Parallelizing a T-Cell Cross-
Regulation Machine Classifier

B649 12/5/12
lan Wood and Yufan Chai

The Problem o

* Two Populations of
different sizes ® -

e Each member of each p"
population can form ®
one, and only one, link ® -
to a member of the ®- '/-b O

other population —~@
e All member of one / O

population should form

a link if possible ® @ . @

_7. @

Specifics
* A machine classifier inspired
by T-Cell Cross Regulation ~

«l . E
 Documents are split into a
features called “Antigens” <

* Populations of “T-Cells” are
trained based on bindingto g-
Antigens

— Two varieties, Effectors and
Regulators o

— Initial ratio produced upon ne
encountering a new antigen is
set according to document
label, constitutes training

— Based on types of neighbors,
T-cells replicate and die

— Final ratios classify documents

More Specifics

* Currently, T-Cells and
Antigens both have strings
and can bind if the strings
match exactly Binding

 Why parallelize?

— Future Extensions will
involve tracking individual
tcells’ age, and investigating

other binding functions Chance of Death for £\ =
(substring matching, Unbound Cells]
possibly regex) l
e Targets for parallelization:
— Binding Step Proliferation and $ T e

cre 4 Classification » 7
— Classification Step %

Approach: CUDA for Binding

Binding occurs between m—

100,000s of Tcells and
10,000s of Antigens

Divide Antigens into blocks
for CUDA, one thread to
execute for one Antigen

Divide Tcells into same-
sized blocks for CUDA

Convert and send all |

Antigens and Tcells to GPU: \

— typedef struct {int matched;
char str[STR_LEN];} Tcell;

— typedef struct {int tcellid,; (

52 9m 5SmSR 5m Sm G 52 5M 5 om9m 52

char str[STR_LEN];}
Antigen;

Within-Block Algorithm

* |nitially, Antigen blocks
and Tcell blocks are

aligned by threadiId

 While every antigen in
the block has not been
matched and has not

checked every tcell in
the block

— Check whether antigen

string and tcell string
match

— Update antigen and tcell
pointer

— sync_threads

'R
a
E
fp\'
\ E
[
\ E
[N

l Sync

‘ ~Hm SHMm jl'l'l jIll

Between-Block Algorithm

* Similar, but on a higher
scale

* |nitially Antigen blocks -
and Tcell blocks are _
aligned by blockld

* While any block has
unmatched antigens

— Run within-block

28 SWOM9R M Om 53 38 O Smomom

algorithm

— Add +1 to tcell block - -
offset

/1)

Binding Performance

Average binding time per document for two runs
of the sequential version: 18.5743 seconds

Average binding time per document for two runs
of the CUDA parallel version: 1.650175 seconds

Speedup = sequential/parallel = 11.256

Specs: NVIDIA GeForce GTX 560 Ti running on
Windows 7

— 384 CUDA cores
— 1 GB dedicated memory, 4 GB available

Binding Performance by Number of

40

35

30

25

Time (seconds) 20

15

10

TCells

Binding Time

Sequential

= Parallel

=== Sequential/log(Tcells)

Number of TCells

50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

Another Algorithm

Another AlgorithmUsing a list of Locks(mutex)
instead of _syncthreads()

Divide Antigen by Blocks, but not the Tcell

Each Antigen locks a Tcell & does matching,
doesn’t need to wait on other Antigens.

Incomplete

Approach: TBB for Classification

* Classification involves counting Tcells after
proliferation and normalizing.

— For every string f matching the document:

ENumf RNumf

e Fsum = , Rsum =

\/ENu,mfz+RNumf2 \/RNumf2+ENumf2

— Rsum > Esum ? document is relevant : irrelevant

* Approach: Simple Parallel Reduce with TBB

Classification Performance

* Average Classification time per document for two
runs of the sequential version: 0.0063671

* Average Classification time per document for two
runs of the parallel version: 0.0068383

* Speedup (Slowdown)= Sequential/Parallel =
0.9311

* Notes: Initially the performance greatly improved because the count was
calculated during this step, however, it was much more efficient to keep a
running count, which meant that TBB mostly just added overhead

— With the change only from counting to only computing the cosine of the ratio of features, this
might be another job for CUDA

Classification Performance By Number

0.012

0.01

0.008

Time (seconds)
o
o
o
(@)}

0.004

0.002

of Unique Strings

Sequential and Parallel Performance with Automatic Chunking

|
<
@ Sequential
M Parallel
200 400 600 800 1000 1200 1400

Number of Unique Strings

Overall Performance

* Average time for two runs of the whole
program on 120 scientific articles:

— Sequential Version: 2621.84 seconds =43
minutes, 41.84 seconds

— Parallel Version: 776.3875 seconds = 12 minutes,
56.3875 seconds

* Speedup= sequential/parallel = 3.377

