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GPUs- the beginning
• Design more focused on data processing rather than data caching &

flow control

• Well suited to address problems that can be expressed as data-
parallel computations

• The same program is executed on many data elements and hence
low requirement for sophisticated flow control

• Since it is executed on many data elements & has high arithmetic
intensity, the memory latency can be hidden with calculations
instead of big data caches

• Data parallel processing maps data elements to parallel processing
threads to speed up the computations
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Why CUDA?
• The GPU could only be programmed through a graphics API

(inadequate to non-graphics application)

• The GPU DRAM could be read in a general way- programs
can gather data elements from any part of DRAM but could
not be written in a general way because they cannot scatter
information to any part of DRAM

• Bottlenecked by the DRAM memory bandwidth (since
centralized)

CUDA- Novel hardware & programming model exposing 
GPU as a truly generic data-parallel computing device.
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CUDA- Compute Unified Device 
Architecture

• A new hardware & software architecture for issuing & managing
computations on the GPU as a data-parallel computing device
without the need of mapping them to a graphics API

• Software stack is composed of several layers: a hardware driver, an
API & its runtime, and 2 higher level math libraries CUFFT & CUBLAS

• Hardware supports lightweight driver & runtime layers

• Parallel data cache or on-chip shared memory

• Available for the GeForce 8 Series, Quadro FX 5600/4600, and Tesla
solutions
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CUDA Software Stack
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Multithreaded coprocessor
• GPU viewed as a compute device capable of executing

a very high no. of threads in parallel and operates as a
coprocessor to the main CPU or host

• Kernel Function: a portion of a program that is
executed many times but independently on different
data

• Both the host & device maintain their own DRAM
referred to as host memory & device memory and one
can copy data from one DRAM to the other utilizing
device’s high-performance DMA engines
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CUDA- Gather Scatter Memops
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Shared Memory
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Thread Batching
• Thread block: a batch of threads, each identified by its thread-id,

that can cooperate together by efficiently sharing data through
some fast shared memory & synchronizing their execution to
coordinate memory accesses

• Grid of blocks: blocks of same dimensionality and size that execute
the same kernel are batched together

• Reduced thread cooperation because threads in different thread
blocks from the same grid cannot communicate & synchronize with
each other

• Allows kernels to run efficiently without recompilation on various
devices with different parallel capabilities
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Thread Batching
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Memory Model
• A thread executing on the device

has only access to the device’s
DRAM and on-chip memory

• Memory spaces:
– Read-write per-thread registers
– Read-write per-thread local 

memory
– Read-write per-block shared 

memory
– Read-write per-grid global 

memory
– Read-only per-grid constant 

memory
– Read-only per-grid texture 

memory
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Programming Pattern
• Local and global memory reside in device memory

(DRAM) - much slower access than shared memory
• So, a profitable way of performing computation on the 

device is to block data to take advantage of fast shared 
memory:
− Partition data into data subsets that fit into shared 

memory
− Handle each data subset with one thread block by:

 Loading the subset from global memory to shared memory, using 
multiple threads to exploit memory-level parallelism

 Performing the computation on the subset from shared memory; 
each thread can efficiently multi-pass over any data element

 Copying results from shared memory to global memory
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Programming Pattern (contd.)
• Texture and Constant memory also reside in device 

memory (DRAM) - much slower access than shared 
memory
– But… cached!
– Highly efficient access for read-only data

• Carefully divide data according to access patterns
– R/O no structure  constant memory
– R/O array structured  texture memory
– R/W shared within Block  shared memory
– R/W registers spill to local memory
– R/W inputs/results  global memory

4/14/2010 13Indiana University



Access Times
• Register – dedicated HW - single cycle

• Shared Memory – dedicated HW - single cycle

• Local Memory – DRAM, no cache - *slow*

• Global Memory – DRAM, no cache - *slow*

• Constant Memory – DRAM, cached, 1…10s…100s of cycles, 
depending on cache locality

• Texture Memory – DRAM, cached, 1…10s…100s of cycles, 
depending on cache locality

• Instruction Memory (invisible) – DRAM, cached
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Hardware Model
• The device is a set of 16 multiprocessors,

where each one has an SIMD architecture

• Each multiprocessor has on-chip memory
of 4 types:

– One set of local 32-bit registers per processor
– A parallel data cache or shared memory-

implements the shared memory space
– A read-only constant cache- reads from the

constant memory space
– A read-only texture cache- reads from the

texture memory space

• At each clock cycle, a multiprocessor
executes the same instruction on a group of
threads called a “warp”

• The number of threads in a warp is the
“warp size”
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GeForce 8800 Series Technical Specs

• Maximum number of threads per block: 512
• Maximum size of each dimension of a grid: 65,535
• Number of streaming multiprocessors (SM):

GeForce 8800 GTX: 16 @ 675 MHz
GeForce 8800 GTS: 12 @ 600 MHz

• Device memory:
GeForce 8800 GTX: 768 MB
GeForce 8800 GTS: 640 MB

• Shared memory per multiprocessor: 16KB divided in 16 
banks

• Constant memory: 64 KB
• Warp size: 32 threads (16 Warps/Block)
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Execution Model
• Each thread block of a grid is split into warps, each gets 

executed by one multiprocessor (SM) 
− The device processes only one grid at a time

• Each thread block is processed by only one multiprocessor
− Shared memory space resides in the on-chip shared memory

• A multiprocessor can execute multiple blocks concurrently
− Shared memory and registers are partitioned among the 

threads of all concurrent blocks
− So, decreasing shared memory usage (per block) and register 

usage (per thread) increases number of blocks that can run 
concurrently
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Compilation with NVCC

• NVCC- Compiler driver that simplifies the process 
of compiling CUDA code 

• Separates device code from host code
• Compiles device code into binary form- cubin
• Cubin object

– Load the cubin object onto the device and launch the 
device code using the CUDA driver API 
or

– Link to the generated host code, which includes the 
cubin object as a global initialized data array
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Performance
• Instruction Throughput

– Arithmetic instructions: 4 – 16 clock cycles
– Control flow instructions: 4 – 7 clock cycles
– Memory instructions: 4 – 600 clock cycles
– Synchronization instruction: 4 clock cycles

• Memory Bandwidth
– Device memory is of much higher latency and lower 

bandwidth than on-chip memory
– Global memory- no cache
– Shared memory- bank conflicts
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Example- Matrix Multiplication
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OpenCL
(Open Computing Language)
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Introduction

• A framework for writing programs that 
execute across a heterogeneous platform.

• CPU’s, GPU’s and other processors as peers.
• A language based on C99.
• Data and Task parallel model.
• OpenCL gives access to GPU for non graphical 

computations.
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OpenCL Objects

• Compute Devices
• Memory Objects 

– Arrays
– Images     

• Executable Objects
– Compute Program
– Compute Kernel                         
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Devices

• Device Object is some kind of a processor that 
executes  parallel programs.

• Each Device can have more than one 
Processing element.

• Host – Group of Devices.
• Processing elements execute programs in 

SIMD or SPMD.
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Memory Objects

• Arrays
– Work like arrays in C.
– Array read/write on CPU is cached.

• Images
– Data is stored in an optimized non-linear format.
– Reads use texture cache.
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Compute Kernel

• A data parallel function executed by the 
compute object (CPU or GPU).
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Compute Program

• A group of kernels and functions.
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Expressing Data Parallelism

• A unit of work is called a work item.
• Work items are grouped into a work group.
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Expressing Data Parallelism.

• Kernels execute across a global domain of work 
items.
– Global Dimensions define the range of computation.
– One work-item per computation executed in parallel.

• Work Items are grouped in local work groups
– Local Dimensions define the size of the work groups
– Execute together on one device.
– Share local memory .
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Work Items and Work Group Functions
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Synchronization.

• No global Synchronization
• Synchronization can be done within a work 

group.
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Expressing Task Parallelism

• Executes as a Single Work Item.
• A kernel in OpenCL C or a Function.
• A task owns a core.
• Benefits from large private/local memory. 
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Address Space.
• There are four types of address space.

– __Private(CUDA Local) 
– Per Work Item

– __local (CUDA Shared) 
– Shared within a workgroup 

– __constant (CUDA Constant)
– Not Synchronized.

– __global (CUDA Global)
– Host Memory.
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Address Space
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OpenCL Execution.

• There are five main steps to run an OpenCL
Application.
– Initialization
– Allocate Resources
– Creating Programs/Kernels.
– Execution
– Tear Down.
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Initialization/Setup

• Setup
– Get the Device(s)
– Create a Context
– Create Command Queues
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Initialization

• Devices
– Multiple Cores on a CPU or GPU are a single device
– OpenCL executes kernels across all devices in a data 

parallel manner
• Contexts

– Enable sharing of memory between devices
– To share between devices both devices must be in 

same context
• Queues

– All work submitted through queues
– Each device must have a queue
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Allocation/Read & Write Memory

• Allocating Data

• Explicit Commands to access memory object 
data
– Read from a region in memory object to host 

memory

– Write to a region in memory object from host 
memory
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Read & Write Memory

• Similar Methods to copy regions of memory 
objects and map a region in memory object to 
host address space

• Operate Synchronously (blocking =  CL_TRUE) 
or Asynchronously
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Creating Programs and Kernels

• Programs and kernels are read from a source 
compiled or loaded as a binary
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Program and Kernel Objects

• Program Object Encapsulates :
– program source or a binary
– list of devices and latest successfully built executable 

for each device
– a list of kernel objects

• Kernel Object Encapsulates :
– A specific kernel function in the program declared 

with the kernel qualifier
– argument values
– Kernel objects created after the program object has      

been built

4/14/2010 41Indiana University



Execution

• Arguments to the kernel are set and the kernel is 
executed on all data

• Kernel is executed asynchronously
• Use events to track execution status
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Tear Down

• The results are written back to the host and 
the memory is cleaned up
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Synchronization Between Commands

• Each individual queue can execute inorder or 
out of order.
– For an inorder queue all commands execute in 

order

• Explicit synchronization between queues
– Multiple Devices have their own queue
– Use events to synchronize
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Synchronization: One Device/Queue

• Example : Kernel 2 uses the results of kernel 1
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Two Devices/Queues

• Explicit Dependency : Kernel 1 must finish 
before kernel 2 starts
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Two Devices/Queues
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Using Events on The Host
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