Improving performance for Matrix Multiplication in CUDA
We started off with **Sparse Matrices**

- Various representation formats of Sparse Matrices – COO, CSR, CSC, ELLPACK.
- Sequential algorithm for COO & CSR
Switched from Sparse to Dense Matrices

• For the CUDA implementation of Sparse Matrix multiplication, we started with simple dense matrix multiplication.

• Main task: Understand and compare Throughput oriented design (GPU) and Latency oriented design (CPU).

• Stuck to Matrix multiplication as the application – utilize the availability of SIMD.
Understanding the impact on performance

- Understanding the thread organization for CUDA
- CUDA Memories
- Use of GPU and CPU together to further enhance the performance.
Thread Organization

- Utilizing all the available threads in Streaming Multiprocessor of FERMI
 - Max number of resident threads per multiprocessor – 1536
 - Max number of blocks per multiprocessor – 8
 - Max number of threads per block – 512
- Identified the optimum number of threads per block and blocks per grid.
 - 16*16 is the optimum number of threads per block to achieve max performance.
CUDA Memories

• Device code can:
 – R/W per-thread registers
 – R/W per-thread local memory
 – R/W per-block shared memory
 – R/W per-grid global memory
 – Read only per-grid constant memory

• Host code can
 – Transfer data to/from per-grid global and constant memories
CUDA Memories

• Global memory resides in device memory (DRAM) which is much slower to access than shared memory.
• Tiling the data, is a way to achieve higher performance to take advantage of shared memory.
• Access the Global memory once and save it in the shared memory and utilize the same.
Reduction

- A reduction algorithm extracts a single value from an array of values.
CPU and GPU together

• Can CPU perform reduction better than GPU?
• Moving the vector multiplication result from GPU to CPU and perform reduction on CPU.

#All images taken from Programming Massively Parallel Processors