ⊞ Y[ii][kk]⊠Z[kk][jj];
 X[ii][jj] = R;
 }

for (ii=0; ii < N/B; ii++)
 for (jj=0; jj < N/B; jj++)
 {
 R = ZEROS(B,B);
 for (kk=0; kk < N/B; kk++)
 {
 for (i=ii; i < ii+B; i++)
 for (j=jj; j < jj+B; j++)
 for (k=kk; k < kk+B; k++)
 R[i][j] = R[i][j] + y[i][k]*z[k][j]
 }
 X[ii][jj] = R;
 }

B629: Practical Compiling for Modern Machines 29

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

for (ii=0; ii < N/B; ii++)
 for (jj=0; jj < N/B; jj++)
 for (kk=0; kk < N/B; kk++)
 for (i=ii; i < ii+B; i++)
 for (j=jj; j < jj+B; j++)
 {
 r = 0.0;
 for (k=kk; k < kk+B; k++)
 r = r + y[i][k]*z[k][j];
 x[i][j] = r;
 }

for (ii=0; ii < N/B; ii++)
 for (jj=0; jj < N/B; jj++)
 {
 R = ZEROS(B,B);
 for (kk=0; kk < N/B; kk++)
 {
 for (i=ii; i < ii+B; i++)
 for (j=jj; j < jj+B; j++)
 for (k=kk; k < kk+B; k++)
 R[i][j] = R[i][j] + y[i][k]*z[k][j]
 }
 X[ii][jj] = R;
 }

B629: Practical Compiling for Modern Machines 30

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

for (jj=0; jj < N; jj = jj+B)
 for (kk=0; kk < N; kk = kk+B)
 for (i=0; i < N; i++)
 for (j=jj; j < min(jj+B,N); j++)
 {
 r = 0.0;
 for (k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k]*z[k][j];
 x[i][j] = x[i][j]+r;
 }

B629: Practical Compiling for Modern Machines 31

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

for (jj=0; jj < N; jj = jj+B)
 for (kk=0; kk < N; kk = kk+B)
 for (i=0; i < N; i++)
 for (j=jj; j < min(jj+B,N); j++)
 {
 r = 0.0;
 for (k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k]*z[k][j];
 x[i][j] = x[i][j]+r;
 }

B629: Practical Compiling for Modern Machines 31

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

for (jj=0; jj < N; jj = jj+B)
 for (kk=0; kk < N; kk = kk+B)
 for (i=0; i < N; i++)
 for (j=jj; j < min(jj+B,N); j++)
 {
 r = 0.0;
 for (k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k]*z[k][j];
 x[i][j] = x[i][j]+r;
 }

B629: Practical Compiling for Modern Machines 31

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

for (jj=0; jj < N; jj = jj+B)
 for (kk=0; kk < N; kk = kk+B)
 for (i=0; i < N; i++)
 for (j=jj; j < min(jj+B,N); j++)
 {
 r = 0.0;
 for (k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k]*z[k][j];
 x[i][j] = x[i][j]+r;
 }

B629: Practical Compiling for Modern Machines 31

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

for (jj=0; jj < N; jj = jj+B)
 for (kk=0; kk < N; kk = kk+B)
 for (i=0; i < N; i++)
 for (j=jj; j < min(jj+B,N); j++)
 {
 r = 0.0;
 for (k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k]*z[k][j];
 x[i][j] = x[i][j]+r;
 }

B629: Practical Compiling for Modern Machines 31

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

for (jj=0; jj < N; jj = jj+B)
 for (kk=0; kk < N; kk = kk+B)
 for (i=0; i < N; i++)
 for (j=jj; j < min(jj+B,N); j++)
 {
 r = 0.0;
 for (k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k]*z[k][j];
 x[i][j] = x[i][j]+r;
 }

B629: Practical Compiling for Modern Machines 31

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

for (jj=0; jj < N; jj = jj+B)
 for (kk=0; kk < N; kk = kk+B)
 for (i=0; i < N; i++)
 for (j=jj; j < min(jj+B,N); j++)
 {
 r = 0.0;
 for (k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k]*z[k][j];
 x[i][j] = x[i][j]+r;
 }

B629: Practical Compiling for Modern Machines 31

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

for (jj=0; jj < N; jj = jj+B)
 for (kk=0; kk < N; kk = kk+B)
 for (i=0; i < N; i++)
 for (j=jj; j < min(jj+B,N); j++)
 {
 r = 0.0;
 for (k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k]*z[k][j];
 x[i][j] = x[i][j]+r;
 }

B629: Practical Compiling for Modern Machines 31

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

Accesses:
z : N2

for (jj=0; jj < N; jj = jj+B)
 for (kk=0; kk < N; kk = kk+B)
 for (i=0; i < N; i++)
 for (j=jj; j < min(jj+B,N); j++)
 {
 r = 0.0;
 for (k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k]*z[k][j];
 x[i][j] = x[i][j]+r;
 }

B629: Practical Compiling for Modern Machines 31

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

Accesses:
z : N2

for (jj=0; jj < N; jj = jj+B)
 for (kk=0; kk < N; kk = kk+B)
 for (i=0; i < N; i++)
 for (j=jj; j < min(jj+B,N); j++)
 {
 r = 0.0;
 for (k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k]*z[k][j];
 x[i][j] = x[i][j]+r;
 }

Compulsory
misses

B629: Practical Compiling for Modern Machines 31

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

Accesses:
z : N2

x : B2 × N/B × #blocks = N × B × (N/B)2 = N3/B

for (jj=0; jj < N; jj = jj+B)
 for (kk=0; kk < N; kk = kk+B)
 for (i=0; i < N; i++)
 for (j=jj; j < min(jj+B,N); j++)
 {
 r = 0.0;
 for (k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k]*z[k][j];
 x[i][j] = x[i][j]+r;
 }

Compulsory
misses

B629: Practical Compiling for Modern Machines 31

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

Accesses:
z : N2

x : B2 × N/B × #blocks = N × B × (N/B)2 = N3/B

for (jj=0; jj < N; jj = jj+B)
 for (kk=0; kk < N; kk = kk+B)
 for (i=0; i < N; i++)
 for (j=jj; j < min(jj+B,N); j++)
 {
 r = 0.0;
 for (k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k]*z[k][j];
 x[i][j] = x[i][j]+r;
 }

Elements in
a block

Compulsory
misses

B629: Practical Compiling for Modern Machines 31

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

Accesses:
z : N2

x : B2 × N/B × #blocks = N × B × (N/B)2 = N3/B

for (jj=0; jj < N; jj = jj+B)
 for (kk=0; kk < N; kk = kk+B)
 for (i=0; i < N; i++)
 for (j=jj; j < min(jj+B,N); j++)
 {
 r = 0.0;
 for (k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k]*z[k][j];
 x[i][j] = x[i][j]+r;
 }

Number of
sweeps

Elements in
a block

Compulsory
misses

B629: Practical Compiling for Modern Machines 31

#9: Compiler Optimizations: Blocking
(To Reduce Miss Rate)

Accesses:
z : N2

x : B2 × N/B × #blocks = N × B × (N/B)2 = N3/B
y : N3/B
Total: 2N3/B+N2 (against 2N3+N2)

for (jj=0; jj < N; jj = jj+B)
 for (kk=0; kk < N; kk = kk+B)
 for (i=0; i < N; i++)
 for (j=jj; j < min(jj+B,N); j++)
 {
 r = 0.0;
 for (k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k]*z[k][j];
 x[i][j] = x[i][j]+r;
 }

Number of
sweeps

Elements in
a block

Compulsory
misses

B629: Practical Compiling for Modern Machines

• Instruction prefetch
★ prefetch two blocks, instead of one, on miss

• Data prefetch
★ extend the same idea to data
★ an older study found 50% to 70% misses could be captured

with 8 stream buffers (one for instruction, 7 for data)
★ Pentium 4 can prefetch into L2 cache from up to 8 streams

✴ invokes prefetch upon two successive misses to a page
✴ won’t prefetch across 4KB page boundary

32

#10: Hardware Prefetching
(To Reduce Miss Penalty or Miss Rate)

B629: Practical Compiling for Modern Machines 33

#10: Hardware Prefetching
(To Reduce Miss Penalty or Miss Rate)

Speedup due to hardware prefetching on Pentium 4

B629: Practical Compiling for Modern Machines 34

• Register prefetch
★ preload register

• Cache prefetch
★ load into the cache, but not register

• Either could be faulting or non-faulting
★ normal load is faulting register prefetch
★ non-faulting prefetches turn into no-ops

• Usually need non-blocking caches to be effective

#11: Compiler-Controlled Prefetching
(To Reduce Miss Penalty or Miss Rate)

B629: Practical Compiling for Modern Machines

Cache Optimization Summary

35

B629: Practical Compiling for Modern Machines

VIRTUAL MACHINES

36

B629: Practical Compiling for Modern Machines 37

A virtual machine is taken to be an efficient, isolated duplicate of the real
machine. We explain these notions through the idea of a virtual
machine monitor (VMM) ... a VMM has three essential characteristics.
First, the VMM provides an environment for programs which is
essentially identical with the original machine; second, programs run in
this environment show at worst only minor decreases in speed; and last,
the VMM is in complete control of the system resources.

Gerlad Popek and Robert Goldberg
“Formal requirements for virtualizable third generation architectures,”

Communications of the ACM (July 1974)

Virtual Machines: An Old Idea

B629: Practical Compiling for Modern Machines

Protection via Virtual Machines

38

• (Operating) System Virtual Machines
★ does not include JVM or Microsoft CLR
★ VMware ESX, Xen (hypervisors or virtual machine monitors,

can run on bare machines)
★ Parallels, VMware Fusion (run on a host OS)

• Regained popularity
★ increased importance of isolation and security
★ failures in security and reliability of standard OSes
★ sharing of computers among unrelated users
★ increased hardware speeds, making VM overheads

acceptable

B629: Practical Compiling for Modern Machines

Popularity of Virtual Machines: II

• Protection
★ see previous slide

• Software management
★ could run legacy operating systems

• Hardware management
★ let separate software stacks share hardware

✴ also useful at the end-user level
★ some VMMs support migration of a running VM to a

different computer, for load-balancing and fault tolerance

39

Hardware that allows VM to execute directly
on hardware is called virtualizable

B629: Practical Compiling for Modern Machines

Complications
• “Difficult” instructions

★ paravirtualization: make some minimal changes to the guest OS
to avoid difficult instructions

• Virtual memory
★ separate virtual, physical, and machine memory
★ maintain shadow page table to avoid double translation;

alternatively, need hardware support for multiple indirections

• TLB virtualization
★ VMM maintains per-OS TBB copies
★ TLBs with process-ID tag can avoid TLB flush on VM context

switch through the use of virtual PIDs

• I/O sharing
40

B629: Practical Compiling for Modern Machines

Xen vs Native Linux

41

