
By: Anindya Lahiri
Gagan Arora

{alahiri, arorag}@cs.indiana.edu

1

 Very Long Instruction Word
 Multiple issue processor
 Issues a fixed number of instructions formatted as either

as one large instruction or as fixed instruction packets
 Inherently statically scheduled by the compiler

 EPIC (Explicitly parallel instruction computer)

2

 Increasing parallelism using compiler technology
 Dependences preventing parallelism
 Techniques for eliminating such dependences
 Hardware support for such techniques

3

 Advantages:
 Do not burden runtime executions
 Consider wider range of the program

 Determining parallelism of entire loop

 Disadvantage:
 Use only compile time information

 Conservative and assumes worst case

4

 Analyzed at source level
 Loop-level dependences analysis among the operands

in a loop across iterations
 Data dependences: RAW hazard

 Loop-carried dependence: values required from previous
iterations

 Name dependences ?
 Can be removed by register renaming

5

What are the dependences here ?
• S1 and S2 use values from previous iteration

• Loop-carried
• Requires execution in series, RAW

• S2 depends on S1, requires A[i+1] from S1
• Do not impact parallel execution

6

 Dependences between S1 and S2:
 Loop-carried dependence but not circular i.e. S1

depends on previous value of S2, S2 does not depend on
S1

 Parallelizing:

First iteration of S1 depends
on B[1]

7

 Complex analysis for data dependence is required

 Second reference to A can be to same or different
register

 Optimization requires knowledge about the reference
made to memory location

8

 Loop carried dependences in form of recurrences

 Important to detect:
 Special support for executing recurrences, e.g. Vector

processors
 Parallelism by loop unrolling

Dependence distance is 5: five statements will have no dependence

9

 Finding dependences is important:
 Leads to good scheduling of code
 Determining parallelism in loops
 Eliminating name dependences

 Complexity of dependences due to presence of arrays
and pointers, or pass by reference parameters ->
aliasing

 Detecting dependences based on indices of arrays
being affine,
 Determining dependence between two references to a

array in a loop is equivalent to determining whether two
affine functions can have same value for different indices
between the bounds of the loop

10

 Store into array indexed by: a x j + b
 Fetched at the same location when indexed by:

c x k + d, thus a x j + b = c x k + d

• GCD dependency test:
• GCD(c, a) must divide (d – b)

a = 2, b = 3, c = 2 and d = 0
GCD(a, c) = 2 and d – b = -3,
Since 2 does not divide -3, no dependence

11

 Dependences:
 True dependences from S1 to S3 and S1 to S4
 Anti-dependence from S1 to S2
 Output dependences from S1 to S4

12

 Drawbacks of dependence analysis:
 Only references within single loop
 Only for affine index functions

 Sparse arrays x[y[i]] are non affine
 Cannot analyze references made through pointers

 Different pointers referencing same nodes
 Doing arithmetic operation on them

 Limitation in performing inter-procedural analysis
 Worst case leads to producing expensive but useless

information

13

 Back substitution

 Copy propagation

 Tree height reduction

14

 Eliminating dependences from recurrences such as
sum = sum + x;

 Unrolling loop with recurrence:
sum = sum + x1 + x2 + x3 + x4 + x5;

Five dependent operations

 Optimizing:
sum = ((sum + x1) + (x2 + x3)) + (x4 + x5);

Three dependent operations

15

 Loop unrolling to software pipelining and trace
scheduling

 Software pipelining:
 Technique for reorganizing loops
 Each iteration chosen from different iterations of

original loop
 Interleaves instructions from different loop iterations

without unrolling the loop -> dependent computations
are separated by an entire loop body

16

 Some start up code and finish up code at the beginning
and end of iteration respectively

17

Loop
Unrolling

18

 Software pipelining:
 Symbolically unrolls loop
 Selects instruction from each iteration
 Puts together in a loop

19

 Software pipelining
 Reduces code space
 Reduces time when loop not running at peak speed
 IA-64 added support but does not eliminate complex

compiler support
 Loop unrolling

 Reduces overhead of loop (branch and counter update)

20

 Scheduling becomes difficult when unrolled loops
contain internal flow
 Requires moving instructions across branches -> global

code scheduling
 Global code scheduling aims to compact a code

fragment with internal control structure into the
shortest possible sequence that preserves the data and
control dependences
 Data dependences force partial order
 Control dependences hinder movement of code

21

 Removing dependences:
 Data dependences:

 Loop unrolling or dependence analysis in case of memory
operations

 Control dependences:
 Loop unrolling and global code motion, i.e. moving code

across branches
 Global code motion:

 Requires estimation of the relative frequency of different
paths due to the inner loops

 Important when many inner loops contain conditional
statements

22

 Effective scheduling :
 Move assignments to B and C before the test of A
 Movement associated with B is speculative

 Computation will speed up only if path through B is taken

23

 Moving B and C without affecting data flow

 Using shadow copy of B
 Moving C into then part and a copy into the else part (X)

24

 Factors taken in to consideration by compiler for
computation movement:
 Frequencies of execution (then case or else case)
 Cost
 Change in execution time
 Comparing different code fragments for movement
 Cost of compensation for else case

Global code scheduling is extremely complex !
Simpler techniques: Trace scheduling and Superblocks

25

 Useful for processor with large number of issues per
clock

 For processes with unsupported conditional or
predicated execution

 Way to organize the global code motion
 Used only for significant differences in frequency

between different paths thus simplifies the decision

 Two steps to trace scheduling
 Trace selection
 Trace compaction

26

Drawback:

• Entries and exits cause complications

•Requires the compiler to generate and

track the compensation code

•Difficult to asses cost of such code

27

 Similar to traces but extended basic blocks
 Restricted to single entry point but allow multiple exits

 Tail duplication to create separate block
 Compacting superblocks is easier

 Reduces complexity of bookkeeping and scheduling
than trace method

 May enlarge code size

28

29

• Loop unrolling, S/W pipelining, and trace scheduling work
well till the branches are fairly predictable at compile
time

• BUT when the branches are not fairly predictable ,
parallelism is hampered

• Solution -> Predicated Instructions
• Predicated Instructions help eliminate BRANCHES
• They convert a Control Dependence into a Data

Dependence and potentially improve performance

30

Concept behind Branch Predication

An instruction refers to a CONDITION
• If the condition is true, the instruction is executed normally
• Else, it behaves like a no-op

Example: Consider the given code
If (A==0) {S=T;}

Assuming: A, S and T rest in R1, R2, R3

R1 A , R2 S, R3 T

BNEZ R1, L ; /*if R1 is not equal to zero, jump to L*/
L : ADDU R2, R3, R0 ; /*else Move R3 to R2*/

31

Using Conditional move we can implement this statement
in one instruction

CMOVZ R2, R3, R1
Here the conditional instruction converts the Control

dependence into Data dependence

This transformation is called if-Conversion in Vector
Computers

This moves the place to resolve dependence from the front of
the pipeline to the end of the pipeline

32

 Conditional moves are good useful for short sequences,
they are inefficient to eliminate branches which guard the
execution of a large block of code

REMEDY: “FULL PREDICATION”
It allows us to convert large blocks of Code that are branch

dependent

Predication is useful with global code scheduling, since it
can eliminate non-loop branches which significantly

complicate instruction scheduling

33

The code sequence below wastes a memory operation slot in
the second cycle and will incur a data dependence stall if

not taken , since the second LW after the branch depends on
prior load

34

Here we call the predicated version load word LWC and
assume the load occurs unless third operand is zero. LW ->
LWC and is moved up to the second issue slot:

Execution time is reduced by a few cycles since one
instruction issue slot is reduced, if the compiler
mispredicted the branch, predicated instruction will have
no effect on the performance, hence the transformation is
speculative. 35

Challenges related to Predicated instructions...
 What happens when a predicated instruction generates an

exception…? (i.e. The predication was false.)
 It becomes hard to IMPLEMENT , WHY?
 When do you annul the instruction?
 Annulled during execution issue :

 Requires that the value of controlling condition be available early in
the pipeline – Might cause a potential Data hazard

 Or later before they commit any results
 All existing processors follow this
 Disadvantage is that these annulled instructions have already

consumed
 functional resource
 Might affect performance

36

 So when are predicated instructions efficient?
 Implementing short alternative control flows
 Eliminating some unpredictable branches
 Reducing the overhead of global code scheduling
 When the predicate can be evaluated early – will help in

avoiding potential data hazards

 Factors that hinder its usefulness:
 Predicated instructions that are annulled also consume

processor resources
 Slows the program down if the predicated instructions

were not going to be executed during the normal program
flow

 When the control flow involves more than a simple
alternative sequence

 Consume more cycles than an unconditional instruction.
Must be used judiciously when they are expensive

37

Useful only when control dependencies can be completely
eliminated by if-conversion.
To speculate ambitiously requires three capabilities:

• Ability to find instructions, which with possible register
renaming, can be speculatively moved and not affect program
data flow

• The ability to ignore exceptions in speculated instructions,
until we know that such exceptions really occur

• Ability to exchange loads and stores, stores and stores which
may have address conflicts

• The first one is a compiler capability, the other two require
hardware support, which is next

38

How can exception behavior be preserved?
• The results of a mispredicted speculated sequence should not be

used in final computation.
• Such an instruction should not cause exception.

Four Methods have been investigated for supporting more
ambitious speculation.

1. OS and Hardware cooperatively ignore exceptions.
2. Speculated instructions should never raise exceptions. Introduce

checks to determine when an exception should occur.
3. POISON bits are attached to the result registers of the instruction

which cause exceptions, these bits cause a fault when a normal
instruction tries to access the register.

4. A mechanism is provided to indicate that an instruction is
speculative. So that the hardware can buffer the instruction result
until it is certain that the instruction is no longer speculative.

39

Two kinds of exceptions

• Exceptions which force the program to terminate

e.g. Memory protection violation, Illegal operation

• Exceptions that can be handled and resumed

e.g. Page fault
• Such exceptions can be handled for speculated instructions as for

normal instructions.
• The drawback is that it might cause performance penalty if the

instruction was not executed during normal program execution.

40

Speculation by hardware and OS co-operation
• Resumable instructions are executed normally, even for

speculated instructions
• Returns an undefined value for exceptions that cause

termination
• Lets see an Example

if (A == O) A = B; else A = A+4;
A O(R3), B O(R2)

41

Assuming the then clause is almost always executed, and assuming that
R14 is unused and available

An alternate approach to do this by using POISON Bits.
• Exceptions are tracked as they occur
•Terminating exceptions are postponed until their value is actually used

The Approach taken to accomplish this is as follows……..

42

 Two bits are added to each register
 A poison bit
 Another bit to indicate whether the instruction was

speculative
 The poison bit is set for the destination register

whenever a speculative instruction results in a
terminating exception

 Normal exceptions are handled immediately
 If a normal instruction attempts to use a source

register with its poison bit turned on, then an
exception is raised

 May require special support for instructions that set or
reset the poison bit

43

Reorder Buffer (ROB)
 Compiler marks instructions as speculative, also indicating its

assumption of taken or not taken
 This information is used by the hardware to find the original

location of the speculated instruction
 Each original location is marked by a sentinel, that tells the

hardware that the earlier speculative instruction is no longer
speculative

 All instructions are placed in the ROB, and commit is forced in the
program order

 The ROB postpones write-back of speculated instruction until:
 All the braches that were speculated for the instruction are ready to

commit
 Or the sentinel for the instruction is reached

 If the speculated instruction should have been executed and
it generated a terminating exception, the program is
terminated 44

 The critical path length can be reduced by the compiler by
moving loads across stores

 This requires checks to see there are no address conflicts
 This special instruction is left at the original location of the load,

and the load is then moved across one or more stores
 Hardware stores the address of the memory location after a

speculated load
 If subsequent stores change the location before the check,

speculation has failed, else it was successful

Two ways to handle failed Speculation
 If only the load was speculated – Redo the load at the point of

the check
 If additional instructions dependent on the load were speculated

– Redo all the speculated instructions after the load
45

 With the advent of IA-64 architecture, EPIC architecture was an
evolution of VLIW which has absorbed many of the best ideas
from superscalar processors

 EPIC aimed to move the complexity of instruction scheduling
from the CPU hardware to the software compiler

 It also used the compiler to find and exploit additional
opportunities to enhance ILP

 EPIC indicates parallelism between neighboring instructions
 EPIC has greater support for software speculation as compared to

earlier VLIW schemes, which showed minimal support

46

Intel/HP IA-64 “Explicitly Parallel Instruction Computer
(EPIC)”

 Itanium™ was first implementation (2001)
 Highly parallel and deeply pipelined hardware at 800

MHz
 6-wide, 10-stage pipeline at 800 MHz on 0.18µ process

 Itanium 2™ is name of 2nd implementation (2005)
 6-wide, 8-stage pipeline at 1666 MHz on 0.13µ process
 Caches: 32 KB I, 32 KB D, 128 KB L2I, 128 KB L2D, 9216

KB L3

47

 Code Bloat: With EPIC architecture, compile produces big code as
compared to the code size on other machines. This increased the
number of instruction fetch and also required a larger instruction
cache

 Power requirement: Intel Itanium required more power in order to
provide the same throughput as compared to the other processors

 Re-compiling: In order to port the existing application into EPIC
architecture, we need to re-compile them. This also contributes as one
of the disadvantage

 Cache requirement: It was hard to put multiple cores since each core
required a cache to work. Also multiple caches for multiple cores would
increase the power consumption

48

49

1. Computer architecture: a quantitative approach by
John L. Hennessy, David A. Patterson, David
Goldberg

2. http://www.cse.unsw.edu.au/~cs9244/06/seminars/
02-nfd.pdf

3. http://www.anandtech.com/cpuchipsets/showdoc.as
px?i=2598

4. EPIC: An Architecture for Instruction-Level Parallel
Processors – hp labs:
http://www.hpl.hp.com/techreports/92/HPL-92-
132.pdf

50

http://www.cse.unsw.edu.au/~cs9244/06/seminars/02-nfd.pdf�
http://www.cse.unsw.edu.au/~cs9244/06/seminars/02-nfd.pdf�
http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2598�
http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2598�
http://www.hpl.hp.com/techreports/92/HPL-92-132.pdf�
http://www.hpl.hp.com/techreports/92/HPL-92-132.pdf�

	Hardware and Software for VLIW and EPIC
	What is VLIW and EPIC ?	
	Exploiting ILP Parallelism Statically
	ILP using Compiler
	Detecting and Enhancing Loop-Level Parallelism
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Eliminating Dependences
	Slide Number 15
	Scheduling and Structuring code for Parallelism
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Software Pipelining Vs Loop Unrolling
	Global Code Scheduling
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Trace Scheduling
	Slide Number 27
	Superblocks
	Slide Number 29
	Hardware support for Exposing Parallelism : Predicated Instructions
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Hardware Support for Complier Speculation
	Hardware Support Preserving Exception Behavior
	Slide Number 40
	Slide Number 41
	How can this code be compiled speculatively…???
	Slide Number 43
	Yet another approach…..
	�Hardware support for memory reference speculation
	EPIC- Explicitly Parallel Instructions Computer
	Slide Number 47
	Drawbacks of EPIC architecture
	Itanium2 Performance
	References

