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In what follows we will assume that PA is sound.



Theorem. Every primitive recursive function is provably
computable, but the converse is not true.



Theorem. Every primitive recursive function is provably
computable, but the converse is not true.

Theorem. There exist computable functions which are not
provably computable.



A prefix-free machine U is universal if for every prefix-free
machine V there is a constant ¢ such that for all strings s, ¢, if
V(s) =t, then U(s’) = t for some string s’ of length

|s'] < |s| +c.



A prefix-free machine U is universal if for every prefix-free
machine V there is a constant ¢ such that for all strings s, ¢, if
V(s) =t, then U(s’) = t for some string s’ of length

|s'] < |s| +c.

The prefix-free machines can be canonically enumerated (V;).
Given an index i for a universal prefix-free machine, can PA
prove that “U; is universal”?



A prefix-free machine U is universal if for every prefix-free
machine V there is a constant ¢ such that for all strings s, ¢, if
V(s) =t, then U(s’) = t for some string s’ of length

|s'] < |s| +c.

The prefix-free machines can be canonically enumerated (V;).
Given an index i for a universal prefix-free machine, can PA
prove that “U; is universal”?

Theorem. There exists a universal prefix-free machine that is
provably universal.



A prefix-free machine U is universal if for every prefix-free
machine V there is a constant ¢ such that for all strings s, ¢, if
V(s) =t, then U(s’) = t for some string s’ of length

|s'] < |s| +c.

The prefix-free machines can be canonically enumerated (V;).
Given an index i for a universal prefix-free machine, can PA
prove that “U; is universal”?

Theorem. There exists a universal prefix-free machine that is
provably universal.

Theorem. There exists a universal prefix-free machine that is
not provably universal.
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A string x is m-random for U if Hy(x) > |x| — m; x is random for
U if Hy(z) > |z|.

A simple combinatorial argument shows the existence of
random strings of any length.
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Corollary. For every universal prefix-free machine U and m > 0,
there is a constant ¢ > 0 such that PA cannot prove that a string
of length larger than m + c is m-random for U .

Corollary. There exists a universal prefix-free machine U, such
that PA cannot prove that a string of positive length is random
for Uy.
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In contrast with strings, randomness for reals does not depend
onU.

A computable enumerable (c.e.) real is a limit of a computable
increasing sequence of rationals.
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The key concept is representation.
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Theorem [Chaitin 1975; Calude, Hertling, Khoussainov, Wang
1998; Kucera, Slaman 2001]. The set of all random and c.e.
reals coincides with the set of Qy;, for all universal prefix-free
machines U.
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Problem: Not every universal prefix-free machine is provably

universal prefix-free!

Still there is hope!
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Theorem. Let V' be provably universal prefix-free, c be a
positive integer, v a positive c.e. real. Thena =27°-Qy + is
provably random and c.e.
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The representation adopted is:

27¢. QV +77

where V' is a fixed provably universal prefix-free machine, ¢ > 0
is a natural number and v > 0 is a c.e. real.

Theorem. Every c.e. and random real is provably random and
c.e.
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Does the representation €, where U is a provably universal
prefix-free machine, work too?

Theorem. For every universal prefix-free machine U there exist:

* a non-provably universal prefix-free machine U’ such that

Qu =Qur,
« a provably universal prefix-free machine U" such that
Qu = Qur.

Corollary. Every c.e. and random real can be written as the
halting probability of a provably universal prefix-free machine.
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Theorem. Quantum randomness is (strongly) not Turing
computable.

- Can finite tests discriminate between Mathematica
generated randomness and quantum randomness?

* How useful is quantum randomness as an oracle
(hypercomputation)?



@ C. S. Calude, N. J. Hay. Every Computably Enumerable Random
Real Is Provably Computably Enumerable Random, COMTCS
Research Report 328, 2008, 29 pp.

@ C. S. Calude, P. Hertling, B. Khoussainov, and Y. Wang.
Recursively enumerable reals and Chaitin 2 numbers, Proc.
15th STACS (Paris), Springer—Verlag, Berlin, 1998, 596—606.

@ C. S. Calude, K. Svozil. Quantum randomness and value
indefiniteness, Advanced Science Letters 1 (2008), to appear.

@ G. J. Chaitin. A theory of program size formally identical to
information theory, J. Assoc. Comput. Mach. 22 (1975),
329-340.

® A. Kugera, T. A. Slaman. Randomness and recursive
enumerability, SIAM J. Comput. 31, 1 (2001), 199-211.



