
Parallelizing a T-Cell Cross-
Regulation Machine Classifier 

B649 12/5/12 

Ian Wood and Yufan Chai 



The Problem 

• Two Populations of 
different sizes 

• Each member of each 
population can form 
one, and only one, link 
to a member of the 
other population 

• All member of one 
population should form 
a link if possible 



Specifics 
• A machine classifier inspired 

by T-Cell Cross Regulation 
• Documents are split into 

features called “Antigens” 
• Populations of “T-Cells” are 

trained based on binding to 
Antigens 
– Two varieties, Effectors and 

Regulators 
– Initial ratio produced upon 

encountering a new antigen is 
set according to document 
label, constitutes training 

– Based on types of neighbors, 
T-cells replicate and die 

– Final ratios classify documents 



More Specifics 
• Currently, T-Cells and 

Antigens both have strings 
and can bind if the strings 
match exactly 

• Why parallelize? 
– Future Extensions will 

involve tracking individual 
tcells’ age, and investigating 
other binding functions 
(substring matching, 
possibly regex) 

• Targets for parallelization: 
– Binding Step 
– Classification Step 



Approach: CUDA for Binding 

• Binding occurs between 
100,000s of Tcells and 
10,000s of Antigens 

• Divide Antigens into blocks 
for CUDA, one thread to 
execute for one Antigen 

• Divide Tcells into same-
sized blocks for CUDA 

• Convert and send all 
Antigens and Tcells to GPU: 
– typedef struct {int matched;

 char str[STR_LEN];} Tcell; 
– typedef struct {int tcellid;

 char str[STR_LEN];} 
Antigen; 



Within-Block Algorithm 
• Initially, Antigen blocks 

and Tcell blocks are 
aligned by threadId 

• While every antigen in 
the block has not been 
matched and has not 
checked every tcell in 
the block 
– Check whether antigen 

string and tcell string 
match 

– Update antigen and tcell 
pointer 

– sync_threads 



Between-Block Algorithm 

• Similar, but on a higher 
scale 

• Initially Antigen blocks 
and Tcell blocks are 
aligned by blockId 

• While any block has 
unmatched antigens 
– Run within-block 

algorithm 

– Add +1 to tcell block 
offset 

 



Binding Performance 

• Average binding time per document for two runs 
of the sequential version: 18.5743 seconds 

• Average binding time per document for two runs 
of the CUDA parallel version: 1.650175 seconds 

• Speedup = sequential/parallel = 11.256 

• Specs: NVIDIA GeForce GTX 560 Ti running on 
Windows 7 
– 384 CUDA cores 

– 1 GB dedicated memory, 4 GB available 

 

 

 



Binding Performance by Number of 
TCells 

0

5

10

15

20

25

30

35

40

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

Time (seconds) 

Number of TCells 

Binding Time 

Sequential

Parallel

Sequential/log(Tcells)



Another Algorithm 

• Another AlgorithmUsing a list of Locks(mutex) 
instead of _syncthreads() 

• Divide Antigen by Blocks, but not the Tcell 

• Each Antigen locks a Tcell & does matching, 
doesn’t need to wait on other Antigens. 

• Incomplete 



Approach: TBB for Classification 

• Classification involves counting Tcells after 
proliferation and normalizing. 

– For every string f matching the document: 

• 𝐸𝑠𝑢𝑚 =
𝐸𝑁𝑢𝑚𝑓

𝐸𝑁𝑢𝑚𝑓
2+𝑅𝑁𝑢𝑚𝑓

2
 , 𝑅𝑠𝑢𝑚 =

𝑅𝑁𝑢𝑚𝑓

𝑅𝑁𝑢𝑚𝑓
2+𝐸𝑁𝑢𝑚𝑓

2
 

– Rsum > Esum ? document is relevant : irrelevant 

• Approach: Simple Parallel Reduce with TBB 



Classification Performance 

• Average Classification time per document for two 
runs of the sequential version: 0.0063671 

• Average Classification time per document for two 
runs of the parallel version: 0.0068383 

• Speedup (Slowdown)= Sequential/Parallel = 
0.9311 

 
• Notes: Initially the performance greatly improved because the count was 

calculated during this step, however, it was much more efficient to keep a 
running count, which meant that TBB mostly just added overhead 
– With the change only from counting to only computing the cosine of the ratio of features, this 

might be another job for CUDA 



Classification Performance By Number 
of Unique Strings 

0

0.002

0.004

0.006

0.008

0.01

0.012

0 200 400 600 800 1000 1200 1400

Ti
m

e
 (

se
co

n
d

s)
 

Number of Unique Strings 

Sequential and Parallel Performance with Automatic Chunking 

Sequential

Parallel



Overall Performance 

• Average time for two runs of the whole 
program on 120 scientific articles: 

– Sequential Version: 2621.84 seconds = 43 
minutes, 41.84 seconds 

– Parallel Version: 776.3875 seconds = 12 minutes, 
56.3875 seconds 

• Speedup= sequential/parallel = 3.377 


