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What are we trying to accomplish? 

● Genetic subsequencing – finding similarities 
between strands of DNA 

● DNA consists of four bases: guanine (G), adenine 
(A), thymine (T), and cytosine (C).  A DNA strand 
is a combination of these four bases of length 3 
billion 

● It can be determined how closely related two 
organisms are by comparing their longest common 
subsequence.   



What is a subsequence? 
● A subsequence of a sequence A = (a0, a1, a2, a3, ... 

an) is any combination of ai such that the index at 
position i is less than that of position i + 1. 

● Example:  In  the  sequence  “ABCDEF”,  examples  of  
subsequences  would  be  “ABC”,  “ABD”,  “ACF”.    
“FCA”  would  not  be  a  subsequence  because  F  
appears after C in the original sequence 

● The longest common subsequence problem is the 
task of finding the longest subsequence that belongs 
to sequence A and sequence B. 



The Algorithm 

● Construct a matrix of size (i + 1) x (j + 1), where i 
and j are the lengths of A and B, respectively.   
– Fill row 1 and column 1 with zeroes 
– Traverse down the matrix.  For each position (i, j) in the 

matrix: 
● If a[i] = b[j], m(i, j) = m(i – 1, j – 1) 
● Otherwise, m(i, j) = max(m(i – 1, j), m(i, j - 1)) 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



Backtracking 

● To find the longest common subsequence, start at 
the bottom right corner. 
– If a[i] != b[j]: 

● If m(i – 1, j) > m(i, j -1): 
– Move to position m(i – 1, j) 
– Else move to position m(i, j – 1) 

– Else: 
● Add a[i] to the longest common subsequence 
● Move to position m(i – 1, j - 1) 
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Backtracking 
● In this case, the longest common substring is 
“ATC”.    We  can  look  at  our  original  strings  and  see  
that  “ATCT”  and  “AGCT”.     
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Analysis of serial algorithm 

● For every m(i, j) in the matrix, there are three 
dependencies: between m(i – 1, j), m(i – 1, j – 1), 
and m(i, j – 1).  This is impossible to parallelize. 



Changing dependencies 

● We want to manipulate the 
algorithm such that ALL 
dependencies are on the 
previous row.  We scan the 
previous row for the last 
time the number appeared, 
and add one to it.  Then, we 
find the maximum value of 
that number, and the 
number above it. 
 



Precomputation Matrix 

● Scanning our rows is a potentially time-consuming 
operation.   

● We want to construct a matrix beforehand that will 
tell us exactly what column the number that we want 
is in. 

● We will be able to directly access that information 
based on our position in the matrix. 



Precomputation Matrix 
● There are n + 1 rows where n is the 

number of characters that make up our 
sequence.  Each row corresponds to 
that character.  There are m columns 
where m is the number of elements in 
sequence A 

● Position (0, j) is equal to j 

● Position (i, 0) is equal to 0 

● Else: 

– If (c[i] = a[j - 1]): 

● m(i, j) = j – 1 
● Else: 

– m(i, j) = m(i, j - 1) 

 



Putting it all together 

● Now, we can look up where we need to go to in the 
previous row by accessing our precomputation 
matrix!  Each entry in the precomputation matrix 
corresponds to the column in which the character 
last appeared. 

● We can now slightly modify our algorithm. 



New efficient parallelization 
● If a[i] = b[j], 

– m(i, j) = m(i – 1, j – 1) 

● Else if (p(c, j) = 0), 

– m(i, j) = m(i – 1, j) 

● Else max(m(i – 1, j), 

●         m(i – 1, p(c, j) – 1) + 1) 

               

P is our precomputation matrix.  Coincidentally, the sequences on the row and column axis 
of both matrices are the same.  This will not only be the case, for the values for each row in 
the precomputation matrix only consist of the letters  that make up the sequence (A, G, T, 
C).  However, this example makes it easier to understand 
 
C is the number in which the character b[j] appears in the rows of P.  In this case, c will 
always equal j.  All b[j]'s where b[j] = A will map to c = 1, b[j]'s where bj = G maps to c = 2, 
etc.   
 
P(c, j) tells us the column where the last instance of letter a[i] occurred.  We use this to look 
to the previous row to find a value for m(i, j). 



Potential Improvements 

● Moving large matrix m to the GPU in blocks 
● Using a binary matrix where m(i, j) = 0 if a[i] != b[j] 

and m(i, j) = 1 otherwise, and build down by 
assigning m(i, j) = m(i, j) + max(m(i – 1, j), m(i, j - 
1)) 
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