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Abstract—We propose a machine-learning approach to detect to conduct a two-step verification, on domain ownership and
phishing websites using features from their X.509 public key legitimacy of the site owner. The web browsers or non-

certificates. We show that its efficacy extends beyond HTTPS- ot ; ;
enabled sites. Our solution enables immediate local identification browser applications (e.g. online banking apps) must then

of phishing sites. As such, this serves as an important complementve”fy the presenteq certificates apd communicate the t$§”'
to the existing server-based anti-phishing mechanisms which t0 the end users in an appropriate form. Upon receiving
predominately use blacklists. Blacklisting suffers from several the results (e.g. through the lock icon displayed next to the
inherent drawbacks in terms of correctness, timeliness, and address bar of a browser), the end users should have stfficien
completeness. Due to the potentially significant lag prior 0 site jyformation to make an informed decision on whether they
blacklisting, there is a window of opportunity for attackers. Other hould d to thei i isits. C " f wali
local client-side phishing detection approaches also exist, but pri- S 09_ proceed 1o e_lr o_n |_ne ViSits. Lurrently use of cvall
mar”y re|y on page content or URLS, which are arguab|y easier certificate by adversaries is |nfrequent; hOWeVer, atteckee
to manipulate by attackers. We illustrate that our certificate- part of the long term trend towards more ubiquitous httpshBo

based approach greatly increases the difficulty of masquerading legitimate and attacking sites increasing use cryptodcati
undetected for phishers, with single millisecond delays for users. valid certificates.

We further show that this approach works not only against . . )
HTTPS-enabled phishing attacks, but also detects HTTP phishing  1here are two components to defeating phishing. One is
attacks with port 443 enabled. the detection of phishing sites. The second is the effective

Index Terms—certificates, machine learning, security. communication to end users that a site is indeed a phishing
attack. Such effective communication would result in end
users refusing to enter data in phishing sites or download th
Phishing remains a serious problem that threatens the sealicious payloads. We focus on the first component, that is
curity and privacy of online users despite attempts to thwahe identification of phishing sites.
such attacks since 1995 [1]. Phishing attacks usually W&ol An obvious attack is typo-squatting. As anyone can register
an attacker masquerading as a legitimate online entityet@ stfor virtually any unoccupied web domains, an attacker may
confidential information from the unsuspecting victims. also sign up for a misleading domain that is similar to the
The efficacy of phishing depends upon the ability of thggitimate one he wishes to impersonate. For example,adste
adversary to confuse the victim. Phishing websites often dipf hankofamerica.com, the attacker may get bank-of-araeric
play content similar or identical to their legitimate coemtarts com or bankofamerica.trustedbank.com. Without the vexific
and replicate the layout and ‘look-and-feel’ of these wessi tjon of the legitimacy of the website owner, a technicalljida
These attacks often start with fraudulent emails sent tocartificate may be issued and presented to the end user. After
group of online users to lure them to the fraudulent websitege client-side verification, which primarily focuses oreth
In successful attacks victims click on the email hyperlinkgalidity of the certificate itself, a lock icon can even displ
which link to the phishing websites, and then victims diselo in the browser window.
their private credentials (such as passwords or credit cardbypjic key certificates remain a potentially valuable seurc
information) or download malware. of information about the site owners. We argue that in-
Ideally enforcement of the requirement for an SSL/TLg,mation embedded in the certificates is far more useful
connection in every important online transaction couldedef i, the traditional client-side verification. In fact, dte

many of the current phishing attempts. Ideally, before @e relatively dynamic nature of phishing domains, some
certificate can be issued the certificate authority (CA) Beegnderlying characteristics of their certificates can bezan

978-1-4799-8909-6/15/$31.00)2015 IEEE strong indicator of those websites. Through an analysisef t

I. INTRODUCTION



standard structure of the X.509 certificate and confirmestphi identification and other arenas, we focus specifically on the
ing websites, we have identified 42 machine-learning featuruse of machine learning to detect phishing attacks.

and built classification models using a variety of algorighm -

By ranking the influence of the identified machine-learniné' Blacklisting

features, we discovered that the most effective featunesifo ~ As an existing security solution to phishing, blacklistyéa
classifications were “relationship between web domain aad tbeen compiled by browser manufacturers, trusted thirdgsart
subject's common name listed in the certificate” and “lengtind social networks of friends. Blacklists exist for diéfat

of the validity period”. Yet other machine-learning feasr features of malicious sites: IP addresses (e.g. Spamhaus),
(e.g., “trusted CAs by major web browsers”, “blacklist’d@$h domain names (e.g. PhishTank), and certificates (e.g. CRLS)
algorithm™) further enhance the classification accuracye WAn effective blacklist needs to satisfy three requirements
examined six machine-learning algorithms. Other than tlee fisimultaneously: correctness, completeness, and tinssline
consistently important features listed here, the featinas Correctnesss the accuracy of the blacklist in distinguish-
quite different ranks in models built on different algonits. ing between malicious and non-malicious sites. Correstnes
The results showed that when ten-fold cross validation weisectly affects the user experience. Previous empiricalies
applied, the precision of our classification achieved 95% ainvestigated the time required for updating phishing bliatk

the recall rate was above 93%. In 2006, Ludl et al. tested 10,000 phishing URLs against the

Our primary research contribution is the proposal of Blicrosoft and Google blacklists and received true positive
more effective mechanism to detect phishing websites. THRes of 65% for Google and 56% for Microsoft [3].
certificate-based anti-phishing solution has severalmdges  Timelinesss the delay between the publication of a phishing
over the existing mechanisms, in terms of correctness, cogite and the time when the phishing site is included in the
pleteness and timeliness. Applying the mechanism to our éXacklist. The delay includes the identification of the sttee
perimental dataset also demonstrated that our approacll wogport of the site, the verification of the nature of the site,
also work well in phishing URLs using plain HTTP, as long@nd then the client-side updates. This is especially difficu
as a certificate can be retrieved from the web server. Closély spear-phishing websites. Since these websites ngrmall
related to our work, Mishari et al. previously investigateé target a very small portion of the online population, celiteal
feasibility of using public key certificates to identify shing blacklists may not receive a report after the attack has been
websites from regular sites [2]. We differentiate our waxni  successful. In 2009, Sheng et al. examined the exact time
this (and other approaches for phishing identificationiftbe required for popular web browsers to blacklist a phishing
following perspectives: a larger dataset, a complete viethe URL [4]. Blacklists rarely identify fresh phishing pagestinn
X.509 certificate structure, higher classification perfance in the first hour. After a site has been up for 12 hours, the
both categories, and more tested algorithms. We discuss thgentification rates could go up to 47%-83%, according to the
in detail in Section II-B. study.

This paper is organized as follows. Section Il reviews previ Completenesg the degree to which a blacklist accurately
ous research on anti-phishing techniques. Section Illyaeal reflects the state of phishing online. It is a function of time
the threat model and describes our certificate-based agprod€ss and correctness, as well as scope. Completeness is a cha
Section IV enumerates the set of features selected for usd€fge for blacklists due to the cycle of attack, identificafi
our machine-learning models, and explains the basis fossshopublication of the blacklist, then removal by defenders and
ing that set. Section V overviews the related machine-lagrn reallocation by attackers of the hosting site. For examiple,
algorithms and evaluation measurements for the performarigsponse to blacklisting phishing scams can frequentipngba
of each model. Section VI reports the performance of the diteir URLs, which leads to a short lifetime per phishing URL
trained models that resulted from our combination of femtulS], [6]. The question then becomes how to create an effectiv
and algorithm selection. Section VII discusses the liratat defense mechanism against fresh and dynamic phishing sites
of the work. Specifically, we address miscategorizationd aRefore third-party blacklists are updated.
potential attacks. Section VIII summarizes and concludigs w  To meet all three requirements, we constructed a machine

our plans for future work. learning-based approach that can be executed by the end
users in real time with high accuracy. Other user-centered
II. RELATED WORK and decentralized approaches have been proposed to ydentif

phishing sites. NetTrust used temporal signals and social

There are two research areas with the greatest impact rm#tworks [7]. Moore examined crowdsourcing as a method
this research. The first is the general battle against ptgskm to identify phishing sites [8].
terms of anti-phishing we discuss blacklisting and then enov Our proposed approach augments the existing blacklist
to more recent approaches. We characterize these accdodingpproaches. First, the system described here does noteequi
correctness, timeliness, and completeness. frequent updates from central servers. Due to the inheagnt |

The second research area is the use of machine learniegween the first appearance of a phishing website and when
in security. As machine learning has been widely used in ithe website is blacklisted, the users of traditional blestkl
trusion detection systems (IDS), malware identificatigggrs have a window of vulnerability to new phishing (especially



spear-phishing) attacks. In addition to being suitablecfant misspellings of the URL [13]. In an expansion of this work,
as well as server deployment, our machine learning-badda et al. combined the textual features of the URL (e.g. spe-
approach is able to identify websites that share a simileial characters, word appearance) and host informatioh [14
pattern of the known malicious websites but are not yet on thcGrath et al. examined the length of URL, the lifetime of
blacklist. Critically, machine-learning approaches ca@enitify a web domain, and other host information [15]. Based on
phishing sites as soon as they are encountered. Once iddntiboogle’s blacklist, Whittaker et al. built a phishing detent
these sites can be reported, thus augmenting blacklists.  system using features extracted from the page URL, and page
content [16].
These approaches utilized online resources that can be
Machine learning has been increasingly utilized in seguriteasily modified or forged by an adversary than cryptographic
Both unsupervised and supervised learning approaches hsigmatures or certificates. In contrast, the adversary dvoave
been explored for identifying malicious websites. Here \we uto invest a time and money in order to obtain a valid end-gntit
supervised learning, i.e., there are pre-existing idewtiiate- certificate, particularly from a reputable CA. Given the low
gories and some ground-truth knowledge (known as “trainimgte of return on phishing attacks, this may be economically
data”). Supervised learning models are built from thisnirag  significant. This is particularly applicable to fast fluxaatks,
data, which take advantage of the ground-truth knowledger example with rock-phish sites cycling through up to éjgh
The data that are not used in training comprise a test sgébmains a day [17]. In addition, they would have to get these
which is then used to evaluate the performance of the traineettificates significantly prior to a planned attack, whish i
models. After training and testing, these models can be usstbther kind of cost increase. With an appropriate set of
to classify new instances into the pre-defined categories. features, our proposed approach can be difficult to circuntave
terms of phishing detection, the machine-learning apgresic  Ideally every time an end user provides personal identdiabl
attempt to distinguish between phishing websites and nanformation, the traffic would be encrypted and the host
phishing websites based on the results of training using a#rtificate would be validated. Unfortunately, this beste
machine-learning features. scenario is not common practice. CAs may request proof
Previous research has used both clustering and classifich-ownership of a web domain, but not perform additional
tion (i.e., unsupervised and supervised learning) to iflentverification on the legitimacy of the site owner’s identity
phishing, focusing on both phishing emails and the phishimxcept for the Extended Verification (EV) certificates [18}e
websites. As an early proposal for email-based phishingcdetowners, especially smaller ones rarely obtain EV certifisat
tion, Basnet et al. tested features extracted from the foamé perhaps due to the higher costs and unproven benefit (e.g.,
contents of phishing emails. Their resulting machinedesy from end users being unable to distinguish EV and non-EV
model was able to detect the majority of the 500 phishingertificates [19]). Pan et al. built machine-learning medel
email samples [9]. However, several identified featuresnfrobased on features including page content, DNS records, etc.
2006 now seem outdated. For example, the utilization @hey also tested public key certificates. However the only
HTML objects and URL-based image source are now comméeature utilized was the match between the subject field of
in legitimate emails. Most importantly, the textual patterthe certificate and the web domain [20].
and formats of phishing emails are easily manipulated by theClosely related to our work, Mishari et al. previously
adversary should this detection approach be widely deployénvestigated the feasibility of using public key certifieatto
Like phishing websites, the content of phishing emails identify phishing websites from regular sites [2]. Our aggmh
designed to be identical to legitimate emails, excluding thiffers in the following aspects.
embedded URLSs. First, in terms of the dataset used, we collected and tested
In contrast our approach is based on features extractsttificates from all confirmed phishing websites assodiate
from the certificates of phishing websites. Previous similavith PhishTank entries, regardless of whether HTTPS was
approaches were primarily focused on the analysis of paigeluded in the listed URL. We found that connecting to
content and classification of web URLs. Rosiello et al. co-CP port 443 yielded many more certificates, even when
structed the HTML Document Object Model (DOM) trees fothe blacklisted phishing URLs were plain HTTP URLs. This
phishing and benign webpages, and used measurements sygroach substantially increased the size of our trainmdy a
as layout similarity for the detection of phishing pages][10testing datasets, which consequently improved the valtieeof
CANTINA+[11] is a multi-layer approach to extract featureslassification performance evaluation.
automatically from the DOM of a page. These features areSecond, by including a more complete view of the certificate
then used to categorize the websites. Xiang et al. proposesdtrcture in our analysis we achieved a significantly higiesr
phishing-detection approach that extracts the claimedaitomformance for both categories (‘phishing’ and ‘non-phigfijin
name from the page content, combined with a DNS lookifye have significantly expanded the examination and utitpat
for the legitimate domain. A comparison of the two fieldsf the feature set by including all standard X.509 certiécat
is then used to detect phishing [12]. A textual analysis dlds and optional certificate extensions. In addition te th
URLs using machine learning focused on the extraction oértificate field values, relationships between certifideiels
instances of obfuscation (e.g. www.bbc.unknown.com) armde utilized as features (e.g., between subject name and the
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domain name; between initial valid date and date encouthtere
Third, our constructed models achieved higher precisiah an 4)
recall for both the ‘phishing’ and ‘non-phishing’ categesi
The importance of identifying non-phishing instance isatyu 5)
important as that of phishing instances. A high false alarm
rate will lead to low overall classification performance and
therefore suboptimal user experience. We report the sesult
both categories in Section VI. 6)
Fourth, we tested a larger number of classification algo-

CA.

The adversary does not have the ability to compromise
a CA that is trusted by major web browsers.

The adversary has access to a potentially large number
of certificates that are classified as ‘non-phishing’ by
our system. That is, the multi-year collection of valid
certificates could be repeated over time by adversaries.
The adversary has access to our proposed phishing
detection system.

rithms. By analyzing the results from these algorithms, our the design goals of the system are as follows.

proposed mechanism achieved better identification rates fo
both categories (again, phishing and non-phishing). Weemak
recommendations on algorithms efficacy for different cases
based on our experimental dataset.

The difficulty of obtaining a valid public key certificate
that would comply with an optimized machine-learning model
from a trustworthy CA is arguably increased as the congiain
on the certificate are increased. For example, obtaining a
domain name that passes a check grounded in the compatr-
ison between subject name and domain name is not trivial,
particularly when the domain name is well-known. The more
constrained a phishing attack must be to avoid detection,
the greater difficulty and the greater the cost of an attack.
Detection would be extremely difficult to circumvent with a
distributed model using machine-learning mechanisms due t
subtle differences in various institution instantiatipas the
models can be continually updated.

1)

Il. SYSTEM DESIGN

In this section, we discuss the security threat of phishing.
We then introduce the design of our certificate-based pigshi
detection mechanism.

The primary component which defines a phishing attack
is an adversary who creates a malicious website which
masquerades as a legitimate website. The goal is to trick3)
victims into entering their private information on the gtirsg
website, particularly authenticating credentials and rioizl
information. The adversary can easily manipulate the eudnte
of a webpage, use misleading URLs that are similar to their
legitimate counterparts, or even utilize HTTPS. Our pregos
approach targets a subset of phishing attacks in which the
adversary enables HTTPS connections or uses a hosting site
with an active TCP port 443. We examined all identified

Detect phishing websites with high precision and recall.
This is the primary objective of all phishing detection
techniques.

We assume that the web domain and corresponding host
server certificate are available to the machine-learning
mechanism on the client. Following the classification,
our mechanisms generates the predicted category, i.e.,
‘phishing’ or ‘non-phishing’.

2) Achieve superior classification performance in the non-

phishing category. Effectively this requires low false
positives with no false negatives. While categorizing
non-phishing instances sometimes is sometimes over-
looked, they are in fact of the same importance of the
phishing category. A system making too many false
classifications are not useful to support an informed
decision by the end user. While such detection must be
complemented by appropriatesk communicatiorj21].
Without reliable detection such communications, nudges
or warnings are not feasible. Too many warnings will re-
sult in people ignoring these profligate warnings. While
warning design and usable security are not a focus of
this paper, either requires an underlying detection system
with few false alarms.

Prevent two adversarial learning attacks to circumvent
the phishing detection system: evasion and poisoning.
circumvention of the phishing detection mechanism.
Defeating evasion requires a set of features that are, as a
whole, difficult to forge or manipulate by the adversary.
Prevent poisoning attack requires additional verification
In our case, a human analyst to filter out suspicious non-
phishing instances from the training set. We discuss this
in Section VII.

phishing websites with an X.509 public key certificate, @ith The structure and component interaction of our phishing-
self-signed, or obtained from a CA. Particular cases ofése detection system is illustrated in Figure 1. The proposed
include those where phishers have subverted a legitimate hgystem consists of the following four components.
leveraging their control to host malicious content. Certificate downloader: The certificate downloader obtains
We make the following assumptions about the adversarya certificate from a server in two ways. First, through HTTPS
1) The adversary has the ability to create a self-signélae certificate may be provided by default to the browser
certificate for any arbitrary website. during the connection. If no certificate is provided by défau
2) The adversary may host the phishing content onwhen connecting to the specific URL, the certificate down-
website with a valid server certificate issued by a CAoader makes a separate call to TCP port 443 of the server.
For example, the adversary may either have subverted e downloaded certificate is stored in Base-64 format (FEM)
legitimate web server. with the corresponding domain name and the time of download
3) The adversary may purchase a valid server certificateeating a single record.
(corresponding to the phishing domain name) from a Feature extractor: The certificate downloader provides the



record (including the certificate and corresponding cotioec Forest and Average Probability These two algorithms are
meta-data) to the feature extractor. The feature extraettges complementary in that they provide different false negettiv
the downloaded records into a set of actionable featurds. TRandom Forest alone has good performance and it has a slight
requires transforming the data type of many of the certéicatiming advantage over Average Probability while providing
fields based on pre-processing rules, for example into boolevery good ROC curves. Average Probability results in fewer
variables. The feature extractor also calculates the gdioe false negatives.
features which are a function of two or more fields in the Thus the choice between these options is one between an
record. The comparison of subject name and domain namernisrease in speed and a certainty in avoiding false positive
an obvious example. There are other internal evaluatiarth, s The choice would be determined both by risk tolerance of the
as comparisons of dates. Some operations are simplificatiomser and other constraints (i.e., on a mobile phone Average
for example, the content of extensions is stripped and tReobability may be result in user-detectable delay). Tlngs t
features are number of extensions and existence of soiméividual organization (or, less likely, user) can choase
classes of extensions. The values for all resulting featare different threshold for Random Forest , Average Probapilit
stored in a vector (V) and are forwarded to the classificatiamr a different manner of combining the outputs for their own
executor. risk posture. In our results we use majority likelihood,,iaur
Creating a permutation of all possible fields and combindecisions threshold is 0.5.
tions is certainly possible, but not optimal. We selectecdme
ingful features through examination of patterns of phighin
leveraging our understanding of the underlying problemgisi Effective machine learning requires identification of the
both personal observations and previous research. We lisedsalient features. More or less salient features can be iden-
resulting set of candidate features and then iterated aethéfied iteratively through, for example, examining the vary
sets as described in Section IV. ing weights created by different machine-learning aldonis.
Classification executor: The feature extractor provides aHowever, such an approach is insufficient and risks missing
vector of all features in the vector form required for théeatures that are important for structural reasons of bo¢h t
classification executor. The executor component compsises dataset and the context of use.
previously trained machine-learning models. The algorgh If two features are highly correlated, such a process also
used in these models are described in Section V-B. The spedaifsks selecting the dependent feature or variable. For pleam
models resulting from the application of these algorithnfeot size is the greatest indicator is changes in abilityetadr,
are described in Section VI. This component applies th®wever the actual variable of interest is years of edugatio
six machine-learning models to the vector generated by tGfanges in reading ability tend to plateau at adulthood, as
feature extractors. and the classification results of eanttein does foot size. However the ability to predict changes is a
Classification results are stored in another vector (R) ppstt  function of continuing education, despite the fact that few
final decision making. These are not purely Boolean data tnlitain doctorates.
can include probabilities and other detalils. In contrast, our feature selection began with observatdns
We evaluated a range of algorithms for the challenge pfevious work in phishing detection, selecting from thejsob
phishing detections. The classification executor utilizesti- name and domain name match, and the date of initial validity.
ple algorithms and instantiations. For example, RandorestorWe also build on our previous work in domain reputation
is constructed by the use of multiple decisions trees. The gystems [7]. Self-signed certificates are obviously anciatgir
algorithms are Random Forrest, K-Nearest Neighbors, C4lt not a determinant of a certificate being used for phishing
Decision Table, Naive Bayes Tree, and Simple Logistic. €he$Ve identified further features, including contents of sonuh-i
are discussed in detail in Section V-B. vidual fields, existence (or not) of other fields, charastars
Decision maker: The decision maker calculates the sinef fields (e.g., length), and the relationship between two or
gle final probability after being provided with the detailednore of these. The end result was a set of 42 features based
classification results. The decision making component és tbn the structure and content of the X.509 certificate and the
final determination and thus recommendations of the websitata associated with the context of its observation (eaje,d
category. Depending on the personal or organization riglomain name). Some fields have been treated as indicators
tolerances, end users may customize the policy to suppbut were not included here both due to their widespread use in
their own decision-making. The decision maker used in olggitimate certificates and timelines of verification foe tinser.
current instantiation was optimized for the highest trusifpee  For example, trust chain verification would require validat
rate and the lowest false positive rate. Some organization$ multiple certificates for each individual certificate s$ified,
for example, may choose to tolerate many false positives iteluding connection time and signature validation. Here w
avoid any risk of a false negative. The decision maker allovesiumerate the features selected for in the final classifiers.
any organization to make this choice without requiring an
understanding of the underlain machine learning mechanis
The decision maker component provides two options for Features:Diff(NotBefore, NotAfter), Diff(NotBefore, Date-
the evaluation of the classification executor outgeétndom Downloaded), Diff(DateDownloaded, NotAfter).

IV. FEATURE SELECTION

. Temporal Features
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Fig. 1. Certificate-based Phishing Detection System

The expiration date of a certificate is an important security b) Match(domain, SubjecCN).
indicator; however, we also calculated the number of days Following the IETF RFC 6125 [23] and based on current
between certificate expiration and the date we downloaded th  common practice, we determine whether the subject’s
certificate. In addition we examined the entire validityiper common name matches the present domain name. Note
by a simple subtraction dfiotBeforefrom NotAfter We found that we consider this an indicator and not a determinant
these differences to be important features in some casete Whi  of phishing, as the domain hame may also be listed in
it is crucial to possess a valid certificate, it is not a secure the Subject Alternative Name extension.
practice for a CA to issue a server certificate that is valichfo ¢) Match(lssuerCN, SubjectCN), Match(lssuerCN, do-
extremely long period of time (e.g. a decade or more). Furthe main).
certificates that are newly issued are more suspicious than a These two attributes are designed primarily for detection
certificate that has been used for a relatively long periogl. (e of self-signed certificates. They are not used as deter-
one year). We therefore identified the number of days since a ministic flags for phishing websites. Larger companies
given certificate was issued as a machine-learning feafure. such as Google may operate their own CAs and issue
large time between initial issuance and observance was also certificates to their sites. Similarly, universities anbest
suspicious. public institutions may run CAs and sign their own

B. Issuer, Subject and Domain Name certificates.

Issuer and Subject are two special fields of the X.5092) White and Blacklists for Issuer and Subject.:

certificate. Instead of assigning one string value to eacha) isTrustedCA (Issuer), isHighlyTrustedCA(Issuer).

field, the CA can provide a richer set of information using These two features are indicators of the CAs’ repu-
‘Distinguished Names’ (DNs). Detailed information such as tations. Since there is no limitation on the jurisdic-
country, state, city, email, common name, organizationgjam tion of a CA, it is technically feasible for a rogue
and organizational unit can be included as sub-fields, kremsvn CA to issue a valid certificate for any website. We
‘Relative Distinguished Names’ (RDNs). We developed three  therefore created a “Trusted CA list”, consisting of a
groups of machine-learning features based on the sub-fi¢lds subset of the certificate authorities that are trusted by

Issuer and Subject.
1) Relationship between Sub-fieldSommon NameCN),
Organization Q), and Organizational UnitQU) are three sub-

major web browser manufacturers (Microsoft, Apple,
and Mozilla). Google Chrome relies on the underlying
operating system to maintain root certificates, so it is

fields that are closely related to the identity of the issuer o
subject. We examined the relationships between the fatlgwi

also covered by this list [24]. We maintain a second trust
list that only contains VeriSign and Thawte. VeriSign

three data tuples to create five additional features.

a) Match(lssuerCN,

IssuerO), Match(lssuerO,
Issuer OU).

These two features can reveal the structure and naming
conventions of the CA. Patterns extracted from these
two features are useful for detecting sudden but crypto-
graphically valid changes in the issuer field. They could
indicate different CA policies and may even be used
to detect rogue certificates that are technically valid.
Insecure certificates have become a particular focus of
large online entities such as Microsoft [22]. b)

is a highly reputable CA that has issued certificates
for many large organizations. Thawte, which is also
owned by Symantec, provides low-cost solutions to
smaller websites. This list provides another candidate
feature for reliable CAs. Again, the CA itself is not
the sole indicator. Suspicious certificates may come
from reputable CAs For example, Flame illustrates a
cryptographic attack that can be used against certificates
from highly trusted CAs (particularly those with weak
algorithms, as described in Section IV-C).

isProhibited (Issuer), isProhibited (Subject).



Due to the transient nature of phishing sites, a compléate required for an X.509 certificate, important information
blacklist cannot be created a priori. Yet, certain valueray be embedded by the CAs. This information includes
should never appear on the issuer and subject fields, fbe identity of the issuer and subject, constraints andcigali
example, local network addresses: 192.168.x.x, 10.x.xon the usage of public keys, and Certificate Revocation List
127.0.0.1, or localhost. These prohibited entries alone §BRL). There is also a feature that indicates whether the
not prove that a certificate is used for phishing, howeveertificate is an Extended Validation (EV) certificate, igipg
they can serve as an important indicator. As anothargreater investment in certificate issuance. In additiotihé¢o
widely observed example, default self-signed certificatexistence of an extension, we also examine whether each of
in website hosting software by Parallels and VMWarthe extensions has been labeled as ‘critical’ by the issuer.
are not secure in practice. Further, although wildcard Here is a list of common extensionauthorityKeylden-
certificates are technically permitted, having only thgfier, subjectKeyldentifier, keyUsage, certificatePel&i sub-
star character (**') in the issuer or subject creates jactAltName, issuerAltName, subjectDirectoryAttrils tbas-
certificate that can be easily exploited by an adversangConstraints, isExtendedValidation, extendedKeyUsedB-
3) Other Sub-fields: Email, Organization, OrganizationalstributionPoints, freshestCRL, authoritylnfoAccess
Unit, C|ty, State, Country of Issuer and Subjef(ﬁspect|ve|y Addltlona”y, we conduct another count on the number of
Although we do not try to match other optional sub-fields g¥xtensions not in the list above.

_the issue_zr or subjegt, the Ie_ngth of each field_ (besides Ly)u_nt V. EXPERIMENTAL DESIGN

is examined. The information is used by different machine- .

learning algorithms to extract the underlying pattern ofAa C A. Data Collection

For example, VeriSign and GeoTrust provide only the country Our data collection began Dec. 2012 and continues. It uses

of the issuer, not state or city. Several self-signed ceatifis, PlanetLab [27] and initiates connections with servers from

however, fill in every optional field. Similarly, some optain three continents. We also have servers in Eastern and Pacific

sub-fields may be omitted by certain CAs. Finally, for théme zones in the United States. Our data collection of non-

country of issuer or subject, we recorded whether it is ledatPhishing certificates began in December 2012. Our script has

in the US. Country codes can serve as important additio@en downloading a list of the top 1 million websites daily

information for the classification, as the rates of malisioffom Alexa [28] since that time. On occasion for institutadn

websites in different countries vary significantly [25]6]2 reason collection was interrupted. Thus there are a few days

with no data.
C. Other Required Fields We connected to each targeted website via TCP port 443.
Features: Cryptographic  algorithms,  CertVersion, A certificate was downloaded when an HTTPS connection
len(CertSerial). request was successfully established, and when the catific

The first feature in this group consists of the cryptographigas different from the previous observation. For the puepafs
algorithm and hash function that are used for generating tboosing a representative ‘non-phishing’ category, weosbo
signature of the certificate. We consider this feature as the certificates that were downloaded from the top 100,000
important indicator for insecure certificates, as MD5 idl stiwebsites for classifier training and testing, as describved i
among the candidate hash functions. This may also revé&siction VI.
conventions for certificates issued by a specific CA. Ceatific ~\We also maintain a constantly updated database of con-
version indicates the structure of the certificate and iesplifirmed phishing and phishing-related certificates. Ourpscri
level of cryptographic strength, since later certificatesians checks with PhishTank [29] every six hours for the latesvact
have the choice of stronger algorithms. Extensions alsp varhishing list, as phishing pages usually have short lifeim
across versions. While phishing is normally linked with web pages rather than

We also use the length of the certificate serial number demains, we discovered that an increasing number of plgshin
a candidate indicator of the pattern for each CA. While thgages reside in websites with HTTPS enabled. In addition to
actual serial numbers are assigned randomly the lengtheof the HTTPS URLs that were listed, we attempted to connect

number rarely changes. to all websites associated with the PhishTank list inclgdin
» ] those with plain HTTP URLs listed. We then initiated a TCP
D. Certificate Extensions connection to port 443, and downloaded any response that
FeaturesExtension count, existence of common extensiomesulted in a certificate. This data collection began in Oct.
and whether they are critical, other extension count. 2013.

The certificate extensions can serve as an important in-Once a certificate is downloaded from a website, it is parsed
dicator of a fraudulent certificate (e.g. the Flame malwatecally into a set of values according to the standard X.509
certificate) or an insecure certificate (e.g. self-signedifce certificate fields. The 42 features are then calculated fiwan t
cates by Plesk). For the optional certificate extensions, walues of the required and optional fields. The instances are
first count the total number of extensions. We then check timen saved in an ARFF format data file for further analysis.
whether each of the 12 most frequently used extensionsARFF is the data format of Weka [30]. During the data
defined in the certificate. Although none of these extensionsllection, we have recorded 95,490 instances in the ‘fingsh



category with an extremely large non-phishing category 4+ 1performance. Based on the selection of features, a number of
million unique certificates. To avoid possible negativeseff rules are developed for the classification of the new inganc

of an imbalanced dataset, we have takenuader-sampling  K-Nearest Neighbors (Weka implementation: iBK) is an
approach [31] to randomly select instances from the ‘nomstance-based algorithm. For each unknown instance, its
phishing’ category. We ended up with 113,156 non-phishirgptegory is determined by a majority vote of the K training
instances used in the classification from the top 100,0@®stances that are closest to that instance (based on the fea
websites. These websites include the most frequently tiedgetures). This algorithm is simpler than the other algorithms
(i.e., Paypal, Bank of America) and also follows commoterms of model building but requires loading the entire sietta

research practices for this area. when making each prediction. Based on @wss Validation
Parameter Selectignour model calculates three neighboring
B. Machine-Learning Algorithms instances to generate the predicted class (K=3).

In this subsection, we provide a brief overview of th&. Evaluation Methods
machine-learning algorithms we used for classification. In order to evaluate the average performance of our classifi-

To the best of our knowledge, there is no classificatiorations, we applied0-fold cross validatiorfior each algorithm
algorithm that performs universally better than other algdn our experiment. Specifically, this approach partitiohs t
rithms for all datasets. We therefore tested several wedlaln  entire dataset into 10 subsets of equal size. A subset is
classification algorithms. We did this using the machineandomly chosen for validation, while the remaining nine
learning tool Weka [30]. We ranked the algorithms based @ubsets are used to build the machine-learning model. The
their overall performance. In this section, we describes¢heprocess then repeats nine more times in which each subset is
algorithms with the best performance. used for validation once.

C4.5 (Weka implementation: J48) is a basic decision-treePrecision and recall are two important metrics that are
algorithm. Before adding a node (feature) to the decisiea,tr commonly used to evaluate the classification performance of
the algorithm calculates thiaformation gainfor all features a particular category. Precision is the percentage of rcss
according to its entropy. It then creates a single decisiotassified into a category that have been correctly cladsifie
based on the feature with the highest value. Then the featifgat is, if there are a large number of classification intovami
selection is iterated on the remaining features. It dividas category but many of them should not have been that category,
the feature with the highest value. One advantage of C4l%n that model has low precision for the measured category.
over its predecessor ID3 is the reductionaerfitting The The formula to calculate precision is shown in Equation 1.
algorithm goes through the decision tree once it is consadic

o . . TP
and replaces unnecessary branches of the decision tree with Precision = ————— (2)
leaf nodes. This process is known @sining TP+ FP .

Different from C4.5, Random Forest adds randomness to_'n contrast recall measures how many m;tances have been

the generation of decision trees. Instead of relying on offdSsed, rather than how many have been incorrectly added,

single decision tree to cover the entire dataset and fegtul@" & given category. The formula to calculate recall is smow
this approach selects features and training data randaony f In Equation 2.

the given sets and constructs a series of decision treed base TP
these randomly selected inputs. The output of Random Forest Recall = TPTFN (2
is then calculated by the outputs of the contained decision

trees The overall performance of the trained classifiers is evalu-
N . B T . hvbrid alorithm th bi ated byKappa Statistic The measure gives a numeric value
aive Bayes Tree Is a hybrid algorithm that combines tg, een o (equivalent to a random classification) and 1 (per-

strengths of decision trees and Naive Bayes cIassificatiqgCt classification). The formula to calculate Kappa Statis
The algorithm builds a tree-like structure with a Naive %yql'!]sted in Equation 3
e

classifier on every leaf node. Based on the comparison of t

current node'sutility versus the utility for splitting the current s

node, the algorithm can decide whether a leaf node (Naive Kappa = Prob(Classifier) — Prob(Random) (3)

Bayes classifier) or an intermediate node (decision-treEno 1 — Prob(Random)

is needed for the model. With Naive Bayes the path throughFor the ‘phishing’ category, we have also examinedRee

the decision tree does not determine but rather influenaes @giver Operating Characteristic (RO@urve. The ROC curve

classification. The final classification will be a result ogthcan provide a direct illustration of how the classifier peris.

Bayesian function at the leaf. The curve is plotted with a series of ‘thresholds’, indingti
Simple Logistic Regression is a regression analysis. k regifferent combinations of True Positive Rate (TPR) and &als

resents the underlying connections between the set ofrématPositive Rate (FPR). The TPR and FPR are calculated as

and the categories using one logistic function per categoryshown in Equations 4 and 5, respectively.
Decision Table is another useful algorithm that starts with TP

a search on the subset of features to find those with the best TPR = TPLFN

(4)



across the field of information security. Even those useeraw
FPR = _FP (5) of privacy and security risks generally click through EULAs
FP+TN and privacy policies to accomplish their desired tasks] [32

The two metrics are ranked and plotted in the form of (TPRn in depth look at users’ ability and SSL warnings found
FPR) on the coordinate system, respectively. An ideal ifless that in most cases, expert users were not different than non-
can achieve the highest TPR with a small FPR, indicatirexperts in that most users were willing to ignore SSL warsing
high correct classification rates with low false alarm rate® get to a desired website. [33] Users may be experiencing
From the chart, an ideal ROC curve should be close to th&rning fatigue and do not want to be bothered to read pop-
upper-left corner of the coordinate system. We have plotteg notifications if the notifications interrupt their desirask,
the ROC curve of our best performing classifier in Figure 3uch as app installation. [34] Even more explicit or graphic
while performances of all classifiers are provided using tiwearnings have mixed results. [35] Warning habituation is
Area Under Curve (AUC). This (numeric) metric also giveslso a problem that results in users ignoring alerts [36}. Fo
a direct view of the performance similar to the actual ROBandom Forest, the precision achieved 94.7%, and the recall
curve. The maximum value of AUC is 1, indicating an ROCate was 96.3%. For Average Probability, the precision ef th
curve that is close to the upper-left corner and therefoverso ‘non-phishing’ category was 95.1% with a recall of 94.6%.
the entire 1x1 coordinate system. High precision and recall rates in both categories is also a
direct indicator of the high quality of feature selection.

Classifications using Naive Bayes Tree, Decision Table, and

In this section we provide more details on the classificaticimple Logistic also yielded good precision and recall sate
performance of our trained models. As stated in the previoNBTree demonstrated stable performance in terms of pogcisi
section, we utilized 10-fold cross validation to obtain aand recall for both categories, which were comparable to
averaged measurement of the performance. Six algoriththe other tree-based algorithms (C4.5 and Random Forest).
were utilized to train the classification models: C4.5, Rand Decision Table performed better in the detection of phighin
Forest, K-Nearest Neighbors, Naive Bayes Tree, Decisigfith 92.6% of precision and 85% of recall. Although the
Table, and Simple Logistic regression. We also examingeérformance of Simple Logistic was not as good as other
Average Probability which is anensembldearning approach approaches, we still listed this as a candidate algorithmces
that simply calculates the classification based on the geerahis algorithm generates models that are smaller and easy
probabilities of the six models. to understand. In addition, since miscategorized certéd&a
varied across different algorithms, we observed that there
several certificates miscategorized by other algorithms bu

Table | demonstrates the classification performance, batlere correctly categorized by Simple Logistic. In Sectioh V
overall and by category. As the primary goal of this papete will discuss the miscategorizations of our top two perfor
is phishing detection, we ranked the algorithms based on tihg approaches: Random Forest and Average Probability.
precision of the ‘phishing’ category. According to the ®bl  Finally, the Kappa Statistic column shows that the rates of
Random Forest, K-Nearest Neighbors (iBK), and C4.5 (J48prrect classifications were high for every algorithm. Ramd
all achieved great precision and recall rates, above 921886. Forest and K-Nearest Neighbors both achieved 0.9, which is a
classification model built using Random Forest even acHievexcellent classification result. Additionally, as desedhn the
95.5% precision with 93.7% recall for the phishing categoryrevious section, the area under the ROC curve is an imgortan
demonstrating a high accuracy not only among the websiiggicator of the classification performance. The AUC values
that were classified as ‘phishing’, but also among websitas t for the first five algorithms were all above 0.94, while Simple
were actually phishing. When considering multiple algarigh | ogistic also achieved 86%. The AUC of Average Probability
Average Probability reached a recall of 94.1% in the phighimas reached 0.99. As an example, we plotted the ROC curve of
category, with a precision of 93.5%. The precision and tecghe Average Probability algorithm, shown in Figure 2. Close
of the phishing category are comparable to the performancepathe ideal case, the curve has a very short distance to the
l[?r(ge number of phishing detection proposals [10], [113]{1 upper left corner of the coordinate system.

An important strength of our proposed approach is that opr
classification models do not sacrifice precision or recalttie
‘non-phishing’ category for ‘phishing’. The rates in theom As it is an important aspect of the performance evaluation,
phishing’ instances are of the same importance as the perfee tested the effectiveness of the system by recording it ti
mance of the phishing category. The false positive and iegatfor classification. This consists of the time required tospar
rates of the ‘non-phishing’ category would affect the falsa certificate string into machine-learning features, argh tto
alarm rate of the phishing detection system, which directiyonduct classification based on the preferred algorithmeds w
links to user experience of the system. False positivegereas Random Forest, and finally to make a decision based on the
warning fatigue which in turn results in users ignoring ter six algorithms. Should the end user choose to be warned based
Warning fatigue is a relevant (and well established) phezitan on Average Probability, the decision-making process vk

VI. RESULTS

A. Classification Accuracy

Effectiveness



TABLE |
CLASSIFICATION PERFORMANCE

Phishing Non-Phishing Kappa

Algorithm Precision | Recall | Precision| Recall | Statistic | AUC
Random Forest 95.5 93.7 94.7 96.3 0.9 0.98
K-Nearest Neighbory  95.3 93.6 94.7 96.1 0.9 0.97
C4.5 93 93.2 93 94.3 0.87 0.97
Decision Table 92.6 85 88.2 94.2 0.8 0.94
Naive Bayes Tree 90.9 90.5 92 92.4 0.83 0.96
Simple Logistic 73.7 87.3 87.3 73.8 0.6 0.86
Average Probability 93.6 94.2 95.1 94.6 0.89 0.99

TABLE I 1 ————————————
EFFECTIVENESSEVALUATION OF CERTIFICATE CLASSIFICATION /"
(
Component| Average Time Per Certificate (ms) /
Feature Extractor 2.28 08 )
Random Forest (first 1614
Random Forest (remaining 0.006
Average Probability 2721 06 - E

True positive rate

to wait until the slowest algorithm, K-Nearest Neighbors, 04 | :
finishes.

The classification executor and decision maker were written
in JavaScript to ensure better integration with the web besw
We implemented the feature extractor in Python, as it could
parse the certificate strings more efficiently than Java&cri 0 L
We then partitioned a total of 208,600 certificates into 10 O 0 O e
groups of equal size, and recorded average time for each
component. Fig. 2. ROC Curve for the Average Probability Classifier

One interesting observation in our analysis of classificati
executor is the initialization time of this component was
significantly longer than subsequent classifications ire-tre VII. DiscussioN
based algorithms (e.g. Random Forest). Therefore, it would
take a similar amount of time for classifying only one certifi In this section we further analyze the results of classifi-
cate compared to a group of 20,860 certificates. We attribi@@tion, potential attacks against our proposed certifibated
the improvement on the average classification time to tiglassification, and offer some additional observationsifour
automatic optimization by the Just-In-Time (JIT) compileflata analysis.
on the ‘if-else’ statements in JavaScript. This phenomenon We demonstrate the classification results of Random Forest
however, did not occur in other algorithms (e.g. K-Nearegnd Average Probability using a waterfall chart in Figure 3.
Neighbors) with fewer conditional statements. In Table & wThe horizontal lines in the chart indicate the categoridse T
summarized the time to classify the first certificate and tHigst row in this chart is the actual category of the certiisat
average time for classifying each of the remaining certiéisa and the lower lines indicate the classification results ofumst
in the group. performed classification algorithms, respectively. Tharth

As shown in Table II, feature extraction can be completadses different colors to denote the actual category of the
very quickly, within 3 milliseconds. Average Probabilitg-r instances so classification result is visible in each of ths-c
quired three seconds to complete, caused by the calculatiorsification categories (non-phishing=green, phishingkditue,
the distances between nearest neighbors for each cedtifidatt is readable in black and white). A vertical line indicate
instance in the slowest algorithm. Our implementation @n agreement in classification between two algorithmsttie.
Random Forest required an initialization time of 1.6 seddstances are classified as the same category); while ajuebli
onds, while the subsequent certificates would take only dige (from the left half to the right half, and vice versa) aiso
milliseconds per certificate including the feature exwact a disagreement between two algorithms.

(See Section VI-B for more details.) for details) According We can observe that Random Forest and Average Probability
to the analysis of correctness and effectiveness, the emd wre complementary in terms of misclassifications. Ovetiad,
may choose from Random Forest, which runs more quicklyue Positive Rate of Average Probability in the phishing ca
and with a superior precision, or Average Probability thagory is slightly higher than that of Random Forest (94.2% vs
runs relatively slower but may be more accurate in phishirgg.7%). However, Random Forest has a lower False Positive
detection. Rate (3.7% vs. 5.5%).
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Actual Category Generally, our results indicate that the more popular a
Hon:Phishing A — website is, the easier it is to distinguish from a phishing
website. Notice that the economics of phishing require very
large-scale spam campaigns, so that less popular websites a
less profitable to phish due to size of the target population.

One interesting observation we made was that, besides
pages on the same website, certificates may be reused across
multiple domains. To make the performance evaluation of our
approach comparable to other local anti-phishing appresch
discussed in related work, we allowed duplicate entries of
certificate strings in our dataset if they belonged to theesam
category. We have reported separately on the current stétus
banking certificate in another paper [37].

Random Forest
Non-Phishing

Average Probability
Non-Phishin

Fig. 3. Classification Results based on Random Forest anchgeeProba- VIII. CONCLUSION
bilty We have shown that automated analysis of TLS certificates
using machine learning is a promising approach for ideimfy
A. Limitation phishing websites. We conclude that it is feasible to cfpssi
) ) . websites into ‘phishing’ and ‘non-phishing’ categoriesttwi
A simple attack to circumvent our certificate-baseghasonable accuracy using the set of classifiers we havé deve
phishing-detection system is disabling all HTTPS conmesti 04 pyplic key certificate classification has an advaritage

from the web server. However, rejecting all inbound HTTP& 4 it is less dependent on a central server than bladidisti
connections can be a significant indicator when sensitiveris anproach changes the economics of phishing. Sensitive
information is supposed to be entered on the website. Thigormation should only be entered if a connection is priztéc
case can be detected by an analysis of page DOMSs, especigilyss| /TLS. The presence or absence of such protection can

the password fields in HTML. _ _ _easily be detected. Should phishing be limited to subvested
There are more complex and typical adversarial learnifgyitimate websites, this changes the economics of phgshin
attacks: evasion and poisoning. Legitimate websites have the incentive and the competence

In evasion, the adversary attempt to modify the values g recover quickly. (Previous work has shown that recovery
several certificate fields in order to obtain a certificatet thﬁme is the most critical variable in preventing epidemics
looks benign by our classifiers. To increase the successh®teof subversions [38].) Fastflux would be more difficult. It
can obtain a valid certificate from a highly reputable CA iBat js exactly this kind of attack that is most effective against
trusted mutually by the major web browsers, or even purchaggcklists. Thus this approach is complementary to blatiki
an extended validation certificate for his website. Thishodt and other techniquesy such as those examining temporaisign
involves substantial financial investment and can fail & thor performing content-based anaiysis of websites.
reputable CA performs regular checks on the page contenigyr findings motivate several avenues for further investi-
and/or domain matches. gation. While this TLS-based identification is more restlien

Such an increase in cost would possibly defeat fast-flyg manipulation than URLs and page content, the features we
attacks, as these would no longer be financially viableebtst have selected are subject to different degrees of control by
of relying on a reputable CA, the adversary may create higtackers. We would like to investigate how phishing atsack
own self-signed certificate, which can be captured by meltipwould evolve to such defenses. First, we are currently stigdy
machine learning features (e.g. Match(subject.CN,isS08). the rate of change in values for various certificate fields. We

Further, features such as ‘hash algorithm’ are potentigbe this as a potential feature for phishing detection, beig®
indicators for hash-collision attacks, which rely on MD%f renewing certificates can vary significantly among wedssit
(although forged certificates are not the focus of this papenwell-known websites usually present a more stable pattern o

Lastly, we expect our set of features to evolve over timeertificate renewal compared to phishing websites. We would
based on new threats. Our certificate-based approach ea#so like to expand the classifier to include the top million
also be combined with other indicators to achieve optimalebsites.
detection. Additional testing of the classifiers against differenttifer

Poisoning is the second typical type of adversarial legrnircate compilations is an important next step. We are seeking
attack. The attacker can intentionally make some phishibg identify an international partner with a larger certifeca
certificates and applies them to the top-visited sites, bcwmpilation, one that focuses on markets with dominant lan-
without performing the attack right away on these websiteguages other than English. We are also seeking a multina-
This requires long-term commitment with an uncertaintyatf n tional partner for real-time classification into the catég® of
being detected during the poisoning period. Popular wedsitegitimate work-related certificates and all other cerités.
are likely to identify these certificates (e.g. Google). This approach has the potential to prevent entering wockpla



credentials into any non-employer website, thus prevgntifis]
spear-phishing. These experiment could provide veriboati
of the efficacy of our certificate-based phishing detectiq@n
approach in the business world. For this reason, our clessifi

will be public upon publication of these initial results. 8]
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