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Parallelism in your pocket

LINPACK is available in Android and iOS app markets. One reviewer
says: “Have no Idea what it does and I am very very confused”

http://www.netlib.org/linpack/
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Parallelism NOT in your pocket

Cray-2: “Size of a washing machine, immersed in a tank of Fluorinert.”
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Parallelism in your pocket

NYT, May 2011: “Jack Dongarra’s (University of Tennessee) research
group has run the test on Apples new iPad 2, and it turns out that
the legal-pad-size tablet would be a rival for a four-processor version
of the Cray 2 supercomputer, which, with eight processors, was the
worlds fastest computer in 1985.”
http://bits.blogs.nytimes.com/2011/05/09/the-ipad-in-your-hand-as-fast-as-a-supercomputer-of-yore/

News in the street is that the new iPhone 4S can beat a 1993 vintage
Cray in Linpack benchmarks.
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How have compilers kept up?

Let’s investigate!
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Many ways!

Dependence testing

Prelimimary transformations

Enhancing fine-grained parallelism

Creating coarse-grained parallelism

Handling control flow

Improving register usage

Managing cache

Scheduling

Interprocedural analysis and optimization

etc.
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Overview

1 ILP overview

2 Compiling for scalar pipelines

3 Superscalar and VLIW processors

4 Vector architectures
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ILP overview

ILP overview
Pipelined instruction units

DLX instruction pipeline.
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ILP overview

ILP overview
Pipelined execution units

Typical floating point adder.

Snapshot of a pipelined execution unit computing ai = bi + ci.
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ILP overview

ILP overview
Parallel functional units

Multiple functional units.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 10 / 56



Compiling for scalar pipelines

Compiling for scalar pipelines

Key performance barrier is pipeline stalls, caused by one of these
hazards:

Structural hazards, where machine resources do not support all possible
combinations of instruction overlap that might occur.
Data hazards, where the result produced by one instruction is required
by the subsequent instruction.
Control hazards, which occur because of the processing of branches.

The principal compiler strategy is to rearrange instructions so that the
stalls never occur. This is called instruction scheduling.
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Superscalar and VLIW processors

Overview

1 ILP overview

2 Compiling for scalar pipelines

3 Superscalar and VLIW processors

4 Vector architectures
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Superscalar and VLIW processors

Superscalar and VLIW processors

Vector operations complicate instruction set design.

...if we could issue one or more pipelined instructions on each cycle, it
might be possible to fill the execution unit pipelines...
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Superscalar and VLIW processors

Superscalar and VLIW processors
Multiple-issue instruction units

Multiple-issue instruction units issues multiple “wide instructions” on
each cycle. Each “wide instruction” holds several normal instructions,
and each of them corresponds to an operation in a different functional
unit.
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Superscalar and VLIW processors

Superscalar and VLIW processors
Compiling for multiple-issue processors

Issues multiple instructions by executing a single “wide instruction on
each cycle.”

Statically Scheduled. Onus on the Compiler or the programmer to
manage the execution schedule.

All hazards determined and indicated by the compiler (often
implicitly).
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Superscalar and VLIW processors

Superscalar and VLIW processors
Compiling for multiple-issue processors... contd.

No need of special look-ahead hardware as opposed to Superscalar
processors. Hence, explicitly scheduled.

Compiler must recognize when operators are not related by
dependence.

Compiler must schedule instructions such that it requires fewest
possible cycles.
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Superscalar and VLIW processors

Superscalar and VLIW processors
Compiler Techniques

Loop unrolling

Local scheduling

Global scheduling - trace scheduling

Software pipelining

Superblock scheduling
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Superscalar and VLIW processors

Superscalar and VLIW processors
Examples

5 Operations

1 Integer operation (could be a branch)

2 PF operations

2 Memory references

Instruction length 80 - 120
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Superscalar and VLIW processors

Superscalar and VLIW processors
Examples

Loop: L.D F0,0(R1) ;F0=array element

ADD.D F4,F0,F2 ;add scalar in F2

S.D F4,0(R1) ;store result

DADDUI R1,R1,#-8 ;decrement pointer

;8 bytes (per DW)

BNE R1,R2,Loop ;branch R1!=R2
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Superscalar and VLIW processors

Superscalar and VLIW processors
Comparison
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Superscalar and VLIW processors

Superscalar and VLIW processors
Examples

23 operations in 9 cycles (2.5 operations/cycle)
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Superscalar and VLIW processors

Superscalar and VLIW processors
Problems

Code size

Wasted bits in the instruction encoding

Hazard detection

Synchronization issue

More bandwidth

Binary code compatibility - overcome by EPIC approach
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Superscalar and VLIW processors

Superscalar and VLIW processors
Concepts to exploit

Finding parallelism

Reducing control and data dependences

Speculation
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Superscalar and VLIW processors

Superscalar and VLIW processors
Compiling for Multiple Issue Processors

Recognize dependencies

Instruction scheduling
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Superscalar and VLIW processors

Superscalar and VLIW processors
Advantages of Compile-Time Techniques

No burden on run-time execution

Takes into account wider range of the program
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Superscalar and VLIW processors

Superscalar and VLIW processors
Disadvantages of Compile-Time Techniques

Conservative without runtime information

Assume Worst-Case
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Superscalar and VLIW processors

Superscalar and VLIW processors
Detecting and Enhancing Loop-Level Parallelism

Determining data and name dependencies

Loop-carried dependence

for (i=1; i<=100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */

B[i+1] = B[i] + A[i+1]; /* S2 */

}

Dependencies:

S1 uses a value computed by S1 in an earlier iteration

S2 uses the value, A[i+1], computed by S1 in the same iteration
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Superscalar and VLIW processors

Superscalar and VLIW processors
Example 2

for (i=1; i<=100; i=i+1) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

A loop is parallel if it can be written without a cycle in the dependencies.

A[1] = A[1] + B[1];

for(i=1; i<=99; i=i+1) {

B[i+1] = C[i] + D[i];

A[i+1] = A[i+1] + B[i+1];

}

B[101] = C[100] + D[100];
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Superscalar and VLIW processors

Superscalar and VLIW processors
Example 3

for (i=1;i<=100;i=i+1) {

A[i] = B[i] + C[i]

D[i] = A[i] * E[i]

}

The second reference to A in this example need not be translated to a load
instruction.
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Superscalar and VLIW processors

Superscalar and VLIW processors
Example 4, recurrence

for(i=2;i<=100;i=i+1) {

Y[i] = Y[i-1] + Y[i]; // Dependence distance of 1

}

for(i=6;i<=100;i=i+1) {

Y[i] = Y[i-5] + Y[i]; // Dependence distance of 5

}

The larger the distance, the more potential parallelism can be obtained by
unrolling the loop.
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Superscalar and VLIW processors

Superscalar and VLIW processors
Finding Dependences

Affine functions

GCD Test

Points to analysis

Determining whether a dependence actually exists is an undecidable
problem.
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Superscalar and VLIW processors

Superscalar and VLIW processors
Limitations in dependence analysis

Restrictions in the analysis algorithms

Need to analyze behavior across procedure boundaries to get accurate
information
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Superscalar and VLIW processors

Superscalar and VLIW processors
Eliminating dependent computations

Back substitution

Copy propagation

Tree height reduction
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Superscalar and VLIW processors

Superscalar and VLIW processors
Scheduling and structuring code for parallelism

Software pipelining: symbolic loop unrolling

Global code scheduling

Trace scheduling
Superblocks
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Superscalar and VLIW processors

Superscalar and VLIW processors
Hardware support for exposing parallelism

Conditional or predicated instructions

Compiler speculation

Memory reference speculation
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Superscalar and VLIW processors

Superscalar and VLIW processors
The Intel IA-64 architecture and Itanium processor

The IA-64 Register Model

128 64-bit general-purpose registers
128 82-bit floating-point registers
64 1-bit predicate registers
8 64-bit branch registers, which are used for indirect branches
a variety of registers used for system control, memory mapping,
performance counters, and communication with the OS

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 36 / 56



Superscalar and VLIW processors

Superscalar and VLIW processors
The Intel IA-64 architecture and Itanium processor ...contd.

Instruction format and support for explicit parallelism

Instruction groups

Bundle - 128-bit long instruction words (called bundles) consisting of
three 41-bit micro-operations and a 5-bit template field. Multiple
bundles can be issued per clock cycle (number is defined by
implementation).

Template field:

Helps decode and route instructions
Indicates the location of stops that mark the end of groups of
micro-operations that can execute in parallel
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Superscalar and VLIW processors

Superscalar and VLIW processors
Conclusion

Same basic structure and similar sustained issue rates for the last 5
years.

Clock rates are 1020 times higher, the caches are 48 times bigger,
there are 24 times as many renaming registers, and twice as many
load-store units!

Result: Performance that is 816 times higher.
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Vector architectures

Overview

1 ILP overview

2 Compiling for scalar pipelines

3 Superscalar and VLIW processors

4 Vector architectures
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Vector architectures

Vector architectures

Vector instructions

Hardware overview

VLOAD VR1, M

VADD VR3, VR2, VR1
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Vector architectures

Vector architectures
Compiling for vector pipelines

Vector instructions simplify the job task of filling instruction pipelines,
but they create challenges for compiler. Such as: ensuring vector
instructions exactly implement the loops they’re used to encode.

Languages with explicit array operations solve this problem to some
extent.
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Vector architectures

Vectorization

Any single-statement loop that carries no dependence can be directly
vectorized because that loop can be run in parallel.

Thus:

DO I = 1, N

X(I) = X(I) + C

ENDDO

can be safely rewritten as:

X(1:N) = X(1:N) + C
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Vector architectures

Vectorization

... On the other hand, consider:

DO I = 1, N

X(I+1) = X(I) + C

ENDDO

It carries a dependence. So the transformation to the statement...

X(2:N+1) = X(1:N) + C

... would be incorrect, since, on each iteration, the sequential version uses
a value of X that is computed on the previous iteration.

Purshottam and Sajith (IU) Compiler techniques for leveraging ILP October 12, 2011 43 / 56



Vector architectures

Loop parallelization
There’s a theorem about that...

Theorem

It is valid to convert a sequential loop to a parallel loop if the loop carries
no dependence.
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Vector architectures

What about loop vectorization?
Is there a theorem about that?

Theorem

A statement contained in at least one loop can be vectorized by directly
rewriting in Fortran 90 if the statement is not included in any cycle of
dependencies.
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Vector architectures

Simple vectorization

procedure vectorize (L, D)

// L is the maximal loop nest containing the statement.

// D is the dependence graph for statements in L.

find the set {S[1], S[2], ... , S[m]} of maximal strongly-connected

regions in the dependence graph D restricted to L

(use Tarjan’s strongly-connected components algorithm);

construct L[Pi] from L by reducing each S[i] to a single node and

compute D[Pi], the dependence graph naturally induced on

L[Pi] by D;

let {Pi[1], Pi[2], ... , Pi[m]} be the m nodes of L[Pi] numbered in an order

consistent with D[Pi] (use topological sort to do the ordering);

for i = 1 to m do begin

if P[i] is a dependence cycle then

generate a DO-loop around the statements in Pi[i];

else

directly rewrite the single-statement Pi[i] in Fortran 90,

vectorizing it with respect to every loop containing it;

end

end
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Vector architectures

However...

Simple vectorization algorithm misses some opportunities for vectorization.
Consider:

DO I = 1, N

DO J = 1, M

S A(I+1,J) = A(I,J) + B

ENDDO

ENDDO

There is a dependence from S to itself with the distance vector (1,0) and
direction vector (<,=). Thus, statement S is contained in a dependence
cycle, so the simple algorithm will not vectorize it.
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Vector architectures

However... (contd.)

Although we can vectorize the inner loop like so:

DO I = 1, N

S A(I+1,1:M) = A(I,1:M) + B

ENDDO
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Vector architectures

Solution?

This suggests a recursive approach to the problem of multidimensional
vectorization.

First, attempt to generate vector code at the outermost loop level.

If dependences prevent that, then run the outer loop sequentially,
thereby satisfying the dependences carried by that loop, and try again
one level deeper, ignoring dependences carried by the outer loop.
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Vector architectures

Multi-level vector code generation algorithm

procedure codegen(R, k, D)

// R is the region for which we must generate code.

// k is the minimum nesting level of possible parallel loops.

// D is the dependence graph among statements in R..

find the set {S[1], S[2], ... , S[m]} of maximal strongly-connected

regions in the dependence graph D restricted to R

(use Tarjan’s algorithm);

construct R[Pi] from R by reducing each S[i] to a single node and

compute D[Pi], the dependence graph naturally induced on

R[Pi] by D;

let {Pi[1], Pi[2], ... , Pi[m]} be the m nodes of R numbered in an order

consistent with D (use topological sort to do the numbering);

(next slide...)
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Vector architectures

Multi-level vector code generation algorithm (contd.)

for i = 1 to m do begin

if P[i] is cyclic then begin

generate a level-k DO statement;

let D[i] be the dependence graph consisting of all

dependence edges in D that are at level k+1 or greater

and are internal to Pi[i];

codegen (Pi[i], k+1, D[i]);

generate the level-k ENDDO statement;

end

else

generate a vector statement for Pi[i] in Rho(P[i])-k+1 dimensions,

where Rho(Pi[i]) is the number of loops containing Pi[i];

end

end codegen
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Vector architectures

Illustration

DO I = 1, 100

S1 X(I) = Y(I) + 10

DO J = 1, 100

S2 B(J) = A(J,N)

DO K = 1, 100

S3 A(J+1,K) = B(J) + C(J,K)

ENDDO

S4 Y(I+J) = A(J+1, N)

ENDDO

ENDDO

Dependence graph.
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Vector architectures

Illustration (contd.)

Dependence graph for
S[2], S[3], S[4] after

removing level-1
dependencies.

DO I = 1, 100

DO J = 1, 100

codegen({S2,S3},3})

ENDDO

Y(I+1:I+100) = A(2:101,N)

ENDDO

X(1:100) = Y(1:100) + 10
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Vector architectures

Illustration (contd.)

Dependence graph for
S[2], S[3] after

removing level-2
dependencies.

DO I = 1, 100

DO J = 1, 100

B(J) = A(J,N)

A(J+1,1:100) = B(J) + C(J,1:100)

ENDDO

Y(I+1:I+100) = A(2:101,N)

ENDDO

X(1:100) = Y(1:100) + 10
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Vector architectures

Concluding remarks

Dependence is the primary tool used by compilers in analysis.

Any transformation that reorders the execution of statements in the
program preserves correctness if the transformation preserves the
order of source and sink of every dependence in the program.

This can be used as an effective tool to determine when it is safe to
parallelize or vectorize a loop.
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