A Meta-Scheduler for the Par-Monad
Composable Scheduling for the Heterogeneous Cloud

Adam Foltzer Abhishek Kulkarni Rebecca Swords
Sajith Sasidharan Eric Jiang Ryan R. Newton
Indiana University
{afoltzer, adkulkar, raingram, sasasidh, erjiang, rrnewton}@indiana.edu

Abstract
Modern parallel computing hardware demands increasingly specialized attention to the details of scheduling and load balancing across heterogeneous execution resources that may include GPU and cloud environments, in addition to traditional CPUs. Many existing solutions address the challenges of particular resources, but do so in isolation, and in general do not compose within larger systems. We propose a general, composable abstraction for execution resources, along with a continuation-based meta-scheduler that harnesses those resources in the context of a deterministic parallel programming library for Haskell. We demonstrate performance benefits of combined CPU/GPU scheduling over either alone, and of combined multithreaded/distributed scheduling over existing distributed programming approaches for Haskell.

Categories and Subject Descriptors D.3.2 [Concurrent, Distributed, and Parallel Languages]

General Terms Design, Languages, Performance

Keywords Work-stealing, Composability, Haskell, GPU

1. Introduction
Ideally, we seek parallel code that not only performs well, but for that performance to be preserved under composition. Alas, this is not always the case even in serial code: implementations of functions \(f \) and \(g \) may be well-optimized individually, but if \(f \circ g \) is run inside a recursive loop, the composition may, for example, exceed the machine’s instruction cache. Nevertheless, sequential composition is far easier to reason about than parallel composition, which is the topic of this paper.

Historically, there have been many reasons for parallel codes not to compose. First, many parallel programming models are flat rather than nested—i.e., a parallel computation may not contain another parallel computation [9, 28]. Moreover, many parallel codes take direct control of hardware or operating system resources, for example by using Pthreads directly. These programs, when composed, result in oversubscription, as has famously troubled OpenMP\(^1\) [3].

Yet the rising popularity of work-stealing schedulers (Section 3) is a step forward for compositability, at least on symmetric multiprocessors (SMPs). By abstracting away explicit thread management these schedulers enable mutually ignorant parallel subprograms to coexist peacefully without oversubscription, and are now available for a wide range of different languages, including Haskell [26], C++ [2, 19, 32], Java [18], and Manticore [15], as well as many others. New problems arise, however, namely:

1. Multiple schedulers for the same language are difficult to coordinate effectively and in a principled manner (e.g. TBB / Cilk / TPL [2, 19, 32], or even Haskell’s sparks [26] and IO threads).
2. Non-CPU resources such as GPUs are competing for attention, and are not treated by existing schedulers.
3. Parallel work schedulers are themselves complex software artifacts (Section 3), typically non-modal [1], and difficult to extend.

The approach we take in this paper is to factor an existing work-stealing implementation into composable pieces. This addresses the complexity problem, but also leads the way to extensibility and interoperability—even beyond the CPU.

We describe a new system, Meta-Par\(^2\), which is an extensible implementation of the Par-monad library for Haskell [25]. The Par monad (Section 2) provides only basic parallel operations: forking control flow and communication through write-once synchronization variables called IVars. The extension mechanism we propose allows new variants of fork (e.g. to fork a computation on the GPU), but remains consistent with the semantics of the original Par monad, in particular retaining deterministic parallelism.

We present a set of these extensions, which we call Resources, that address challenges posed by current hardware: (1) dealing with larger and larger multi-socket (NUMA) SMPs, (2) programming GPUs, and (3) running on clusters of machines. Further, we observe that from the perspective of a CPU scheduler, these Resources have much in common; for example, handling asynchronous completion of work on a GPU or on another machine across the network presents largely the same problem. We argue that Resources provide a useful abstraction boundary for scheduler components, and show that they compose into more sophisticated schedulers using a simple associative binary operator.

Using a composed scheduler, a single program written for Meta-Par today can handle a variety of hardware that it might encounter

\(^1\) OpenMP: A popular set of parallel extensions to the C language widely used in the high-performance computing community.

\(^2\) http://hackage.haskell.org/package/meta-par
in the wild: for example, an ad-hoc collection of machines some of which have GPUs while others do not. Hence the heterogeneous cloud: mixed architectures within and between nodes.

The primary contributions of this paper are:

- A novel design for composable scheduler components (Section 4).
- A demonstration of how to cast certain aspects of scheduler design—-aspects which go beyond multiplexing sources of work—-using Resources. One example is adding backoff to a scheduler loop to prevent excessive busy-waiting (Section 4.4).
- An empirical evaluation of the Meta-Par scheduler(s), which includes evaluation of a number of recent pieces of common infrastructure in the Haskell ecosystem (network transports, CUDA libraries, and the like), as well as an in-depth case study of parallel comparison-based sorting implementations (Section 6.2).
- The first, to our knowledge, unified CPU/GPU work-stealing scheduler\(^3\) (Section 4.5), along with an experimental demonstration that GPU-aware CPU-scheduling can outperform GPU-oblivious (Section 6.3). With further validation, this principle may generalize beyond our implementation and beyond Haskell.

These results are preliminary, but encouraging. Meta-Par can provide a foundation for future work applying functional programming to the heterogeneous hardware wilderness. The reader is encouraged to try the library, which is hosted on github and released via Haskell’s community package manager, Hackage: here, here, and here.

2. The \textbf{Par Monad(s)}

Earlier work \cite{25} introduced a \texttt{Par} monad with the following operations:

\begin{verbatim}
 runPar :: Par a -> a
 fork :: Par () -> Par ()
 new :: Par (IVar a)
 get :: IVar a -> Par a
 put_ :: IVar a -> a -> Par ()
\end{verbatim}

A series of \texttt{fork} calls creates a binary tree of threads. We will call these \textit{Par-threads}, to contrast them with Haskell’s IO threads (i.e. user-level threads) and OS threads. Par-threads do not return values—-hence the unit type in \texttt{Par ()}—-instead they communicate only through IVars. IVars are first class, and an IVar can be read or written anywhere within the tree of Par-threads (albeit written only once).

By blocking to read an IVar, Par-threads can indeed be descheduled and resumed, thereby earning the moniker “thread”. Abstractly, IVars introduce synchronization constraints that transform the tree describing the structure of the parallel computation into a directed acyclic graph (DAG), as in Figure 1. DAGs are the standard abstraction for parallel computations used in most literature on scheduling \cite{5, 7, 8, 35}.

The simple primitives supported by \texttt{Par} can be used to build up combinators capturing common parallelism patterns, and one extremely simple and useful combinator is \texttt{spawn_}, which provides futures:

\begin{verbatim}
 spawn_ :: Par a -> (IVar a)
 spawn_ p = do i <- new
 fork (do x <- p; put_ i x)
 return i
\end{verbatim}

The original paper \cite{25} has many more examples, and explains aspects of the design which we do not cover here, such as the distinction between \texttt{put_} and \texttt{put} (weak-head-normal-form strictness vs. full strictness), and the reasoning behind this design.

The \texttt{spawn_} abstraction is sufficient to define divide-and-conquer parallel algorithms by recursively creating a future for every subproblem (a common idiom). We will use mergesort as a running example of this style. Below we define a mergesort on \texttt{Vectors}, a random-access, immutable array type commonly used in high-performance Haskell code.

\begin{verbatim}
 parSort :: Vector Int -> Par (Vector Int)
 parSort vec = if length vec <= seqThreshold
 then return (seqSort vec)
 else let n = (length vec) `div` 2
 (left, right) = splitAt n vec
 in do leftIVar <- spawn_ (parSort left)
 right' <- spawn_ (parSort right)
 left' <- get leftIVar
 parMerge left' right'
\end{verbatim}

This function splits the vector to be sorted and uses \texttt{spawn_} on the left half, giving rise to a balanced binary tree of work to be run in parallel. A sequential sort is called once the length of the vector falls below a threshold.

2.1 Meta-Par Preliminary: Generalizing \texttt{Par}

In later sections we introduce variations on \texttt{fork} and \texttt{spawn_} that correspond to alternate flavors of child computations, such as those that might run on a GPU or over the network. Because a scheduler might have any combination of these capabilities, there are many possible schedulers. Therefore, each scheduler will have a distinct variant of the \texttt{Par} monad (a distinct type), so that a subcomputation that depends on, say, a GPU capability cannot encounter a runtime error because it is combined with a scheduler lacking the capability.

Thus we need to take a refactoring step that is common in Haskell library engineering—-introduce type classes to generalize over a collection of types that provide the same operations, in this case, multiple \texttt{Par} monads.

\begin{verbatim}
 class Monad m => ParFuture future m
 | m -> future where
 spawn_ :: m a -> m (future a)
 get :: future a -> m a

 class ParFuture IVar m => ParIVar IVar m
 | m -> IVar m
 fork :: m () -> m ()
 new :: m (ivar a)
 put_ :: Ivar a -> a -> m ()
\end{verbatim}

In the above classes we take an opportunity to separate levels of \texttt{Par} functionality. A given \texttt{Par} implementation may support \textit{just futures}\(^4\) (\texttt{ParFuture} class), or may support \textit{futures and IVars} (\texttt{ParIVar} class). The distinction in levels of capability will become more important as we introduce capabilities such as \texttt{gpuSpawn} and \texttt{longSpawn} (and classes \texttt{ParGPU}, \texttt{ParDist}) in Sections 4.5 and 4.5.2.

In the above class definitions, the type variable ‘\(m\)’ represents the type of a specific \texttt{Par} monad that satisfies the interface (i.e. an \textit{instance}). Some of the complexity above is specific to Haskell and may safely be ignored for the reader of this paper. Namely,

\(^3\)Though the idea has been discussed \cite{17}.

\(^4\)A common example being the \texttt{PrimMonad} type class generalizing over \texttt{IO} and \texttt{ST}—true external side effects and localized, dischargeable ones.

\(^5\)Indeed, we have a scheduler that uses \texttt{sparks} \cite{26} and supports only futures. This allows us to compare the efficiency of our scheduling primitives to those built in to the GHC runtime, using the former if desired.
the ParFuture and ParIVar classes are multi-parameter type classes, both parameterized by a type variable iVar as well as m. This is necessary because two Par monads may require different representations for their synchronization variables. Finally, because the type for iVar is determined by the choice of Par monad, the above includes another advanced feature of GHC type classes: a functional dependency, m → iVar. We do not simplify these classes for the purpose of presentation, because they correspond exactly to those used in the released code.

The writer of a reusable library should always use the generic functions, and never commit to a concrete Par monad. The final application is then free to decide which concrete implementation—and therefore which heterogeneous execution capabilities—to use. For the remainder of the paper, let us assume that all Par implementations reside in their own distinct modules, Control.Monad.Par.Foo, each providing a concrete type constructor named Par, as well as instances for the appropriate generic operations. These are the schedulers (plural) in our system, whereas Meta-Par itself is a metascheduler—not touched directly by users, but instantiated to create concrete schedulers. For readability, we will informally write concrete type signatures, Par a, (referring to any valid concrete Par monad) rather than the more generic ParFuture iv p => p a.

3. Work-Stealing Schedulers

In work-stealing schedulers, each worker maintains a private work pool, synchronizing with other workers only when local work is exhausted (the parsimony property [34]). Thus the burden of synchronizing and load-balancing falls on idle nodes. Like any parallel scheduler, work-stealing schedulers map work items (e.g., forked Par threads) onto P workers; workers are most often OS threads with a one-to-one correspondence to processor cores.

As a work-stealing algorithm, the original implementation of the Par monad [25] is rather standard and even simple. Yet schedulers that “grow up”—for example TBB, Cilk, or the GHC runtime—become very complex, dealing with concerns such as the following:

- Idling behavior to prevent wasted CPU cycles in tight work-stealing loops (“busy waiting”).
- Managing contention of shared data structures (backoff, etc.).
- Interacting with unpredictable user programs that can call into the scheduler (e.g. call runPar) from different hardware threads or in a nested manner.
- Multiplexing multiple sources of work.

Alas, in spite of this complexity, such schedulers typically have monolithic, non-modular implementations [1, 19, 32]. Regarding work-source multiplexing in particular: a typical work-stealing scheduler is described in pseudocode as an ordered series of checks against possible sources of work. For example, in the widely-used Threading Building Blocks (TBB) package, the reference manual [4], Section 12.1, includes the following description of the task-scheduling algorithm:

After completing a task t, a thread chooses its next task according to the first applicable rule below:
1. The task returned by t.execute()
2. The successor of t if t was its last completed predecessor.
3. A task popped from the end of the thread’s own deque.
4. A task with affinity for the thread.
5. A task popped from approximately the beginning of the shared queue.
6. A task popped from the beginning of another randomly chosen thread’s deque.

Six possible sources of work! And that is only for CPU scheduling. Rather than committing to a list like the above and hardcoding it into the scheduler (the state of the art today), we construct schedulers that are composed of reusable components. For example, a rough description of a distributed CPU/GPU scheduler may look like the following:

1. Steal from CPU-local deque (try N times) else
2. Steal-back from GPU else
3. Steal from network else
4. Goto step 1

This resembles a stack of resources. In fact, the purpose of this paper is to demonstrate that scheduler composition need only be a simple associative binary operator. The familiar mappend operation from Haskell’s Monoid type class then suffices to combine Resources into compound [stacks of] Resources.

4. Meta-Scheduling: The Resource Stack

The scheduler for Meta-Par is parameterized by a stack of heterogeneous execution resources, each of which may serve as a source of work. All workers participating in a Meta-Par execution (on all threads and all machines) run a scheduling loop that interacts with the resource stack. Resource stacks are built using mappend, where (a `mappend` b) is a stack with a on top and b on the bottom. Below, the type Resource is used for both singular and composed Resources. We will use “resource stack” informally to refer to complete, composed Resources.

The division of labor in our design is between schedulers, Resources, and the Meta-Par infrastructure (meta-scheduler).

First, the meta-scheduler itself:
- Creates worker threads, each with a work-stealing deque.
- Detects nested invocations of runPar and avoids re-initialization of the Resource (i.e. oversubscription). This ultimately requires global mutable state via the well-known unsafePerformIO with NOINLINE pragma hack, both in Meta-Par and for some supplementary Resource data structures. See Figure 2.
This Par provides blocking get operations via a continuation monad, using continuations to suspend Par-threads in the style of Haynes, Friedman, and Wand [16].

Further, each Resource may introduce:

- Additional (internal) data structures for storing work, above and beyond the per-worker thread deques. These might contain work for an external device of a different type than Par ()
- One or more fork-like operations appropriate to the resource. These push work into the per-resource data structures.

Finally, each scheduler contains:

- A new Par type (a newtype as described in Section 2.1),
- A corresponding runPar, and
- A composed Resource [stack]

Thus a scheduler is a mere mashup of Resources, re-exporting components of Meta-Par and of constituent Resources. In fact, schedulers can be created on demand with a few lines of code. Typically, each scheduler and each Resource reside their own module. An example module implementing a Resource is shown in Figure 2, and an example module implementing a scheduler is shown in Figure 3.

Because each Resource manages its own data structures, Meta-Par is not strictly just for work-stealing. For example, a Resource could choose to ignore Meta-Par’s spawn in favor of its own operator with work-sharing semantics. Indeed, even the built-in work-stealing behavior can be cast as a stand-alone Resource; however we choose to include it in the core of the system in order to keep the Meta-Par interface simpler.

4.1 Resource Internals

A Resource presents an interface composed of two callbacks: a startup callback, and a work-searching callback.

type Startup = Resource → Vector WorkerState → IO ()
type WorkSearch = Int → Vector WorkerState → IO (Maybe (Par ()))

data Resource = Resource { startUp :: Startup, workSearch :: WorkSearch }

The startup callback is responsible for performing any work necessary to prepare a Resource, such as spawning worker threads for SMP scheduling, or opening network connections for distributed coordination. A global barrier ensures that no work commences until each Resource in the stack has completed initialization. The Resource argument to startup ties the knot to make the final composed Resource available when initializing any of its component Resources. WorkerState structures store each worker’s work-stealing deque, along with certain shared information such as the random number generator used for randomized work stealing.

Each worker may have a single active Par-thread currently executing. When that Par-thread is finished or blocks on an IVar, the worker first tries to pop from the top of its work-stealing deque, and if no work is found, invokes workSearch. The arguments to workSearch provide the searcher’s ID (just an Int) along with the global WorkerState vector. The former can be used to look up the local WorkerState structure in the latter. The worker expects the workSearch to respond either with a unit of work (Just work), or with Nothing.

Resources, combined with mappend, form a non-commutative monoid so we can compose them using the Monoid type class:

instance Monoid Startup
instance Monoid WorkSearch
instance Monoid Resource

The Startup instance is straightforward, where the empty action does nothing, and composing two startups means to run them in sequence with the same arguments. The interesting instance is for WorkSearch, which must be composed so that the work-finding attempt runs the second workSearch only when the first workSearch returns Nothing.

instance Monoid WorkSearch where
 mempty = x → Nothing
 mappend ws1 ws2 = λwid stateVec → do
 mwork ← ws1 wid stateVec
 case mwork of
 Nothing → ws2 wid stateVec
 _ → return mwork

In order to satisfy the axioms of a monoid, the empty Resource mempty does nothing—no Meta-Par workers are ever spawned by its Startup, no work is ever found by its WorkSearch, and so no work can be computed if it is the only Resource. Meta-Par leaves it to non-empty implementations of Resources to decide how many and on which CPUs to spawn worker threads. The Meta-Par module itself, absent any Resources, provides very little. It simply exposes primitives for spawning workers (handling exceptions, waiting for the startup barrier, logging debugging info) and running entire Par computations with a particular Resource configuration:

spawnWorkerOnCPU :: Resource → Int → IO ()
runMetaParIO :: Resource → IO a
Meta-Par commits to a specific concrete Par type (Control.Monad.Par, Par, Meta.Par) for its internal implementation and for the construction of new Resources and composed schedulers. This Par type allows arbitrary computation via a MonadIO instance, which would put the Par-monad determinism guarantee at risk if exposed to the end user. Instead, the privileged Meta.Par is wrapped by the schedulers in newtype Par types that provide only appropriate instances. For example, the “SMP+GPU” scheduler exports a Par monad that is an instance of ParFuture, ParIVar, and ParGPU, but not an instance of unsafe classes like MonadIO, or even classes for other Meta-Par Resources (e.g., ParDist) not included in that particular scheduler.

4.2 CPU Scheduling: Single-threaded and SMP

To show that Meta-Par subsumes the previous implementation of Par-monad, we implement Resources for serial execution and SMP. In section 6.1, we compare the performance against previous results. The single-threaded Resource is the minimal Resource required for the meta scheduler to execute work. Its startup creates a single worker on the current CPU, and its workSearch always returns Nothing, as the Resource has nowhere to look for more work.

7 However, there is one error prone aspect of scheduler composition. The newtype Par may use newtype-deriving to derive capabilities such as ParGPU corresponding to only the resources actually composed. A mismatch here could result in a runtime error when a computation is run on an incompatible scheduler. An alternative would be constructing resource stacks explicitly at the type level (like a monad transformer stack), but this comes with significant complications, including our reluctance to introduce lift operations.

8 For clarity, we use type here to present Startup and WorkSearch, but our implementation uses newtype to avoid type synonym instances.
module Control.Monad.Par.Meta.Resources.GPU where
...
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module Control.Monad.Par.Meta.SMPGPU (Par, runPar) where
...
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

class ParFuture ivar m => ParGPU ivar m where
 .gpuProxy :: IO ()
gpuProxy = do
 -- block until work is available
 (_, work) -> pop gpuQueue
 -- run the work and loop
 work >> gpuProxy
mkResource :: Resource
mkResource = Resource {
 startup = λ _ _ -> forKOS gpuProxy
 workSearch = λ _ _ -> do
 mfinished <-> tryPop resultQueue
 case mfinished of
 Just finished -> return (Just finished)
 Nothing -> do
 mwork <- tryPop gpuQueue
 fst 'fmap' mwork
}

{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module Control.Monad.Par.Meta.SMPGPU (Par, runPar) where
...
resource = SMP.mkResource 'mappend' GPU.mkResource
newtype Par a = Par (Meta.Par a)
deriving (Monad, ParFuture Meta.IVar, ParIVar Meta.IVar, ParGPU Meta.IVar, ...)
runPar :: Par a -> a
runPar (Par work) = Meta.runMetaPar resource work

Figure 2. An Accelerate-based GPU Resource implementation module.

Figure 3. A scheduler implementation module combining two Resources.

Figure 3. A scheduler implementation module combining two Resources.

module Control.Monad.Par.Meta.Resources.GPU where
...
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
gpuQueue :: ConcurrentQueue (Par (), IO ())
gpuQueue = unsafePerformIO newConcurrentQueue
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
resultQueue :: ConcurrentQueue (Par ())
resultQueue = unsafePerformIO newConcurrentQueue

runPar :: Par a
runPar (Par work) = Meta.runMetaPar resource work

singleThreadStartup resource _ = do
 cpu ← currentCPU
 spawnWorkerOnCPU resource cpu

singleThreadSearch _ _ = return Nothing

The SMP Resource offers the same capability as the original implementation of the work-stealing Par-monad scheduler. Its
startup spawns a Meta-Par worker for each CPU available to the
Haskell runtime system. Its workSearch selects a stealee worker at random and attempts to pop from the stealee’s work queue, looping
a fixed number of times if the stealee has no work to steal.

smpSearch myid stateVec =
 let WorkerState {rng} = stateVec ! myid
 getNext :: IO Int
 getNext = randomRange (0, maxCPU) rng
 loop n = return Nothing
 loop 0 = return Nothing
 loop n = let WorkerState {workpool} = stateVec ! i
 in do mtask <- tryPopBottom workpool
 case mtask of
 Nothing -> loop (n-1) <<< getNext
 _ -> return mtask
 in loop maxTries <<< getNext

4.3 CPU Scheduling: NUMA

Modern multi-socket, multi-core machines employ a shared memory abstraction, but exhibit Non-Uniform Memory Access (NUMA)
costs. This means that it is significantly cheaper to access some memory addresses than others from a given socket, or NUMA node.
Unfortunately, even if the memory allocation subsystem correctly allocates into node-local memory, work-stealing can disrupt locality by moving work which depends on that memory to a different node. Thus NUMA provides an incentive for work-stealing
to prefer stealing work from cores within the same NUMA node. Although topology-aware schedulers have been proposed [6], most of the widely deployed work-stealing schedulers [2, 18, 19, 32] are oblivious to such topology issues.

In the Meta-Par SMP setting, workers first try to pop work from their own queues before making more costly attempts to steal work from other CPUs. In the NUMA case, we support analogous behavior: a worker first attempts to steal work from CPUs in its own
NUMA node, and only moves on to attempt more costly inter-node steals when no local work is available.

Our NUMA-aware Meta-Par implementation notably is a resource transformer, rather than a regular Resource, and demonstrates the first-class nature of Resources. Instead of duplicating the work-stealing functionality of the SMP Resource, the NUMA Resource is composed of a subordinate SMP Resource for each
NUMA node in the machine. Unlike the SMPs in Section 4.2, which may randomly steal from all CPUs, these subordinate SMP workSearches are restricted to steal only from CPUs in their respective node. With these subordinate Resources in place, the NUMA workSearch first delegates to the SMP workSearch of the calling worker’s local node. If no work is found locally, it then enters a loop analogous to the SMP loop that calls all nodes’ SMP workSearches at random.

4.4 Another Resource Transformer: Adding Backoff

An essential and pervasive aspect of practical schedulers is the ability to detect when little work is available for computation and back off from busy-waiting in the scheduler loop. Detecting a lack of available work may seem like a primitive capability that must be
built into the core implementation of the scheduler loop, but we can in fact implement backoff for arbitrary Meta-Par Resource stacks as a Resource transformer.

The backoff workSearch does not alter the semantics of the workSearch it transforms. Instead, it calls the inner workSearch, leaving both the arguments and the return value unchanged. It does, however, observe the number of consecutive times that a workSearch call returns nothing for each Meta-Par thread (a counter kept in the WorkerState structure). When little work is available across the scheduler, these counts increase, and the backoff Resource responds by calling a thread sleep primitive with a duration that increases exponentially with the count. When a workSearch again returns work for a thread, the count is reset, and the scheduling loop resumes without interruption.

4.5 Heterogeneous Resources - Blocking on foreign work

A key motivation for composable scheduling is to handle different mixes of heterogeneous resources outside of the CPU(s). Working with a non-CPU resource requires launching foreign tasks and scheduling around blocking operations that wait on foreign results (or arranging to poll for completion). Existing CPU work-stealing schedulers have varying degrees of awareness of blocking operations. Common schedulers for C++ (e.g. Cilk or TBB) are completely oblivious to all blocking operations ranging from blocking in-memory data structures (e.g. with locks) to IO system calls. Obliviousness means that while the scheduler attempts to maintain P worker threads for P processors, fewer than P may be active at a given time.

It is often suggested to use Haskell’s IO threads directly to implement Par-threads, as there is widespread satisfaction with how lightweight they are. This would appear attractive, as the Glasgow Haskell Compiler (GHC) implements blocking operations at the Haskell thread layer (IO threads) using non-blocking system calls via the GHC event manager [30]. IO threads are even appropriately preempted when blocking on in-memory data structures, namely MVars. Unfortunately, GHC’s IO threads are not lightweight enough for fine-grained parallelism. They still require allocating large contiguous stacks and Par schedulers based on them cannot compete [25, 29].

Ultimately, the lightest-weight approaches for pausing and resuming computations are based on continuation passing style (CPS). The relationship between CPS and coroutines or threading is old and well known [16], but has increasingly been applied for concurrency and parallelism [11, 20, 21, 33, 37]. In the Par-monad, CPS is already a necessity for efficient blocking on IVars (Meta-Par uses the continuation-monad-transformer, ContT). Using continuations, we gain the ability to schedule around foreign work—e.g. to keep the CPU occupied while the GPU computes—for free.

4.5.1 Heterogeneous Resource 1: GPU

Several embedded domain-specific languages (EDSLs) have been proposed to enable GPU programming from within Haskell [9, 24, 36]. In addition, raw bindings to the CUDA and OpenCL are available [13, 27]. Accelerate and other EDSLs typically introduce new types (e.g. Acc) for GPU computations as well as a run function—such as Par, in fact.

In Meta-Par, we provide built-in support for launching Accelerate computations from Par computations:

```
gpuSpawn :: Arrays a ⇒ Acc a → Par (IVar a)
```

-- Asynchronous Acc computation, filling IVar when done:
do gpuSpawn (Acc.fold (+) (Acc.zipWith ...)

You might well ask why gpuSpawn is needed, given that both runPar and Accelerate’s run are pure and should therefore be freely composable. Indeed, they are, semantically, but as discussed in the previous section, we do not want CPU threads to remain idle while waiting on GPU computations. Nor can this be delegated to Haskell’s foreign function interface itself, which quite reasonably assumes that a foreign call does actual work on the CPU from which it is invoked!

To avoid worker idleness, we follow the approach of Li & Zdancewic [21], making blocking resource calls only on proxy threads which stand in as an abstraction of the blocking resource. Par-monad workers communicate with these proxies via channels; when a worker would otherwise make a blocking call, it instead places the corresponding IO callback in the appropriate channel, and returns a new IVar which will be filled only when the operation is complete. (As usual, reading the IVar prematurely will save the current continuation and free the worker to execute other Par work.)

The proxy runs in a loop, popping callbacks from its channel and executing them. It writes the results to a channel read by the Par-monad workers, who call put to fill the IVar, waking its waiting continuations with the result value.

As shown in Figure 2, the Accelerate Resource’s workSearch first checks the queue of results returned by the proxy, and if none are found, attempts to steal unexecuted Accelerate work for execution on a CPU backend in case the GPU is saturated.

4.5.2 Heterogeneous Resource 2: Distributed Execution

We expose remote execution through another variant of spawn, called longSpawn, and follow CloudHaskell’s conventions [14] for remote procedure calls and serialization:

```
longSpawn :: Serializable a ⇒ Par (IVar a) → Par (IVar a)
```

In the type of longSpawn, the Serializable constraint and Closure type constructor denote that a given unit of Par work and its return type can be transported over the network. A Serializable value must have a runtime type representation via the Data.Typeable class as well as serialization methods, both of which can be generically derived by GHC [22].

To employ longSpawn, the programmer uses a Template Haskell shorthand, making distributed calls only slightly more verbose than their parallel counterparts:

```
parVer = spawn_ (bar baz)
distVer = longSpawn $(mkClosure bar) baz
```

In our implementation the Closure values contain both a local version (a plain closure in memory) and a serializable remote version of the computation. As with other resources in our work-stealing environment, longSpawned work is not guaranteed to happen remotely, it merely exposes that possibility.

One complication is that the above longSpawn requires that the user must further register bar with the remote execution environment 10:

```
bar :: Int → Par Int
bar x = ... [remotable ['bar]]
```

A bigger limitation is that functions like bar above are currently restricted to be monomorphic, which makes it very difficult to

9. Generic serialization routines, however, are frequently much slower than routines specialized for a type, so we provide efficient serialization routines for commonly-used types like Data.Vector

10. Specifically, remotable is a macro that creates additional top level bindings with mangled names. The mkClosure and mkClosureRec macros turn an ordinary identifier into its Closure equivalent. Removable functions must be monomorphic, have Serializable arguments, return either a pure or a Par value, and only have free variables defined at the top level.
define higher-order combinators like \texttt{parMap} or \texttt{parFold} which are the bread and butter of the original Par-monad library. We share the hope of CloudHaskell’s authors that native support from the GHC compiler will improve this situation, and, if other volunteers are not forthcoming, plan to implement such native support ourselves in the future.

Returning to our running example, a parallel merge sort could be augmented with both distributed and GPU execution with the following two-line changes (assuming that \texttt{gpuSort} is a separate sorting procedure in the Accelerate EDSL):

\begin{verbatim}
parSort :: Vector Int -> Par (Vector Int)
parSort vec =
 if length vec <= gnuThreshold
 then gnuSort (gnuSort vec) >>= get
 else let n = (length vec) `div` 2
 in do lf <- longSpawn $(mkClosureRec 'parSort) l)
 r' <- parSort r
 parMerge l' r'
\end{verbatim}

It may appear as though work never reaches the CPU. Recall, however, that \texttt{gpuSort} is effectively a \texttt{hint}; the work may end up on either the GPU or CPU. Ultimately, it will be possible for a \texttt{gpuSort} based on Accelerate to default to an efficient (e.g. OpenCL) implementation when the computation ends up on the CPU\footnote{Unfortunately, at the time of writing the \texttt{accelerate} distribution includes only an interpreter for CPU evaluation of \texttt{acc} expressions.}.

5. Semantics

The operational semantics of Par \cite{11} remain nearly unchanged by Meta-Par. The amended rules appear in Appendix A. The only minor extension is that there is more than one \texttt{fork} (e.g. \texttt{fork1}, \texttt{fork2}, \ldots) in the grammar, corresponding to the resources \texttt{R1}, \texttt{R2}, \ldots. Fortunately, this changes nothing important. The semantics do not need to model the Meta-Par scheduling algorithm (or any other Par scheduling algorithm). Rather, execution proceeds inside a parallel evaluation structure in which any valid redex can be reduced at any time. Because these loose semantics are sufficient to guarantee both determinism and deadlock/livelock freedom it is therefore safe for Meta-Par to use an arbitrary strategy for selecting between work-sources.

Semantics of Scheduler Composition

To ensure correctness, at minimum we need a single guarantee from Resources: they must be lossless—everything pushed by a \texttt{fork} eventually is produced by a \texttt{searchWork}. Subsequently the following properties will hold:

- monoids laws: scheduler composition is an associative operation with an identity
- commuting Resources in a stack will preserve correctness but may incur asymptotic differences in performance

These hold for any scheduler which is a purely monoidal (\texttt{mappend}) composition of Resources as in Figure 2.

Like other work-stealing schedulers, Meta-Par is designed for a scenario of finite work; infinite work introduces the possibility of starvation (i.e. because other workers are busy, given piece of work may never execute). Because \texttt{runPar} is used to schedule pure computation, fairness of scheduling Par-threads is semantically unimportant—there are no observable effects other than the final value. (And the entire \texttt{runPar} completes before the value returned is in weak head normal form.)

6. Evaluation

In this section, we analyze the performance of Meta-Par schedulers in several heterogeneous execution environments. First, we compare the performance of the Meta-Par SMP scheduler to the previously published Par-monad scheduler in both a multicore desktop and many-core server environment. Then, we examine the performance of parallel merge sort on a multicore workstation with a GPU. Finally, we compare Meta-Par with a distributed Resource to other distributed Haskell implementations \cite{14, 23}.

6.1 Traditional Par-Monad CPU Benchmarks

Our goal in this section is twofold:

- to compare the Meta-Par scheduler to the previously published scheduler \cite{25}, which we will call \textit{Trace} (being based on the lazy trace techniques of \cite{11, 21}), and
- to analyze the extent to which our results are contingent upon GHC versions and runtime system parameters, mainly those affecting garbage collection.

The original work \cite{25} studied a set of benchmarks on a 24-core Intel E7450. The benchmarks are all standard algorithms, so we refer the reader to the abbreviated description in that paper, rather than describing their purpose here. In this section we give results for \texttt{blackscholes}, \texttt{mbody}, \texttt{mandel}, \texttt{suneuler}, and \texttt{matmult}, while omitting \texttt{queens}, \texttt{coins}, and \texttt{minimax} (which have fallen into disrepair).

We show our latest scaling numbers in Figure 4. These compare the Meta-Par scheduler against the original Par-monad scheduler which does not suffer the overhead of indirection through Resource stacks. The scaling results in Figure 4 come from our largest server platform: four 8-core Intel Xeon E7-4830 (Westmere) processors running at 2.13GHz. Hyper-Threading was disabled via the machine’s BIOS for a total of 32 cores. The total memory was 64GB divided into a NUMA configuration of 16GB per processor. The operating system was the 64-bit version of Red Hat Enterprise Linux Server 6.2. SMP shows better scaling on \texttt{blackscholes}, but compromised performance on \texttt{MatMult} and \texttt{mandel}. Overall, we consider the performance of SMP close enough to Trace.

Clusterbench

As with other garbage collected languages (e.g. Java) there are many runtime system parameters that affect GHC memory man-
tage and can have a large effect on performance12. These are the relevant runtime system options:

- `-A` size of allocation area (first generation)
- `-H` suggested heap size
- `-qa` affinity: pin Haskell OS threads to physical CPUs
- `-qg` enable parallel garbage collection (GC) for one or more generations
- `-qf` control which, if any, generations use a load-balancing algorithm in their parallel GC

Of course, varying all of these parameters results in a combinatorial explosion. Thus most performance evaluations for Haskell experiment by hand, find what seems like a reasonable compromise, and stick with that configuration.

To increase confidence in our results we wanted a more systematic approach. We decided to exhaustively explore a reasonable range of settings for the above parameters (e.g. `-A` between 256K and 2M), resulting in 360 configurations. But when running each benchmark for 5-9 trials (and varying number of threads and scheduler implementation) each configuration requires between 324 and 1000 individual program runs and takes between 10 minutes and two hours. Thus exploring 360 configurations can take up to thirty days on one machine. To address this problem we created a program we call clusterbench that can run either in a dedicated cluster or search among a set of identically configured workstations for idle machines to farm out benchmarking work.

We used a collection of twenty desktop workstations, each with an Intel Core i5-2400 (Westmere) running at 3.10 GHz with 4GB of memory under 64-bit Red Hat Enterprise Linux Workstation 6.2. All of these workstations together were able to complete the 360 benchmark configurations in a few days. The results are summarized in Table 5 and were pleasantly surprising. In spite of some past problems with excessive variance in performance in response to GC parameters (in the GHC 6.12 era [29]), under GHC 7.4.1 we see remarkably little impact relative to our default settings, except insofar as high settings of `-H` compromise performance significantly.

6.2 Case Study: Sorting

We analyzed parallel merge sort performance on our “GPU workstation” platform, which has one quad-core Intel W3530 (Nehalem) running at 2.80GHz with 12GB and an NVIDIA Quadro 5000 GPU under 64-bit Red Hat Enterprise Linux Workstation 6.2.

Our first comparison examines performance of three task-parallel (but not vectorized) CPU-only configurations, Figure 6. Each configuration sorts Data.Vector.Storable vectors of 32-bit integers, and uses a parallel Haskell merge sort until falling below a fixed threshold, when one of three routines is called:

- **Haskell**: A sequential Haskell merge sort [12].
- **Cilk**: A parallel C merge sort using the Cilk parallel runtime.
- **C**: A sequential C quick sort called through the FFI. This is the same sequential code as the Cilk algorithm employs at the leaves of its parallel computation.

The pure Haskell sort does quite well, considering its limitation that while it is in-place at the sequential leaves (using the ST monad), it must copy the arrays during the parallel phase of the algorithm. In general, ST and Par are effects that do not compose.13

12 See Table 2 in [29].

13 However, in the future we are interested in exploring mechanisms to guarantee that slices of mutable arrays are passed linearly to only one branch of a fork or the other, but not both.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{Scaling behavior of original \texttt{Par} scheduler (top) vs. Meta-Par SMP scheduler on 32-core server platform. Error bars represent minimum and maximum times over five trials. Mergesort is memory bound beyond four cores. (The pure Cilk version likewise has a maximum speedup less than five.)}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{Effect of runtime system parameters on performance variation. Each number represents the percentage \texttt{faster} or \texttt{slower} that the benchmark suite ran given the particular setting of that parameter, and relative to the \texttt{default} setting of the parameter (i.e. the 0.00 row). Each percentage represents a geometric mean over all parameter settings \texttt{other} than the selected one.}
\end{figure}
Initially, we selected a sort routine based on Accelerate (and coupled with an Accelerate-supporting Meta-Par Resource). However, due to temporary stability and performance problems we are instead making direct use of the CUDA SDK through the cuda package. Using this we call a GPU routine that is an adaptation of the NVIDIA CUDA SDK mergesort example that can sort vectors up to length 2^{22}. Since our benchmark input size of 2^{24} is larger than this limit, we always use a divide and conquer strategy to allow subproblems to be computed by the GPU.

We examine three strategies for distributing the work between the CPU and GPU:

- **static**: Static partitioning of work (50% CPU, 50% GPU) where GPU calls block a Meta-Par worker. This work division was selected based on the fact that our 4-core Cilk (CPU) and CUDA (GPU) sorts perform at very nearly the same level.

- **dynamic**: Dynamic partitioning of work with CPU-GPU work stealing.

 In all cases, adding GPU computation improves performance over CPU-only computation. Performance improves further by adding non-blocking GPU calls. The dynamic strategy, representative of the Accelerate Resource implementation described in section 4.5, pairs each spawn of a GPU computation with a CPU version of that same computation, allowing the utilization of both resources to benefit from work stealing. Figure 7 shows that this yields better performance than a priori static partitioning of the work.

6.4 Comparison against other Distributed Haskells

Meta-Par offers Resources for execution on distributed memory architectures. We have prototyped Resources based on different communication backends: (1) haskell-mpi, Haskell bindings for the Message Passing Interface (MPI), and (2) network-transport, an abstract transport layer for communication that itself has multiple backends (e.g. TCP, linux pipes). All results below are from our network-transport/TCP Resource. This results in lower performance than using MPI, but our MPI runs are currently unstable due to a number of bugs.

We evaluated the distributed performance on a cluster of 128 nodes, each with two dual-core AMD Opteron 270 processors running at 2GHz and 4GB of memory. The nodes were connected by a 10GB/s Infiniband network and Gigabit Ethernet. Figure 8 shows a comparison between HdpH [23] and Meta-Par for the sumeuler benchmark which involved computing the sum of Euler’s totient function between 1 and 65536 by dividing up the work in 512 chunks. The tests were run up to 32 nodes since significant speedup was not observed beyond that for the above workload. The HdpH tests were run with 1 core per node\(^{13}\), whereas the Meta-Par tests used all 4 cores on the node. Both tests measured the overall execution time including the time required for startup and shutdown of the distributed instances.

As seen in Figure 8, Meta-Par performed nearly 4 times better than HdpH in this test, but HdpH continued scaling to a larger num-

\(^{13}\)We are working with the Accelerate authors to resolve these issues.

\(^{14}\)In the original HdpH paper [23] the authors report not seeing further increases in performance when attempting multi-process (rather than multi-threaded) parallelism within each node. Recent versions of HdpH, after the submission of this paper, have added better support for SMP parallelism. But we have not yet evaluated these; our attempt at using HdpH (r0661a3) with multiple threads per node led to a regression involving extremely variable runtimes.
number of nodes: 30 rather than 16. The advantage in performance in this case was due entirely to the composed scheduler, which mixed fine-grained SMP work-stealing with distributed work-stealing. For our chosen workload, the lower bound in performance was limited by the Meta-Par bootstrap time and the time to process a single chunk sequentially. As a result, no significant speedup was achieved beyond 16 nodes with a best execution time of 9 seconds.

HdpH ran using MPI in this example, and it also uses a more sophisticated system than Meta-Par for global work-stealing in which nodes “prefetch” work when their own work-pools run low, not waiting for them to run completely dry. This helps hide the latency of distributed steals and may contribute to the better scaling seen in Figure 8. There is clearly much work left to be done. Fortunately, HdpH and Meta-Par expose very similar interfaces, and we hope by standardizing on interfaces (type-classes) that it will be possible for the community to incrementally develop and optimize a number of (compatible) distributed execution backends for Haskell.

Distributed KMeans

To compare directly against CloudHaskell we ported the KMeans benchmark. We have not yet run this benchmark on our cluster infrastructure, but we have run a small comparison with two workers (on the 3.10 GHz Westmere configuration). Under this configuration CloudHaskell takes 2540.9 seconds to process 600K 100-dimensional points in 4 clusters for 50 iterations. Meta-Par, on the other hand took 175.8 seconds to accomplish the same.

In this case we believe the difference comes from (1) Meta-Par having a more efficient dissemination of the (>1GB) input data, and (2) a high level of messaging overhead in CloudHaskell. In our microbenchmarks, CloudHaskell showed a 10ms latency for sending small messages.

7. Related Work

In the introduction we mentioned the triple problem of scheduler’s non-compositionality, complexity, and restriction to CPUs only. Several systems have attempted to solve one or more of these problems. For example, the Lithe [31] system addresses the first—the scheduler composition problem—by instrumenting a number of different schedulers to support the dynamic addition and subtraction of worker threads. Thereafter hardware resources themselves can become first class objects that are passed along in subroutine calls: that is, a subroutine inside one library may receive a certain resource allocation that it may divvy among its own callees. Lithe is focused on composing a-priori unrelated schedulers, whereas Meta-Par focuses on creating an architecture for composable heterogeneity.

In the functional programming context, Manticore [15] also aims at scheduler deconstruction, by providing a set of primitives used to construct many different schedulers. But, like Lithe, Manticore only targets CPU computation. Further, to our knowledge Manticore has not been used to demonstrate advantages of simultaneous use of different scheduling algorithms in the same application (rather than between different applications).

Li, Marlow, Peyton-Jones, and Tölmach’s work on lightweight concurrency primitives [20] is a wonderfully clear presentation of an architecture very similar to Meta-Par. The core of their system exposes a spartan set of primitives used by client libraries to implement callbacks, an arrangement much like our Resources. Their work focuses on the lower-level details of implementing Haskell concurrency primitives for CPUs, while Meta-Par extends the higher-level, deterministic Par-monad framework to heterogeneous environments, and it is encouraging to see similar architectures yield good results toward both goals.

CloudHaskell [14] is a library providing Erlang-like functionality for Haskell. CloudHaskell offers a relatively large API in one package (messaging, monitors, serialization, task farming), and in our experiments was high-overhead. We found small messages incurring a 10ms latency on a gigabit Ethernet LAN. For these reasons we ended up basing our own Meta-Par library on lower level communication libraries rather than CloudHaskell.

8. Future Work and Conclusions

While we have achieved some initial results that show strong CPU/GPU and CPU/distributed integration, there remain many areas where we need to improve our infrastructure and apply it to more applications. In the process, we plan to continue to contributing to low-level libraries for high-performance Haskell. (This work has resulted in both GHC\(^\text{17}\) and haskell-mpi bug fixes!) We also will work on Accelerate development until Accelerate CPU/GPU programs can be written and run efficiently in Meta-Par.

We want to ensure that Meta-Par is usable by the community, and ultimately we regard it as a relatively thin layer in an ecosystem of software including GPU and networking drivers, EDSLs, concurrent data structures, and so on. But by integrating disparate capabilities in one framework, Meta-Par opens up interesting possibilities, such as automatically generating code for separate phases of a recursive algorithm (e.g. distributed, parallel, sequential).

\(^{17}\) Atomic compare-and-swap operations were missing a GC barrier.
References

A. Appendix: Operational Semantics

[Reproduced for convenience in largely identical form to [25]]

Figure 9 gives the syntax of values and terms in our language. The only unusual form here is done M, which is an internal tool for the semantics of runPar. The main semantics for the language is a big-step operational semantics written $M \Downarrow V$ meaning that term M reduces to value V in zero or more steps. It is entirely conventional, so we omit all its rules except one, namely 'RunPar' in Figure 11. We will discuss 'RunPar' shortly, but the important point for now is that it is in turn depends on a small-step operational semantics for the Par monad, written: $P \rightarrow Q$. Here P and Q are states, whose syntax is given in Figure 9. A state is a bag of terms M (its active “threads”), and IVars i that are either full, $(M)_i$, or empty, $(\langle \rangle)_i$. In a state, the $\nu_i.P$ serves (as is conventional) to restrict the scope of i in P. The notation $P_0 \rightarrow \ldots \rightarrow P_i$ is shorthand for the sequence $P_0 \rightarrow \ldots \rightarrow P_i$ where $i \geq 0$.

States obey a structural equivalence relation \equiv given by Figure 10, which specifies that parallel composition is associative and commutative, and scope restriction may be widened or narrowed provided no names fall out of scope. The three rules at the bottom of Figure 10 declare that transitions may take place on any substate, and on states modulo equivalence. So the \rightarrow relation is inherently non-deterministic.

The transitions of \rightarrow are given in in Figure 11 using an evaluation context E:

$$E ::= \cdot | \nu \cdot P$$

Hence the term that determines a transition will be found by looking to the left of \rightarrow. Rule (Eval) allows the big-step reduction semantics $M \Downarrow V$ to reduce in the term in an evaluation context if it is not already a value.

Rule (Bind) is the standard monadic bind semantics.

Rule (Fork) creates a new thread.

Rules (New), (Get), and (PutEmpty) give the semantics for operations on IVars, and are straightforward: new creates a new empty IVar whose name does not clash with another IVar in scope, get returns the value of a full IVar, and put creates a full IVar from an empty IVar. Note that there is no transition for put when the IVar is already full: in the implementation we would signal an error to the programmer, but in the semantics we model the error condition by having no transition.

Several rules that allow parts of the state to be garbage collected when they are no longer relevant to the execution. Rule (GCRet) allows a completed thread to be garbage collected. Rules (GCEmpty) and (GCFull) allow an empty or full IVar respectively to be garbage collected provided the IVar is not referenced anywhere else in the state. The equivalences for ν in Figure 10 allow us to push the ν down until it encloses only the dead IVar.

Rule (GCDeadlock) allows a set of deadlocked threads to be garbage collected: the syntax $E[get i]$ means one or more threads of the given form. Since there can be no other threads that refer to i, none of the gets can ever make progress. Hence the entire set of deadlocked threads together with the empty IVar can be removed from the state.

The final rule, (RunPar), gives the semantics of runPar and connects the Par reduction semantics \rightarrow with the functional reduction semantics \Downarrow. Informally it can be stated thus: if the argument M to runPar runs in the Par semantics yielding a result N, and N reduces to V, then runPar M is said to reduce to V. In order to express this, we need a distinguished term form to indicate that the “main thread” has completed: this is the reason for the form done M. The programmer is never expected to write done M directly, it is only used as a tool in the semantics.