

Sameer Ravi and Jesun Sahariar Firoz

DNA Sequencing Process

DNA Sequencing Process (cont.)

CCGTAGCCGGGATCCCGTCC
CCCGAACAGGCTCCCGCCGTAGCCG
AAGCTTTTCTCCCGAACAGGCTCCCG

Output of DNA FAP

6. Call Consensus

AAGCTTTTCTCCCGAACAGGCTCCCGCCGTAGCCGGGATCCCGTCC

Figure. : Graphical representation of DNA sequencing and assembly

- Behavior of a Honey Bee Swarm:
 - ✓ Food Sources
 - ✓ Employed foragers
 - ✓ Unemployed foragers: scouts and onlookers

Algorithm 1 Generic ABC Algorithm

- Initialize potential food sources for employed bees.
- 2: while Requirements are not met do
- 3: Each employed bee goes to a food source in her memory and determines a neighbour source, then evaluates its nectar amount and dances in the hive
- 4: Each onlooker watches the dance of employed bees and chooses one of their sources depending on the dances, and then goes to that source. After choosing a neighbour around that, she evaluates its nectar amount.
- Abandoned food sources are determined and are replaced with the new food sources discovered by scouts.
- 6: The best food source found so far is registered
- 7: end while

• Initialization:

- √ Food Source => A permutation of fragments
- ✓ Generated randomly (No seeding technique involved)

Calculate Fitness:

✓ By summing up the overlap amount of consecutive fragments.

$$F_{\mu} = \sum_{i=0}^{n-2} w(f[i], f[i+1]),$$

- Memorize the best solution.
- Send Employer bees
 - ✓ Estimate nectar amount => evaluate fitness
 - ✓ Modify the solution using Problem aware local search (PALS).

Experimental Results

Questions?