
Compiler techniques for leveraging ILP

Purshottam and Sajith
October 12, 2011

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 1 / 56



Parallelism in your pocket

LINPACK is available in Android and iOS app markets. One reviewer
says: “Have no Idea what it does and I am very very confused”

http://www.netlib.org/linpack/

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 2 / 56



Parallelism NOT in your pocket

Cray-2: “Size of a washing machine, immersed in a tank of Fluorinert.”

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 3 / 56



Parallelism in your pocket

NYT, May 2011: “Jack Dongarra’s (University of Tennessee) research
group has run the test on Apples new iPad 2, and it turns out that
the legal-pad-size tablet would be a rival for a four-processor version
of the Cray 2 supercomputer, which, with eight processors, was the
worlds fastest computer in 1985.”
http://bits.blogs.nytimes.com/2011/05/09/the-ipad-in-your-hand-as-fast-as-a-supercomputer-of-yore/

News in the street is that the new iPhone 4S can beat a 1993 vintage
Cray in Linpack benchmarks.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 4 / 56



Parallelism in your pocket

NYT, May 2011: “Jack Dongarra’s (University of Tennessee) research
group has run the test on Apples new iPad 2, and it turns out that
the legal-pad-size tablet would be a rival for a four-processor version
of the Cray 2 supercomputer, which, with eight processors, was the
worlds fastest computer in 1985.”
http://bits.blogs.nytimes.com/2011/05/09/the-ipad-in-your-hand-as-fast-as-a-supercomputer-of-yore/

News in the street is that the new iPhone 4S can beat a 1993 vintage
Cray in Linpack benchmarks.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 4 / 56



How have compilers kept up?

Let’s investigate!

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 5 / 56



Many ways!

Dependence testing

Prelimimary transformations

Enhancing fine-grained parallelism

Creating coarse-grained parallelism

Handling control flow

Improving register usage

Managing cache

Scheduling

Interprocedural analysis and optimization

etc.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 6 / 56



Overview

1 ILP overview

2 Compiling for scalar pipelines

3 Superscalar and VLIW processors

4 Vector architectures

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 7 / 56



ILP overview

ILP overview
Pipelined instruction units

DLX instruction pipeline.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 8 / 56



ILP overview

ILP overview
Pipelined execution units

Typical floating point adder.

Snapshot of a pipelined execution unit computing ai = bi + ci.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 9 / 56



ILP overview

ILP overview
Parallel functional units

Multiple functional units.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 10 / 56



Compiling for scalar pipelines

Compiling for scalar pipelines

Key performance barrier is pipeline stalls, caused by one of these
hazards:

Structural hazards, where machine resources do not support all possible
combinations of instruction overlap that might occur.
Data hazards, where the result produced by one instruction is required
by the subsequent instruction.
Control hazards, which occur because of the processing of branches.

The principal compiler strategy is to rearrange instructions so that the
stalls never occur. This is called instruction scheduling.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 11 / 56



Compiling for scalar pipelines

Compiling for scalar pipelines

Key performance barrier is pipeline stalls, caused by one of these
hazards:

Structural hazards, where machine resources do not support all possible
combinations of instruction overlap that might occur.

Data hazards, where the result produced by one instruction is required
by the subsequent instruction.
Control hazards, which occur because of the processing of branches.

The principal compiler strategy is to rearrange instructions so that the
stalls never occur. This is called instruction scheduling.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 11 / 56



Compiling for scalar pipelines

Compiling for scalar pipelines

Key performance barrier is pipeline stalls, caused by one of these
hazards:

Structural hazards, where machine resources do not support all possible
combinations of instruction overlap that might occur.
Data hazards, where the result produced by one instruction is required
by the subsequent instruction.

Control hazards, which occur because of the processing of branches.

The principal compiler strategy is to rearrange instructions so that the
stalls never occur. This is called instruction scheduling.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 11 / 56



Compiling for scalar pipelines

Compiling for scalar pipelines

Key performance barrier is pipeline stalls, caused by one of these
hazards:

Structural hazards, where machine resources do not support all possible
combinations of instruction overlap that might occur.
Data hazards, where the result produced by one instruction is required
by the subsequent instruction.
Control hazards, which occur because of the processing of branches.

The principal compiler strategy is to rearrange instructions so that the
stalls never occur. This is called instruction scheduling.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 11 / 56



Compiling for scalar pipelines

Compiling for scalar pipelines

Key performance barrier is pipeline stalls, caused by one of these
hazards:

Structural hazards, where machine resources do not support all possible
combinations of instruction overlap that might occur.
Data hazards, where the result produced by one instruction is required
by the subsequent instruction.
Control hazards, which occur because of the processing of branches.

The principal compiler strategy is to rearrange instructions so that the
stalls never occur. This is called instruction scheduling.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 11 / 56



Superscalar and VLIW processors

Overview

1 ILP overview

2 Compiling for scalar pipelines

3 Superscalar and VLIW processors

4 Vector architectures

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 12 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors

Vector operations complicate instruction set design.

...if we could issue one or more pipelined instructions on each cycle, it
might be possible to fill the execution unit pipelines...

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 13 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors

Vector operations complicate instruction set design.

...if we could issue one or more pipelined instructions on each cycle, it
might be possible to fill the execution unit pipelines...

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 13 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Multiple-issue instruction units

Multiple-issue instruction units issues multiple “wide instructions” on
each cycle. Each “wide instruction” holds several normal instructions,
and each of them corresponds to an operation in a different functional
unit.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 14 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Compiling for multiple-issue processors

Issues multiple instructions by executing a single “wide instruction on
each cycle.”

Statically Scheduled. Onus on the Compiler or the programmer to
manage the execution schedule.

All hazards determined and indicated by the compiler (often
implicitly).

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 15 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Compiling for multiple-issue processors

Issues multiple instructions by executing a single “wide instruction on
each cycle.”

Statically Scheduled. Onus on the Compiler or the programmer to
manage the execution schedule.

All hazards determined and indicated by the compiler (often
implicitly).

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 15 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Compiling for multiple-issue processors

Issues multiple instructions by executing a single “wide instruction on
each cycle.”

Statically Scheduled. Onus on the Compiler or the programmer to
manage the execution schedule.

All hazards determined and indicated by the compiler (often
implicitly).

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 15 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Compiling for multiple-issue processors... contd.

No need of special look-ahead hardware as opposed to Superscalar
processors. Hence, explicitly scheduled.

Compiler must recognize when operators are not related by
dependence.

Compiler must schedule instructions such that it requires fewest
possible cycles.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 16 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Compiling for multiple-issue processors... contd.

No need of special look-ahead hardware as opposed to Superscalar
processors. Hence, explicitly scheduled.

Compiler must recognize when operators are not related by
dependence.

Compiler must schedule instructions such that it requires fewest
possible cycles.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 16 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Compiling for multiple-issue processors... contd.

No need of special look-ahead hardware as opposed to Superscalar
processors. Hence, explicitly scheduled.

Compiler must recognize when operators are not related by
dependence.

Compiler must schedule instructions such that it requires fewest
possible cycles.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 16 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Compiler Techniques

Loop unrolling

Local scheduling

Global scheduling - trace scheduling

Software pipelining

Superblock scheduling

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 17 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Examples

5 Operations

1 Integer operation (could be a branch)

2 PF operations

2 Memory references

Instruction length 80 - 120

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 18 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Examples

Loop: L.D F0,0(R1) ;F0=array element

ADD.D F4,F0,F2 ;add scalar in F2

S.D F4,0(R1) ;store result

DADDUI R1,R1,#-8 ;decrement pointer

;8 bytes (per DW)

BNE R1,R2,Loop ;branch R1!=R2

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 19 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Comparison

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 20 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Examples

23 operations in 9 cycles (2.5 operations/cycle)

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 21 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Problems

Code size

Wasted bits in the instruction encoding

Hazard detection

Synchronization issue

More bandwidth

Binary code compatibility - overcome by EPIC approach

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 22 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Concepts to exploit

Finding parallelism

Reducing control and data dependences

Speculation

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 23 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Compiling for Multiple Issue Processors

Recognize dependencies

Instruction scheduling

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 24 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Advantages of Compile-Time Techniques

No burden on run-time execution

Takes into account wider range of the program

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 25 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Disadvantages of Compile-Time Techniques

Conservative without runtime information

Assume Worst-Case

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 26 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Detecting and Enhancing Loop-Level Parallelism

Determining data and name dependencies

Loop-carried dependence

for (i=1; i<=100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */

B[i+1] = B[i] + A[i+1]; /* S2 */

}

Dependencies:

S1 uses a value computed by S1 in an earlier iteration

S2 uses the value, A[i+1], computed by S1 in the same iteration

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 27 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Example 2

for (i=1; i<=100; i=i+1) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

A loop is parallel if it can be written without a cycle in the dependencies.

A[1] = A[1] + B[1];

for(i=1; i<=99; i=i+1) {

B[i+1] = C[i] + D[i];

A[i+1] = A[i+1] + B[i+1];

}

B[101] = C[100] + D[100];

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 28 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Example 3

for (i=1;i<=100;i=i+1) {

A[i] = B[i] + C[i]

D[i] = A[i] * E[i]

}

The second reference to A in this example need not be translated to a load
instruction.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 29 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Example 4, recurrence

for(i=2;i<=100;i=i+1) {

Y[i] = Y[i-1] + Y[i]; // Dependence distance of 1

}

for(i=6;i<=100;i=i+1) {

Y[i] = Y[i-5] + Y[i]; // Dependence distance of 5

}

The larger the distance, the more potential parallelism can be obtained by
unrolling the loop.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 30 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Finding Dependences

Affine functions

GCD Test

Points to analysis

Determining whether a dependence actually exists is an undecidable
problem.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 31 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Limitations in dependence analysis

Restrictions in the analysis algorithms

Need to analyze behavior across procedure boundaries to get accurate
information

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 32 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Eliminating dependent computations

Back substitution

Copy propagation

Tree height reduction

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 33 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Scheduling and structuring code for parallelism

Software pipelining: symbolic loop unrolling

Global code scheduling

Trace scheduling
Superblocks

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 34 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Hardware support for exposing parallelism

Conditional or predicated instructions

Compiler speculation

Memory reference speculation

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 35 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
The Intel IA-64 architecture and Itanium processor

The IA-64 Register Model

128 64-bit general-purpose registers
128 82-bit floating-point registers
64 1-bit predicate registers
8 64-bit branch registers, which are used for indirect branches
a variety of registers used for system control, memory mapping,
performance counters, and communication with the OS

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 36 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
The Intel IA-64 architecture and Itanium processor ...contd.

Instruction format and support for explicit parallelism

Instruction groups

Bundle - 128-bit long instruction words (called bundles) consisting of
three 41-bit micro-operations and a 5-bit template field. Multiple
bundles can be issued per clock cycle (number is defined by
implementation).

Template field:

Helps decode and route instructions
Indicates the location of stops that mark the end of groups of
micro-operations that can execute in parallel

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 37 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
Conclusion

Same basic structure and similar sustained issue rates for the last 5
years.

Clock rates are 1020 times higher, the caches are 48 times bigger,
there are 24 times as many renaming registers, and twice as many
load-store units!

Result: Performance that is 816 times higher.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 38 / 56



Vector architectures

Overview

1 ILP overview

2 Compiling for scalar pipelines

3 Superscalar and VLIW processors

4 Vector architectures

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 39 / 56



Vector architectures

Vector architectures

Vector instructions

Hardware overview

VLOAD VR1, M

VADD VR3, VR2, VR1

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 40 / 56



Vector architectures

Vector architectures

Vector instructions

Hardware overview

VLOAD VR1, M

VADD VR3, VR2, VR1

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 40 / 56



Vector architectures

Vector architectures
Compiling for vector pipelines

Vector instructions simplify the job task of filling instruction pipelines,
but they create challenges for compiler. Such as: ensuring vector
instructions exactly implement the loops they’re used to encode.

Languages with explicit array operations solve this problem to some
extent.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 41 / 56



Vector architectures

Vector architectures
Compiling for vector pipelines

Vector instructions simplify the job task of filling instruction pipelines,
but they create challenges for compiler. Such as: ensuring vector
instructions exactly implement the loops they’re used to encode.

Languages with explicit array operations solve this problem to some
extent.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 41 / 56



Vector architectures

Vectorization

Any single-statement loop that carries no dependence can be directly
vectorized because that loop can be run in parallel.

Thus:

DO I = 1, N

X(I) = X(I) + C

ENDDO

can be safely rewritten as:

X(1:N) = X(1:N) + C

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 42 / 56



Vector architectures

Vectorization

... On the other hand, consider:

DO I = 1, N

X(I+1) = X(I) + C

ENDDO

It carries a dependence. So the transformation to the statement...

X(2:N+1) = X(1:N) + C

... would be incorrect, since, on each iteration, the sequential version uses
a value of X that is computed on the previous iteration.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 43 / 56



Vector architectures

Loop parallelization
There’s a theorem about that...

Theorem

It is valid to convert a sequential loop to a parallel loop if the loop carries
no dependence.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 44 / 56



Vector architectures

What about loop vectorization?
Is there a theorem about that?

Theorem

A statement contained in at least one loop can be vectorized by directly
rewriting in Fortran 90 if the statement is not included in any cycle of
dependencies.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 45 / 56



Vector architectures

Simple vectorization

procedure vectorize (L, D)

// L is the maximal loop nest containing the statement.

// D is the dependence graph for statements in L.

find the set {S[1], S[2], ... , S[m]} of maximal strongly-connected

regions in the dependence graph D restricted to L

(use Tarjan’s strongly-connected components algorithm);

construct L[Pi] from L by reducing each S[i] to a single node and

compute D[Pi], the dependence graph naturally induced on

L[Pi] by D;

let {Pi[1], Pi[2], ... , Pi[m]} be the m nodes of L[Pi] numbered in an order

consistent with D[Pi] (use topological sort to do the ordering);

for i = 1 to m do begin

if P[i] is a dependence cycle then

generate a DO-loop around the statements in Pi[i];

else

directly rewrite the single-statement Pi[i] in Fortran 90,

vectorizing it with respect to every loop containing it;

end

end

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 46 / 56



Vector architectures

However...

Simple vectorization algorithm misses some opportunities for vectorization.
Consider:

DO I = 1, N

DO J = 1, M

S A(I+1,J) = A(I,J) + B

ENDDO

ENDDO

There is a dependence from S to itself with the distance vector (1,0) and
direction vector (<,=). Thus, statement S is contained in a dependence
cycle, so the simple algorithm will not vectorize it.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 47 / 56



Vector architectures

However...

Simple vectorization algorithm misses some opportunities for vectorization.
Consider:

DO I = 1, N

DO J = 1, M

S A(I+1,J) = A(I,J) + B

ENDDO

ENDDO

There is a dependence from S to itself with the distance vector (1,0) and
direction vector (<,=). Thus, statement S is contained in a dependence
cycle, so the simple algorithm will not vectorize it.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 47 / 56



Vector architectures

However... (contd.)

Although we can vectorize the inner loop like so:

DO I = 1, N

S A(I+1,1:M) = A(I,1:M) + B

ENDDO

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 48 / 56



Vector architectures

However... (contd.)

Although we can vectorize the inner loop like so:

DO I = 1, N

S A(I+1,1:M) = A(I,1:M) + B

ENDDO

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 48 / 56



Vector architectures

Solution?

This suggests a recursive approach to the problem of multidimensional
vectorization.

First, attempt to generate vector code at the outermost loop level.

If dependences prevent that, then run the outer loop sequentially,
thereby satisfying the dependences carried by that loop, and try again
one level deeper, ignoring dependences carried by the outer loop.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 49 / 56



Vector architectures

Solution?

This suggests a recursive approach to the problem of multidimensional
vectorization.

First, attempt to generate vector code at the outermost loop level.

If dependences prevent that, then run the outer loop sequentially,
thereby satisfying the dependences carried by that loop, and try again
one level deeper, ignoring dependences carried by the outer loop.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 49 / 56



Vector architectures

Solution?

This suggests a recursive approach to the problem of multidimensional
vectorization.

First, attempt to generate vector code at the outermost loop level.

If dependences prevent that, then run the outer loop sequentially,
thereby satisfying the dependences carried by that loop, and try again
one level deeper, ignoring dependences carried by the outer loop.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 49 / 56



Vector architectures

Multi-level vector code generation algorithm

procedure codegen(R, k, D)

// R is the region for which we must generate code.

// k is the minimum nesting level of possible parallel loops.

// D is the dependence graph among statements in R..

find the set {S[1], S[2], ... , S[m]} of maximal strongly-connected

regions in the dependence graph D restricted to R

(use Tarjan’s algorithm);

construct R[Pi] from R by reducing each S[i] to a single node and

compute D[Pi], the dependence graph naturally induced on

R[Pi] by D;

let {Pi[1], Pi[2], ... , Pi[m]} be the m nodes of R numbered in an order

consistent with D (use topological sort to do the numbering);

(next slide...)

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 50 / 56



Vector architectures

Multi-level vector code generation algorithm (contd.)

for i = 1 to m do begin

if P[i] is cyclic then begin

generate a level-k DO statement;

let D[i] be the dependence graph consisting of all

dependence edges in D that are at level k+1 or greater

and are internal to Pi[i];

codegen (Pi[i], k+1, D[i]);

generate the level-k ENDDO statement;

end

else

generate a vector statement for Pi[i] in Rho(P[i])-k+1 dimensions,

where Rho(Pi[i]) is the number of loops containing Pi[i];

end

end codegen

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 51 / 56



Vector architectures

Illustration

DO I = 1, 100

S1 X(I) = Y(I) + 10

DO J = 1, 100

S2 B(J) = A(J,N)

DO K = 1, 100

S3 A(J+1,K) = B(J) + C(J,K)

ENDDO

S4 Y(I+J) = A(J+1, N)

ENDDO

ENDDO

Dependence graph.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 52 / 56



Vector architectures

Illustration (contd.)

Dependence graph for
S[2], S[3], S[4] after

removing level-1
dependencies.

DO I = 1, 100

DO J = 1, 100

codegen({S2,S3},3})

ENDDO

Y(I+1:I+100) = A(2:101,N)

ENDDO

X(1:100) = Y(1:100) + 10

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 53 / 56



Vector architectures

Illustration (contd.)

Dependence graph for
S[2], S[3] after

removing level-2
dependencies.

DO I = 1, 100

DO J = 1, 100

B(J) = A(J,N)

A(J+1,1:100) = B(J) + C(J,1:100)

ENDDO

Y(I+1:I+100) = A(2:101,N)

ENDDO

X(1:100) = Y(1:100) + 10

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 54 / 56



Vector architectures

Concluding remarks

Dependence is the primary tool used by compilers in analysis.

Any transformation that reorders the execution of statements in the
program preserves correctness if the transformation preserves the
order of source and sink of every dependence in the program.

This can be used as an effective tool to determine when it is safe to
parallelize or vectorize a loop.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 55 / 56



Vector architectures

Concluding remarks

Dependence is the primary tool used by compilers in analysis.

Any transformation that reorders the execution of statements in the
program preserves correctness if the transformation preserves the
order of source and sink of every dependence in the program.

This can be used as an effective tool to determine when it is safe to
parallelize or vectorize a loop.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 55 / 56



Vector architectures

Concluding remarks

Dependence is the primary tool used by compilers in analysis.

Any transformation that reorders the execution of statements in the
program preserves correctness if the transformation preserves the
order of source and sink of every dependence in the program.

This can be used as an effective tool to determine when it is safe to
parallelize or vectorize a loop.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 55 / 56



Vector architectures

References

Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach, Randy Allen and Ken Kennedy.

Compiler Transformations for High-Performance Computing, Bacon,
David F., Susan L. Graham, and Oliver J. Sharp.
http://portal.acm.org/citation.cfm?doid=197405.197406.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 56 / 56


	ILP overview
	Compiling for scalar pipelines
	Superscalar and VLIW processors
	Vector architectures

