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Agenda 
v  Sample CUDA Program 

v  Programming challenges 

v  Optimization challenges 

v  Current research 

v  Questions 
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Sample CUDA Program 
 
__global__ void kernel(int *array) 
{ 

      int  x = /* Do some operation using threadIdx,  blockIdx */ 

      array[ some index] =  x; 

} 

int main(void) 
{ 

  int num_elements =  256; 
  int num_bytes =  num_elements * sizeof(int);  

  int *device_array = 0; 
  int *host_array = 0; 

  host_array = (int*)malloc(num_bytes); 
  cudaMalloc((void**)&device_array, num_bytes);  //linear mem on device (global mem) 

  int block_size = 128; 

  int grid_size = num_elements / block_size;  // no. of  blocks 

  kernel<<<grid_size, block_size>>>(device_array); // invoke kernel 
 

  cudaMemcpy(host_array, device_array, num_bytes,    cudaMemcpyDeviceToHost); 
 

free(host_array); 
cudaFree(device_array); 

} 
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Programming challenges 

v  Rewriting code  

v  Playing with memory 

v  Kernels 

v  Debugging 
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Rewriting code 

v  Did you wish there was  just a compile time option ? 

      Compilers cannot magically compile your code that  runs on a CPU to 
make it run on a GPU. 

v  A lot of  code needs to re-written and code size increased by ‘n’ 
times. 

        Remember matrix multiplication ? 

v  OpenCL : Programmer has to write  (nearly)same tedious boiler-
plate code everytime. 
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Playing with memory 
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So where is my variable?  

Variable 
declaration 

Memory Scope Lifetime 

automatic  variables other 
than arrays 

register thread kernel 

automatic array variables global/local thread kernel 

__device__ __shared__ int 
nShareVar; 

shared block kernel 

__device__ int Globalvar; global grid application 

__device__ __constant__ 
int nConstvar; 

constant grid application 
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Restrictions 
v  __shared__ and __constant__ cannot be used in 

combination with each other, obviously. 

v  __constant__ variables cannot be assigned to from the 
device, only from the host. (cudaMemcpyToSymbol ) 

v  Not possible to allocate memory on the fly inside 
__global__ or __device__ functions (1.x) 

 Pass size as 3rd param in execution config 

 Only one dynamically-sized shared memory array per kernel is supported. 

 In your kernel code, 

  extern __shared__ float myData[]; 
  

 

  



Know your limits (Tesla) 

v  Total number of  cores : 30 x 8 = 240 

v  Global memory : 4GB 

v  Shared memory per SM : 16KB 

v  Number of  32-it SM/register : 8K/16K 

v  Constant memory : 64KB i.e 8KB/SM 

v  Max threads/block : 512 

v  Warp size : 32 

GPU Programming Challenges 



Why should I know the limits? 

v  Insufficient space to hold variables, then offload to 
local memory. (Remember slow ?) 

 (–maxrregcount=N) 

v  To determine blocksize. Usually a multiple of  
warpsize. 
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Kernels 

v  __global__ qualifier. 

v  Cannot call another kernel, host function or make recursive calls 

v  Not performance portable. 

v  Function calls inside kernel get inlined. 

v  Did you try passing  double pointers in your matrix 
multiplication example? 

       Wonder why it didn’t work ? 
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2D array problem 

v  What was the missing part ? 

   // Copy the device pointer list first, you cannot access host mem from device code 

    int **d_a; 
    cudaMalloc((void ***)&d_a, N * sizeof(int *)); 
    cudaMemcpy(d_a, h_a, N*sizeof(int *), cudaMemcpyHostToDevice); 
 
    int ** h_b = (int **)malloc(2 * sizeof(int *)); 

 
    for(int i=0; i<N;i++) 

{ 
     cudaMalloc((void**)&h_b[i], 2*sizeof(int)); 
     cudaMemcpy(h_b[i], &bb[i][0], 2*sizeof(int), cudaMemcpyHostToDevice); 
 } 
 

v  But in the end why would you want to do this when you can do 
the same thing using 1D array and which is more efficient. 
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Function Type Qualifiers 
restrictions 
v  __device__ functions are always inlined 

v  __device__ and __global__ do not support recursion 

v  ____device__ and __global__ functions cannot have a variable 
number of  arguments.  

v  __device__ functions cannot have their address taken  

v  __global__ functions must have void return type 



Debugging 

v  CUDA-GDB / VS Nsight 

v  Stepping is at the granularity of  a warp. Cannot stop a 
particular thread   

v  Cannot step over a subroutine. 
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Other issues 

•  Divide-by-zero in GPU thread will not halt the 
program. Inf/Nan will persist and propogate. 

•  Do not mix host pointers and device pointers. 

•  Returning error codes from kernel to the host ? 

•  __shared__ int shared_var = threadIdx.x; What will 
happen? 
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OPTIMIZATION CHALLENGES 

 

v  Reducing global memory accesses 

v  Bank conflicts 

v  Control flow 
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…Solutions 
v  Memory Coalescing 

v  Bank conflict avoiding techniques 

v  Remove ‘IFs' 
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Memory Coalescing 
v  If  the threads in a block are accessing consecutive 

global memory locations, then all the accesses are 
combined into a single request by the hardware. 

v  This increases global memory bandwidth and 
instructions throughput.  

v  For compute capability < 1.2, addresses to be accessed 
must be located in contagious locations to achieve 
memory coalescing. 

v  Latest hardware (compute capability 1.2 and later) 
relaxes conditions to be satisfied for coalescing.  
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Memory Coalescing Contd… 
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Memory Coalescing Contd… 

v  Use nearby addresses for threads in a warp 

v  Use unit stride wherever possible 

v  Structure of  arrays 
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Memory Banks Conflict 

v  To achieve high memory bandwidth, shared memory 
is divided into equally-sized memory modules, called 
banks. 

v  Memory read/write made of  n addresses in n distinct 
banks can be serviced simultaneously. 

v  Bank conflict is said to have occurred if  two addresses 
of  a memory request fall in the same memory bank 
and the access has to be serialized.  
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Bank Conflict Contd… 
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Bank Conflict Contd… 
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Avoiding Memory Bank Conflicts 

 

v  Memory padding  

GPU Programming Challenges 



Control Flow 
v  Performance is hampered if  there are two many ‘if ’ 

statements in the program. 

v  ‘If ’ is executed for every thread in the wrap, condition 
turns out to be true for only one or few threads. 

v  For other threads, comparisons are unnecessary. 

v  Solution: avoid ‘ifs’ in kernel code. 
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OTHER CHALLENGES 

v  No officials support in higher level programming 
languages. 

v  Must program GPU part in C-like language and host 
part in higher level language 

v  Kernels are not performance portable. 

v  Parallel Programming is hard. 
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ONGOING RESEARCH/
WORK 

v  Copperhead  

v  Python-like data parallel language and compiler 

v  Currently, just converts Python to CUDA 

v  3.6 times fewer lines of  code than CUDA 

v  45-100% of  the performance of  hand-crafted, well optimized CUDA code. 

v  HARLAN 

v  A declarative approach for GPGPU programming 

v  Programmer specifies ‘what’ and not ‘how’ 

v  Especially promising for GPU/CPU hybrid clusters 

v  OPENMP to CUDA 

v  PGI Fortran to CUDA (Portland Group) 
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CONCLUSIONS 
v  Understand the parallel architecture 

v  Understand how application maps to architecture 

v  Minimize data transfer between host and device 

v  Enable global memory coalescing i.e. optimize 
memory access pattern. 

v  Avoid bank conflicts 

v  Take care of  control flow (avoid warp divergence) 
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QUESTIONS? 
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