Can Randomness Be Certified by Proof?

Cristian S. Calude
Joint work with Nicholas J. Hay and Karl Svozil

NKS 2008, Bloomington, 2008
Introduction

• Peano Arithmetic
• Peano Arithmetic
• PA provability
Introduction

- Peano Arithmetic
- PA provability
- Can finite random strings be certified by PA proofs?
- Can random c.e. reals be certified by PA proofs?
- Is quantum randomness algorithmic random?

Selected references
Introduction

- Peano Arithmetic
- PA provability
- Can finite random strings be certified by PA proofs?
- Can random c.e. reals be certified by PA proofs?
Introduction

- Peano Arithmetic
- PA provability
- Can finite random strings be certified by PA proofs?
- Can random c.e. reals be certified by PA proofs?
- Is quantum randomness algorithmic random?
Introduction

• Peano Arithmetic
• PA provability
• Can finite random strings be certified by PA proofs?
• Can random c.e. reals be certified by PA proofs?
• Is quantum randomness algorithmic random?
• Selected references
Peano Arithmetic (PA) is the first-order theory for arithmetic whose non-logical symbols consist of the constant symbols 0 and 1, the binary relation symbol < and the two binary function symbols + (addition) and \cdot (multiplication).
Peano Arithmetic (PA) is the first-order theory for arithmetic whose non-logical symbols consist of the constant symbols 0 and 1, the binary relation symbol $<$ and the two binary function symbols $+$ (addition) and \cdot (multiplication).

PA has 15 axioms (defining discretely ordered rings) together with induction axioms for each formula $\varphi(x, y)$:

$$\forall y (\varphi(0, y) \land \forall x (\varphi(x, y) \rightarrow \varphi(x + 1, y)) \rightarrow \forall x (\varphi(x, y)).$$
Peano Arithmetic (PA) is the first-order theory for arithmetic whose non-logical symbols consist of the constant symbols 0 and 1, the binary relation symbol $<$ and the two binary function symbols $+$ (addition) and \cdot (multiplication).

PA has 15 axioms (defining discretely ordered rings) together with induction axioms for each formula $\varphi(x, y)$:

$$\forall y (\varphi(0, y) \land \forall x (\varphi(x, y) \rightarrow \varphi(x + 1, y)) \rightarrow \forall x (\varphi(x, y))).$$

In what follows we will assume that PA is sound.
Theorem. *Every primitive recursive function is provably computable, but the converse is not true.*
Theorem. Every primitive recursive function is provably computable, but the converse is not true.

Theorem. There exist computable functions which are not provably computable.
A prefix-free machine U is *universal* if for every prefix-free machine V there is a constant c such that for all strings s, t, if $V(s) = t$, then $U(s') = t$ for some string s' of length $|s'| \leq |s| + c$.

Theorem. There exists a universal prefix-free machine that is provably universal.

Theorem. There exists a universal prefix-free machine that is not provably universal.
A prefix-free machine U is \textit{universal} if for every prefix-free machine V there is a constant c such that for all strings s, t, if $V(s) = t$, then $U(s') = t$ for some string s' of length $|s'| \leq |s| + c$.

The prefix-free machines can be canonically enumerated (V_i). Given an index i for a universal prefix-free machine, can PA prove that “U_i is universal”?
A prefix-free machine U is *universal* if for every prefix-free machine V there is a constant c such that for all strings s, t, if $V(s) = t$, then $U(s') = t$ for some string s' of length $|s'| \leq |s| + c$.

The prefix-free machines can be canonically enumerated (V_i). Given an index i for a universal prefix-free machine, can PA prove that “U_i is universal”?

Theorem. *There exists a universal prefix-free machine that is provably universal.*
A prefix-free machine U is \textit{universal} if for every prefix-free machine V there is a constant c such that for all strings s, t, if $V(s) = t$, then $U(s') = t$ for some string s' of length $|s'| \leq |s| + c$.

The prefix-free machines can be canonically enumerated (V_i). Given an index i for a universal prefix-free machine, can PA prove that “U_i is universal”?

Theorem. \textit{There exists a universal prefix-free machine that is provably universal.}

Theorem. \textit{There exists a universal prefix-free machine that is not provably universal.}
If U is a universal prefix-free machine then

$$H_U(x) = \min\{|y| \mid U(y) = x\}$$

is the prefix-complexity of the string x.
If \(U \) is a universal prefix-free machine then

\[
H_U(x) = \min\{|y| \mid U(y) = x\}
\]

is the prefix-complexity of the string \(x \).

A string \(x \) is \(m \)-random for \(U \) if \(H_U(x) \geq |x| - m \); \(x \) is random for \(U \) if \(H_U(x) \geq |x| \).
If U is a universal prefix-free machine then

$$H_U(x) = \min\{|y| \mid U(y) = x\}$$

is the prefix-complexity of the string x.

A string x is *m-random for U* if $H_U(x) \geq |x| - m$; x is *random for U* if $H_U(x) \geq |x|$.

A simple combinatorial argument shows the existence of random strings of any length.
Theorem [Chaitin 1975]. \textit{For every universal prefix-free machine }U\textit{ there is a constant }c\textit{ such that PA cannot prove any statement }$“H_U(x) > m”$\textit{ with }$m > c$.
Theorem [Chaitin 1975]. *For every universal prefix-free machine U there is a constant c such that PA cannot prove any statement $“H_U(x) > m”$ with $m > c$.

Corollary. *For every universal prefix-free machine U and $m \geq 0$, there is a constant $c > 0$ such that PA cannot prove that a string of length larger than $m + c$ is m-random for U.

Theorem [Chaitin 1975]. For every universal prefix-free machine U there is a constant c such that PA cannot prove any statement $“H_U(x) > m”$ with $m > c$.

Corollary. For every universal prefix-free machine U and $m \geq 0$, there is a constant $c > 0$ such that PA cannot prove that a string of length larger than $m + c$ is m-random for U.

Corollary. There exists a universal prefix-free machine U_0 such that PA cannot prove that a string of positive length is random for U_0.
A real $\alpha \in (0, 1)$ is \textit{random for U} if there exists a constant c such that for all $n \geq 1$,
$$H_U(\alpha_1 \cdots \alpha_n) \geq n - c,$$
where $\alpha_1 \cdots \alpha_n \cdots$ is the unending binary expansion of α.
A real $\alpha \in (0, 1)$ is random for U if there exists a constant c such that for all $n \geq 1$,

$$H_U(\alpha_1 \cdots \alpha_n) \geq n - c,$$

where $\alpha_1 \cdots \alpha_n \cdots$ is the unending binary expansion of α.

In contrast with strings, randomness for reals does not depend on U.
A real $\alpha \in (0, 1)$ is random for U if there exists a constant c such that for all $n \geq 1$,

$$H_U(\alpha_1 \cdots \alpha_n) \geq n - c,$$

where $\alpha_1 \cdots \alpha_n \cdots$ is the unending binary expansion of α.

In contrast with strings, randomness for reals does not depend on U.

A computable enumerable (c.e.) real is a limit of a computable increasing sequence of rationals.
Solovay’s Question: \textit{Is there some representation of a random and c.e. real α for which }PA\textit{ can prove that α is random and c.e.?}
Can random c.e. reals be certified by PA proofs?

Solovay’s Question: *Is there some* representation of a random and c.e. real \(\alpha \) for which PA can prove that \(\alpha \) is random and c.e.?

The key concept is *representation*.
For every a universal prefix-free machine U Chaitin’s Omega number is

$$\Omega_U = \sum_{U(x)<\infty} 2^{-|x|}.$$
For every a universal prefix-free machine U Chaitin’s Omega number is

$$\Omega_U = \sum_{U(x) < \infty} 2^{-|x|}.$$

Theorem [Chaitin 1975; Calude, Hertling, Khoussainov, Wang 1998; Kučera, Slaman 2001]. The set of all random and c.e. reals coincides with the set of Ω_U, for all universal prefix-free machines U.
Candidate: Can we represent a random and c.e. real by Ω_U, where U is a provably universal prefix-free machine?
Can random c.e. reals be certified by PA proofs?

Candidate: Can we represent a random and c.e. real by Ω_U, where U is a provably universal prefix-free machine?

Problem: Not every universal prefix-free machine is provably universal prefix-free!
Candidate: Can we represent a random and c.e. real by Ω_U, where U is a provably universal prefix-free machine?

Problem: Not every universal prefix-free machine is provably universal prefix-free!

Still there is hope!
Theorem. Let V be a universal prefix-free machine. If α is random and c.e. then there exists an integer $c > 0$ and a c.e. real $\gamma > 0$ such that

$$\alpha = 2^{-c} \cdot \Omega_V + \gamma.$$
Theorem. Let V be a universal prefix-free machine. If α is random and c.e. then there exists an integer $c > 0$ and a c.e. real $\gamma > 0$ such that

$$\alpha = 2^{-c} \cdot \Omega_V + \gamma.$$

Theorem. Let V be provably universal prefix-free, c be a positive integer, γ a positive c.e. real. Then $\alpha = 2^{-c} \cdot \Omega_V + \gamma$ is provably random and c.e.
The representation adopted is:

\[2^{-c} \cdot \Omega_V + \gamma, \]

where \(V \) is a fixed provably universal prefix-free machine, \(c > 0 \) is a natural number and \(\gamma > 0 \) is a c.e. real.
The representation adopted is:

\[2^{-c} \cdot \Omega_V + \gamma, \]

where \(V \) is a fixed provably universal prefix-free machine, \(c > 0 \) is a natural number and \(\gamma > 0 \) is a c.e. real.

Theorem. Every c.e. and random real is provably random and c.e.
Does the representation Ω_U, where U is a provably universal prefix-free machine, work too?
Does the representation Ω_U, where U is a provably universal prefix-free machine, work too?

Theorem. For every universal prefix-free machine U there exist:

1. a non-provably universal prefix-free machine U' such that $\Omega_U = \Omega_{U'}$,
2. a provably universal prefix-free machine U'' such that $\Omega_U = \Omega_{U''}$.
Does the representation Ω_U, where U is a provably universal prefix-free machine, work too?

Theorem. *For every universal prefix-free machine U there exist:*

- *a non-provably universal prefix-free machine U' such that $\Omega_U = \Omega_{U'}$.*
Does the representation Ω_U, where U is a provably universal prefix-free machine, work too?

Theorem. For every universal prefix-free machine U there exist:

- a non-provably universal prefix-free machine U' such that $\Omega_U = \Omega_{U'}$,
- a provably universal prefix-free machine U'' such that $\Omega_U = \Omega_{U''}$.
Does the representation Ω_U, where U is a provably universal prefix-free machine, work too?

Theorem. For every universal prefix-free machine U there exist:

- a non-provably universal prefix-free machine U' such that $\Omega_U = \Omega_{U'}$,
- a provably universal prefix-free machine U'' such that $\Omega_U = \Omega_{U''}$.

Corollary. Every c.e. and random real can be written as the halting probability of a provably universal prefix-free machine.
Is quantum randomness algorithmic random?

Theorem.
Quantum randomness is (strongly) not Turing computable.

• Can finite tests discriminate between Mathematica generated randomness and quantum randomness?
• How useful is quantum randomness as an oracle (hypercomputation)?
Is quantum randomness algorithmic random?

Theorem. *Quantum randomness is (strongly) not Turing computable.*
Theorem. *Quantum randomness is (strongly) not Turing computable.*

- Can finite tests discriminate between Mathematica generated randomness and quantum randomness?
Is quantum randomness algorithmic random?

Theorem. *Quantum randomness is (strongly) not Turing computable.*

- Can finite tests discriminate between Mathematica generated randomness and quantum randomness?
- How useful is quantum randomness as an oracle (hypercomputation)?
Selected references

