
Genetic Subsequencing Algorithm

Pamela Bilo
Alina Banerjee

B649 – Fall 2012
December 5, 2012

What are we trying to accomplish?

● Genetic subsequencing – finding similarities
between strands of DNA

● DNA consists of four bases: guanine (G), adenine
(A), thymine (T), and cytosine (C). A DNA strand
is a combination of these four bases of length 3
billion

● It can be determined how closely related two
organisms are by comparing their longest common
subsequence.

What is a subsequence?
● A subsequence of a sequence A = (a0, a1, a2, a3, ...

an) is any combination of ai such that the index at
position i is less than that of position i + 1.

● Example: In the sequence “ABCDEF”, examples of
subsequences would be “ABC”, “ABD”, “ACF”.
“FCA” would not be a subsequence because F
appears after C in the original sequence

● The longest common subsequence problem is the
task of finding the longest subsequence that belongs
to sequence A and sequence B.

The Algorithm

● Construct a matrix of size (i + 1) x (j + 1), where i
and j are the lengths of A and B, respectively.
– Fill row 1 and column 1 with zeroes
– Traverse down the matrix. For each position (i, j) in the

matrix:
● If a[i] = b[j], m(i, j) = m(i – 1, j – 1)
● Otherwise, m(i, j) = max(m(i – 1, j), m(i, j - 1))

Backtracking

● To find the longest common subsequence, start at
the bottom right corner.
– If a[i] != b[j]:

● If m(i – 1, j) > m(i, j -1):
– Move to position m(i – 1, j)
– Else move to position m(i, j – 1)

– Else:
● Add a[i] to the longest common subsequence
● Move to position m(i – 1, j - 1)

Arun Chauhan

Arun Chauhan
Subsequence Construction

Arun Chauhan

Backtracking
● In this case, the longest common substring is
“ATC”. We can look at our original strings and see
that “ATCT” and “AGCT”.

Arun Chauhan

Arun Chauhan

Arun Chauhan

Arun Chauhan
Subsequence Construction

Analysis of serial algorithm

● For every m(i, j) in the matrix, there are three
dependencies: between m(i – 1, j), m(i – 1, j – 1),
and m(i, j – 1). This is impossible to parallelize.

Changing dependencies

● We want to manipulate the
algorithm such that ALL
dependencies are on the
previous row. We scan the
previous row for the last
time the number appeared,
and add one to it. Then, we
find the maximum value of
that number, and the
number above it.

Precomputation Matrix

● Scanning our rows is a potentially time-consuming
operation.

● We want to construct a matrix beforehand that will
tell us exactly what column the number that we want
is in.

● We will be able to directly access that information
based on our position in the matrix.

Precomputation Matrix
● There are n + 1 rows where n is the

number of characters that make up our
sequence. Each row corresponds to
that character. There are m columns
where m is the number of elements in
sequence A

● Position (0, j) is equal to j

● Position (i, 0) is equal to 0

● Else:

– If (c[i] = a[j - 1]):

● m(i, j) = j – 1
● Else:

– m(i, j) = m(i, j - 1)

Putting it all together

● Now, we can look up where we need to go to in the
previous row by accessing our precomputation
matrix! Each entry in the precomputation matrix
corresponds to the column in which the character
last appeared.

● We can now slightly modify our algorithm.

New efficient parallelization
● If a[i] = b[j],

– m(i, j) = m(i – 1, j – 1)

● Else if (p(c, j) = 0),

– m(i, j) = m(i – 1, j)

● Else max(m(i – 1, j),

● m(i – 1, p(c, j) – 1) + 1)

P is our precomputation matrix. Coincidentally, the sequences on the row and column axis
of both matrices are the same. This will not only be the case, for the values for each row in
the precomputation matrix only consist of the letters that make up the sequence (A, G, T,
C). However, this example makes it easier to understand

C is the number in which the character b[j] appears in the rows of P. In this case, c will
always equal j. All b[j]'s where b[j] = A will map to c = 1, b[j]'s where bj = G maps to c = 2,
etc.

P(c, j) tells us the column where the last instance of letter a[i] occurred. We use this to look
to the previous row to find a value for m(i, j).

Potential Improvements

● Moving large matrix m to the GPU in blocks
● Using a binary matrix where m(i, j) = 0 if a[i] != b[j]

and m(i, j) = 1 otherwise, and build down by
assigning m(i, j) = m(i, j) + max(m(i – 1, j), m(i, j -
1))

References

● An Efficient Parallel Algorithm for Longest
Common Subsequence Problem on GPUs. Jiaoyun
Yang, Yun Xu, Yi Shang. 2010

