
GPU PROGRAMMING
CHALLENGES

SACHIN JOSHI | UDAY PITAMBARE
INDIANA UNIVERSITY BLOOMINGTON

Guided by: Prof. Arun Chauhan

Agenda
v  Sample CUDA Program

v  Programming challenges

v  Optimization challenges

v  Current research

v  Questions

GPU Programming Challenges

Sample CUDA Program

__global__ void kernel(int *array)
{

 int x = /* Do some operation using threadIdx, blockIdx */

 array[some index] = x;

}

int main(void)
{

 int num_elements = 256;
 int num_bytes = num_elements * sizeof(int);

 int *device_array = 0;
 int *host_array = 0;

 host_array = (int*)malloc(num_bytes);
 cudaMalloc((void**)&device_array, num_bytes); //linear mem on device (global mem)

 int block_size = 128;

 int grid_size = num_elements / block_size; // no. of blocks

 kernel<<<grid_size, block_size>>>(device_array); // invoke kernel

 cudaMemcpy(host_array, device_array, num_bytes, cudaMemcpyDeviceToHost);

free(host_array);
cudaFree(device_array);

}

GPU Programming Challenges

Programming challenges

v  Rewriting code

v  Playing with memory

v  Kernels

v  Debugging

GPU Programming Challenges

Rewriting code

v  Did you wish there was just a compile time option ?

 Compilers cannot magically compile your code that runs on a CPU to
make it run on a GPU.

v  A lot of code needs to re-written and code size increased by ‘n’
times.

 Remember matrix multiplication ?

v  OpenCL : Programmer has to write (nearly)same tedious boiler-
plate code everytime.

GPU Programming Challenges

Playing with memory

GPU Programming Challenges

So where is my variable?

Variable
declaration

Memory Scope Lifetime

automatic variables other
than arrays

register thread kernel

automatic array variables global/local thread kernel

__device__ __shared__ int
nShareVar;

shared block kernel

__device__ int Globalvar; global grid application

__device__ __constant__
int nConstvar;

constant grid application

GPU Programming Challenges

Restrictions
v  __shared__ and __constant__ cannot be used in

combination with each other, obviously.

v  __constant__ variables cannot be assigned to from the
device, only from the host. (cudaMemcpyToSymbol)

v  Not possible to allocate memory on the fly inside
__global__ or __device__ functions (1.x)

 Pass size as 3rd param in execution config

 Only one dynamically-sized shared memory array per kernel is supported.

 In your kernel code,

 extern __shared__ float myData[];

Know your limits (Tesla)

v  Total number of cores : 30 x 8 = 240

v  Global memory : 4GB

v  Shared memory per SM : 16KB

v  Number of 32-it SM/register : 8K/16K

v  Constant memory : 64KB i.e 8KB/SM

v  Max threads/block : 512

v  Warp size : 32

GPU Programming Challenges

Why should I know the limits?

v  Insufficient space to hold variables, then offload to
local memory. (Remember slow ?)

 (–maxrregcount=N)

v  To determine blocksize. Usually a multiple of
warpsize.

GPU Programming Challenges

Kernels

v  __global__ qualifier.

v  Cannot call another kernel, host function or make recursive calls

v  Not performance portable.

v  Function calls inside kernel get inlined.

v  Did you try passing double pointers in your matrix
multiplication example?

 Wonder why it didn’t work ?

GPU Programming Challenges

2D array problem

v  What was the missing part ?

 // Copy the device pointer list first, you cannot access host mem from device code

 int **d_a;
 cudaMalloc((void ***)&d_a, N * sizeof(int *));
 cudaMemcpy(d_a, h_a, N*sizeof(int *), cudaMemcpyHostToDevice);

 int ** h_b = (int **)malloc(2 * sizeof(int *));

 for(int i=0; i<N;i++)

{
 cudaMalloc((void**)&h_b[i], 2*sizeof(int));
 cudaMemcpy(h_b[i], &bb[i][0], 2*sizeof(int), cudaMemcpyHostToDevice);
 }

v  But in the end why would you want to do this when you can do
the same thing using 1D array and which is more efficient.

GPU Programming Challenges

Function Type Qualifiers
restrictions
v  __device__ functions are always inlined

v  __device__ and __global__ do not support recursion

v  ____device__ and __global__ functions cannot have a variable
number of arguments.

v  __device__ functions cannot have their address taken

v  __global__ functions must have void return type

Debugging

v  CUDA-GDB / VS Nsight

v  Stepping is at the granularity of a warp. Cannot stop a
particular thread

v  Cannot step over a subroutine.

GPU Programming Challenges

Other issues

•  Divide-by-zero in GPU thread will not halt the
program. Inf/Nan will persist and propogate.

•  Do not mix host pointers and device pointers.

•  Returning error codes from kernel to the host ?

•  __shared__ int shared_var = threadIdx.x; What will
happen?

GPU Programming Challenges

OPTIMIZATION CHALLENGES

v  Reducing global memory accesses

v  Bank conflicts

v  Control flow

GPU Programming Challenges

…Solutions
v  Memory Coalescing

v  Bank conflict avoiding techniques

v  Remove ‘IFs'

GPU Programming Challenges

Memory Coalescing
v  If the threads in a block are accessing consecutive

global memory locations, then all the accesses are
combined into a single request by the hardware.

v  This increases global memory bandwidth and
instructions throughput.

v  For compute capability < 1.2, addresses to be accessed
must be located in contagious locations to achieve
memory coalescing.

v  Latest hardware (compute capability 1.2 and later)
relaxes conditions to be satisfied for coalescing.

GPU Programming Challenges

Memory Coalescing Contd…

GPU Programming Challenges

Memory Coalescing Contd…

v  Use nearby addresses for threads in a warp

v  Use unit stride wherever possible

v  Structure of arrays

GPU Programming Challenges

Memory Banks Conflict

v  To achieve high memory bandwidth, shared memory
is divided into equally-sized memory modules, called
banks.

v  Memory read/write made of n addresses in n distinct
banks can be serviced simultaneously.

v  Bank conflict is said to have occurred if two addresses
of a memory request fall in the same memory bank
and the access has to be serialized.

GPU Programming Challenges

Bank Conflict Contd…

GPU Programming Challenges

Bank Conflict Contd…

GPU Programming Challenges

Avoiding Memory Bank Conflicts

v  Memory padding

GPU Programming Challenges

Control Flow
v  Performance is hampered if there are two many ‘if ’

statements in the program.

v  ‘If ’ is executed for every thread in the wrap, condition
turns out to be true for only one or few threads.

v  For other threads, comparisons are unnecessary.

v  Solution: avoid ‘ifs’ in kernel code.

GPU Programming Challenges

OTHER CHALLENGES

v  No officials support in higher level programming
languages.

v  Must program GPU part in C-like language and host
part in higher level language

v  Kernels are not performance portable.

v  Parallel Programming is hard.

GPU Programming Challenges

ONGOING RESEARCH/
WORK

v  Copperhead

v  Python-like data parallel language and compiler

v  Currently, just converts Python to CUDA

v  3.6 times fewer lines of code than CUDA

v  45-100% of the performance of hand-crafted, well optimized CUDA code.

v  HARLAN

v  A declarative approach for GPGPU programming

v  Programmer specifies ‘what’ and not ‘how’

v  Especially promising for GPU/CPU hybrid clusters

v  OPENMP to CUDA

v  PGI Fortran to CUDA (Portland Group)

GPU Programming Challenges

CONCLUSIONS
v  Understand the parallel architecture

v  Understand how application maps to architecture

v  Minimize data transfer between host and device

v  Enable global memory coalescing i.e. optimize
memory access pattern.

v  Avoid bank conflicts

v  Take care of control flow (avoid warp divergence)

GPU Programming Challenges

References
[1] developer.download.nvidia.com

[2] http://forums.nvidia.com

[3] ‘Optimizing GPU Performance’ by John Nickolls.

[4] ‘Declarative Parallel Programming for GPUs’ by Chauhan, Mahajan, Lumsdaine, Holk, Byrd,
Willcock

[5] ‘OpenMP to GPGPU: A Compiler Framework for Automatic Translation and Optimization’ by
Lee, Min, Eigenmann

[6]’ Copperhead: A Python-like Data Parallel Language & Compiler’ by Catanzaro, Garland,
Keutzer.

GPU Programming Challenges

QUESTIONS?

GPU Programming Challenges

