
Programming with GPUs -
CUDA and OpenCL

Rohith Goparaju
Devarshi Ghoshal

4/14/2010 1Indiana University

GPUs- the beginning
• Design more focused on data processing rather than data caching &

flow control

• Well suited to address problems that can be expressed as data-
parallel computations

• The same program is executed on many data elements and hence
low requirement for sophisticated flow control

• Since it is executed on many data elements & has high arithmetic
intensity, the memory latency can be hidden with calculations
instead of big data caches

• Data parallel processing maps data elements to parallel processing
threads to speed up the computations

4/14/2010 2Indiana University

Why CUDA?
• The GPU could only be programmed through a graphics API

(inadequate to non-graphics application)

• The GPU DRAM could be read in a general way- programs
can gather data elements from any part of DRAM but could
not be written in a general way because they cannot scatter
information to any part of DRAM

• Bottlenecked by the DRAM memory bandwidth (since
centralized)

CUDA- Novel hardware & programming model exposing
GPU as a truly generic data-parallel computing device.

4/14/2010 3Indiana University

CUDA- Compute Unified Device
Architecture

• A new hardware & software architecture for issuing & managing
computations on the GPU as a data-parallel computing device
without the need of mapping them to a graphics API

• Software stack is composed of several layers: a hardware driver, an
API & its runtime, and 2 higher level math libraries CUFFT & CUBLAS

• Hardware supports lightweight driver & runtime layers

• Parallel data cache or on-chip shared memory

• Available for the GeForce 8 Series, Quadro FX 5600/4600, and Tesla
solutions

4/14/2010 4Indiana University

CUDA Software Stack

4/14/2010 5Indiana University

Multithreaded coprocessor
• GPU viewed as a compute device capable of executing

a very high no. of threads in parallel and operates as a
coprocessor to the main CPU or host

• Kernel Function: a portion of a program that is
executed many times but independently on different
data

• Both the host & device maintain their own DRAM
referred to as host memory & device memory and one
can copy data from one DRAM to the other utilizing
device’s high-performance DMA engines

4/14/2010 6Indiana University

CUDA- Gather Scatter Memops

4/14/2010 7Indiana University

Shared Memory

4/14/2010 8Indiana University

Thread Batching
• Thread block: a batch of threads, each identified by its thread-id,

that can cooperate together by efficiently sharing data through
some fast shared memory & synchronizing their execution to
coordinate memory accesses

• Grid of blocks: blocks of same dimensionality and size that execute
the same kernel are batched together

• Reduced thread cooperation because threads in different thread
blocks from the same grid cannot communicate & synchronize with
each other

• Allows kernels to run efficiently without recompilation on various
devices with different parallel capabilities

4/14/2010 9Indiana University

Thread Batching

4/14/2010 10Indiana University

Memory Model
• A thread executing on the device

has only access to the device’s
DRAM and on-chip memory

• Memory spaces:
– Read-write per-thread registers
– Read-write per-thread local

memory
– Read-write per-block shared

memory
– Read-write per-grid global

memory
– Read-only per-grid constant

memory
– Read-only per-grid texture

memory

H
o
S
t

4/14/2010 11Indiana University

Programming Pattern
• Local and global memory reside in device memory

(DRAM) - much slower access than shared memory
• So, a profitable way of performing computation on the

device is to block data to take advantage of fast shared
memory:
− Partition data into data subsets that fit into shared

memory
− Handle each data subset with one thread block by:

 Loading the subset from global memory to shared memory, using
multiple threads to exploit memory-level parallelism

 Performing the computation on the subset from shared memory;
each thread can efficiently multi-pass over any data element

 Copying results from shared memory to global memory

4/14/2010 12Indiana University

Programming Pattern (contd.)
• Texture and Constant memory also reside in device

memory (DRAM) - much slower access than shared
memory
– But… cached!
– Highly efficient access for read-only data

• Carefully divide data according to access patterns
– R/O no structure constant memory
– R/O array structured texture memory
– R/W shared within Block shared memory
– R/W registers spill to local memory
– R/W inputs/results global memory

4/14/2010 13Indiana University

Access Times
• Register – dedicated HW - single cycle

• Shared Memory – dedicated HW - single cycle

• Local Memory – DRAM, no cache - *slow*

• Global Memory – DRAM, no cache - *slow*

• Constant Memory – DRAM, cached, 1…10s…100s of cycles,
depending on cache locality

• Texture Memory – DRAM, cached, 1…10s…100s of cycles,
depending on cache locality

• Instruction Memory (invisible) – DRAM, cached

4/14/2010 14Indiana University

Hardware Model
• The device is a set of 16 multiprocessors,

where each one has an SIMD architecture

• Each multiprocessor has on-chip memory
of 4 types:

– One set of local 32-bit registers per processor
– A parallel data cache or shared memory-

implements the shared memory space
– A read-only constant cache- reads from the

constant memory space
– A read-only texture cache- reads from the

texture memory space

• At each clock cycle, a multiprocessor
executes the same instruction on a group of
threads called a “warp”

• The number of threads in a warp is the
“warp size”

4/14/2010 15Indiana University

GeForce 8800 Series Technical Specs

• Maximum number of threads per block: 512
• Maximum size of each dimension of a grid: 65,535
• Number of streaming multiprocessors (SM):

GeForce 8800 GTX: 16 @ 675 MHz
GeForce 8800 GTS: 12 @ 600 MHz

• Device memory:
GeForce 8800 GTX: 768 MB
GeForce 8800 GTS: 640 MB

• Shared memory per multiprocessor: 16KB divided in 16
banks

• Constant memory: 64 KB
• Warp size: 32 threads (16 Warps/Block)

4/14/2010 16Indiana University

Execution Model
• Each thread block of a grid is split into warps, each gets

executed by one multiprocessor (SM)
− The device processes only one grid at a time

• Each thread block is processed by only one multiprocessor
− Shared memory space resides in the on-chip shared memory

• A multiprocessor can execute multiple blocks concurrently
− Shared memory and registers are partitioned among the

threads of all concurrent blocks
− So, decreasing shared memory usage (per block) and register

usage (per thread) increases number of blocks that can run
concurrently

4/14/2010 17Indiana University

Compilation with NVCC

• NVCC- Compiler driver that simplifies the process
of compiling CUDA code

• Separates device code from host code
• Compiles device code into binary form- cubin
• Cubin object

– Load the cubin object onto the device and launch the
device code using the CUDA driver API
or

– Link to the generated host code, which includes the
cubin object as a global initialized data array

4/14/2010 Indiana University 18

Performance
• Instruction Throughput

– Arithmetic instructions: 4 – 16 clock cycles
– Control flow instructions: 4 – 7 clock cycles
– Memory instructions: 4 – 600 clock cycles
– Synchronization instruction: 4 clock cycles

• Memory Bandwidth
– Device memory is of much higher latency and lower

bandwidth than on-chip memory
– Global memory- no cache
– Shared memory- bank conflicts

4/14/2010 19Indiana University

Example- Matrix Multiplication

4/14/2010 20Indiana University

OpenCL
(Open Computing Language)

4/14/2010 21Indiana University

Introduction

• A framework for writing programs that
execute across a heterogeneous platform.

• CPU’s, GPU’s and other processors as peers.
• A language based on C99.
• Data and Task parallel model.
• OpenCL gives access to GPU for non graphical

computations.

4/14/2010 22Indiana University

OpenCL Objects

• Compute Devices
• Memory Objects

– Arrays
– Images

• Executable Objects
– Compute Program
– Compute Kernel

4/14/2010 23Indiana University

Devices

• Device Object is some kind of a processor that
executes parallel programs.

• Each Device can have more than one
Processing element.

• Host – Group of Devices.
• Processing elements execute programs in

SIMD or SPMD.

4/14/2010 24Indiana University

Memory Objects

• Arrays
– Work like arrays in C.
– Array read/write on CPU is cached.

• Images
– Data is stored in an optimized non-linear format.
– Reads use texture cache.

4/14/2010 25Indiana University

Compute Kernel

• A data parallel function executed by the
compute object (CPU or GPU).

4/14/2010 26Indiana University

Compute Program

• A group of kernels and functions.

4/14/2010 27Indiana University

Expressing Data Parallelism

• A unit of work is called a work item.
• Work items are grouped into a work group.

4/14/2010 28Indiana University

Expressing Data Parallelism.

• Kernels execute across a global domain of work
items.
– Global Dimensions define the range of computation.
– One work-item per computation executed in parallel.

• Work Items are grouped in local work groups
– Local Dimensions define the size of the work groups
– Execute together on one device.
– Share local memory .

4/14/2010 29Indiana University

Work Items and Work Group Functions

4/14/2010 30Indiana University

Synchronization.

• No global Synchronization
• Synchronization can be done within a work

group.

4/14/2010 31Indiana University

Expressing Task Parallelism

• Executes as a Single Work Item.
• A kernel in OpenCL C or a Function.
• A task owns a core.
• Benefits from large private/local memory.

4/14/2010 32Indiana University

Address Space.
• There are four types of address space.

– __Private(CUDA Local)
– Per Work Item

– __local (CUDA Shared)
– Shared within a workgroup

– __constant (CUDA Constant)
– Not Synchronized.

– __global (CUDA Global)
– Host Memory.

4/14/2010 33Indiana University

Address Space

4/14/2010 34Indiana University

OpenCL Execution.

• There are five main steps to run an OpenCL
Application.
– Initialization
– Allocate Resources
– Creating Programs/Kernels.
– Execution
– Tear Down.

4/14/2010 35Indiana University

Initialization/Setup

• Setup
– Get the Device(s)
– Create a Context
– Create Command Queues

4/14/2010 36Indiana University

Initialization

• Devices
– Multiple Cores on a CPU or GPU are a single device
– OpenCL executes kernels across all devices in a data

parallel manner
• Contexts

– Enable sharing of memory between devices
– To share between devices both devices must be in

same context
• Queues

– All work submitted through queues
– Each device must have a queue

4/14/2010 37Indiana University

Allocation/Read & Write Memory

• Allocating Data

• Explicit Commands to access memory object
data
– Read from a region in memory object to host

memory

– Write to a region in memory object from host
memory

4/14/2010 38Indiana University

Read & Write Memory

• Similar Methods to copy regions of memory
objects and map a region in memory object to
host address space

• Operate Synchronously (blocking = CL_TRUE)
or Asynchronously

4/14/2010 39Indiana University

Creating Programs and Kernels

• Programs and kernels are read from a source
compiled or loaded as a binary

4/14/2010 40Indiana University

Program and Kernel Objects

• Program Object Encapsulates :
– program source or a binary
– list of devices and latest successfully built executable

for each device
– a list of kernel objects

• Kernel Object Encapsulates :
– A specific kernel function in the program declared

with the kernel qualifier
– argument values
– Kernel objects created after the program object has

been built

4/14/2010 41Indiana University

Execution

• Arguments to the kernel are set and the kernel is
executed on all data

• Kernel is executed asynchronously
• Use events to track execution status

4/14/2010 42Indiana University

Tear Down

• The results are written back to the host and
the memory is cleaned up

4/14/2010 43Indiana University

Synchronization Between Commands

• Each individual queue can execute inorder or
out of order.
– For an inorder queue all commands execute in

order

• Explicit synchronization between queues
– Multiple Devices have their own queue
– Use events to synchronize

4/14/2010 44Indiana University

Synchronization: One Device/Queue

• Example : Kernel 2 uses the results of kernel 1

4/14/2010 45Indiana University

Two Devices/Queues

• Explicit Dependency : Kernel 1 must finish
before kernel 2 starts

4/14/2010 46Indiana University

Two Devices/Queues

4/14/2010 47Indiana University

Using Events on The Host

4/14/2010 48Indiana University

	Programming with GPUs -�CUDA and OpenCL
	GPUs- the beginning
	Why CUDA?
	CUDA- Compute Unified Device Architecture
	CUDA Software Stack
	Multithreaded coprocessor
	CUDA- Gather Scatter Memops
	Shared Memory
	Thread Batching
	Thread Batching
	Memory Model
	Programming Pattern
	Programming Pattern (contd.)
	Access Times
	Hardware Model
	GeForce 8800 Series Technical Specs
	Execution Model
	Compilation with NVCC
	Performance
	Example- Matrix Multiplication
	Slide Number 21
	Introduction
	OpenCL Objects
	Devices
	Memory Objects
	Compute Kernel
	Compute Program
	Expressing Data Parallelism
	Expressing Data Parallelism.
	Work Items and Work Group Functions
	Synchronization.
	Expressing Task Parallelism
	Address Space.
	Address Space
	OpenCL Execution.
	Initialization/Setup
	Initialization
	Allocation/Read & Write Memory
	Read & Write Memory
	Creating Programs and Kernels
	Program and Kernel Objects
	Execution
	Tear Down
	Synchronization Between Commands
	Synchronization: One Device/Queue
	Two Devices/Queues
	Two Devices/Queues
	Using Events on The Host

