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Abstract—We propose a machine-learning approach to detect
phishing websites using features from their X.509 public key
certificates. We show that its efficacy extends beyond HTTPS-
enabled sites. Our solution enables immediate local identification
of phishing sites. As such, this serves as an important complement
to the existing server-based anti-phishing mechanisms which
predominately use blacklists. Blacklisting suffers from several
inherent drawbacks in terms of correctness, timeliness, and
completeness. Due to the potentially significant lag prior to site
blacklisting, there is a window of opportunity for attackers. Other
local client-side phishing detection approaches also exist, but pri-
marily rely on page content or URLs, which are arguably easier
to manipulate by attackers. We illustrate that our certificate-
based approach greatly increases the difficulty of masquerading
undetected for phishers, with single millisecond delays for users.
We further show that this approach works not only against
HTTPS-enabled phishing attacks, but also detects HTTP phishing
attacks with port 443 enabled.

Index Terms—certificates, machine learning, security.

I. I NTRODUCTION

Phishing remains a serious problem that threatens the se-
curity and privacy of online users despite attempts to thwart
such attacks since 1995 [1]. Phishing attacks usually involve
an attacker masquerading as a legitimate online entity to steal
confidential information from the unsuspecting victims.

The efficacy of phishing depends upon the ability of the
adversary to confuse the victim. Phishing websites often dis-
play content similar or identical to their legitimate counterparts
and replicate the layout and ‘look-and-feel’ of these websites.
These attacks often start with fraudulent emails sent to a
group of online users to lure them to the fraudulent websites.
In successful attacks victims click on the email hyperlinks
which link to the phishing websites, and then victims disclose
their private credentials (such as passwords or credit card
information) or download malware.

Ideally enforcement of the requirement for an SSL/TLS
connection in every important online transaction could defeat
many of the current phishing attempts. Ideally, before a
certificate can be issued the certificate authority (CA) needs

to conduct a two-step verification, on domain ownership and
legitimacy of the site owner. The web browsers or non-
browser applications (e.g. online banking apps) must then
verify the presented certificates and communicate the results
to the end users in an appropriate form. Upon receiving
the results (e.g. through the lock icon displayed next to the
address bar of a browser), the end users should have sufficient
information to make an informed decision on whether they
should proceed to their online visits. Currently use of valid
certificate by adversaries is infrequent; however, attackers are
part of the long term trend towards more ubiquitous https. Both
legitimate and attacking sites increasing use cryptographically
valid certificates.

There are two components to defeating phishing. One is
the detection of phishing sites. The second is the effective
communication to end users that a site is indeed a phishing
attack. Such effective communication would result in end
users refusing to enter data in phishing sites or download the
malicious payloads. We focus on the first component, that is
the identification of phishing sites.

An obvious attack is typo-squatting. As anyone can register
for virtually any unoccupied web domains, an attacker may
also sign up for a misleading domain that is similar to the
legitimate one he wishes to impersonate. For example, instead
of bankofamerica.com, the attacker may get bank-of-american.
com or bankofamerica.trustedbank.com. Without the verifica-
tion of the legitimacy of the website owner, a technically valid
certificate may be issued and presented to the end user. After
the client-side verification, which primarily focuses on the
validity of the certificate itself, a lock icon can even display
in the browser window.

Public key certificates remain a potentially valuable source
of information about the site owners. We argue that in-
formation embedded in the certificates is far more useful
than the traditional client-side verification. In fact, dueto
the relatively dynamic nature of phishing domains, some
underlying characteristics of their certificates can become a
strong indicator of those websites. Through an analysis of the978-1-4799-8909-6/15/$31.00c©2015 IEEE



standard structure of the X.509 certificate and confirmed phish-
ing websites, we have identified 42 machine-learning features
and built classification models using a variety of algorithms.
By ranking the influence of the identified machine-learning
features, we discovered that the most effective features for our
classifications were “relationship between web domain and the
subject’s common name listed in the certificate” and “length
of the validity period”. Yet other machine-learning features
(e.g., “trusted CAs by major web browsers”, “blacklist”, “hash
algorithm”) further enhance the classification accuracy. We
examined six machine-learning algorithms. Other than the five
consistently important features listed here, the featureshad
quite different ranks in models built on different algorithms.
The results showed that when ten-fold cross validation was
applied, the precision of our classification achieved 95% and
the recall rate was above 93%.

Our primary research contribution is the proposal of a
more effective mechanism to detect phishing websites. This
certificate-based anti-phishing solution has several advantages
over the existing mechanisms, in terms of correctness, com-
pleteness and timeliness. Applying the mechanism to our ex-
perimental dataset also demonstrated that our approach would
also work well in phishing URLs using plain HTTP, as long
as a certificate can be retrieved from the web server. Closely
related to our work, Mishari et al. previously investigatedthe
feasibility of using public key certificates to identify phishing
websites from regular sites [2]. We differentiate our work from
this (and other approaches for phishing identification) from the
following perspectives: a larger dataset, a complete view of the
X.509 certificate structure, higher classification performance in
both categories, and more tested algorithms. We discuss them
in detail in Section II-B.

This paper is organized as follows. Section II reviews previ-
ous research on anti-phishing techniques. Section III analyzes
the threat model and describes our certificate-based approach.
Section IV enumerates the set of features selected for use in
our machine-learning models, and explains the basis for choos-
ing that set. Section V overviews the related machine-learning
algorithms and evaluation measurements for the performance
of each model. Section VI reports the performance of the six
trained models that resulted from our combination of feature
and algorithm selection. Section VII discusses the limitations
of the work. Specifically, we address miscategorizations and
potential attacks. Section VIII summarizes and concludes with
our plans for future work.

II. RELATED WORK

There are two research areas with the greatest impact on
this research. The first is the general battle against phishing. In
terms of anti-phishing we discuss blacklisting and then move
to more recent approaches. We characterize these accordingto
correctness, timeliness, and completeness.

The second research area is the use of machine learning
in security. As machine learning has been widely used in in-
trusion detection systems (IDS), malware identification, spam

identification and other arenas, we focus specifically on the
use of machine learning to detect phishing attacks.

A. Blacklisting

As an existing security solution to phishing, blacklists have
been compiled by browser manufacturers, trusted third parties,
and social networks of friends. Blacklists exist for different
features of malicious sites: IP addresses (e.g. Spamhaus),
domain names (e.g. PhishTank), and certificates (e.g. CRLs).
An effective blacklist needs to satisfy three requirements
simultaneously: correctness, completeness, and timeliness.

Correctnessis the accuracy of the blacklist in distinguish-
ing between malicious and non-malicious sites. Correctness
directly affects the user experience. Previous empirical studies
investigated the time required for updating phishing blacklists.
In 2006, Ludl et al. tested 10,000 phishing URLs against the
Microsoft and Google blacklists and received true positive
rates of 65% for Google and 56% for Microsoft [3].

Timelinessis the delay between the publication of a phishing
site and the time when the phishing site is included in the
blacklist. The delay includes the identification of the site, the
report of the site, the verification of the nature of the site,
and then the client-side updates. This is especially difficult
for spear-phishing websites. Since these websites normally
target a very small portion of the online population, centralized
blacklists may not receive a report after the attack has been
successful. In 2009, Sheng et al. examined the exact time
required for popular web browsers to blacklist a phishing
URL [4]. Blacklists rarely identify fresh phishing pages within
the first hour. After a site has been up for 12 hours, the
identification rates could go up to 47%-83%, according to the
study.

Completenessis the degree to which a blacklist accurately
reflects the state of phishing online. It is a function of timeli-
ness and correctness, as well as scope. Completeness is a chal-
lenge for blacklists due to the cycle of attack, identification,
publication of the blacklist, then removal by defenders and
reallocation by attackers of the hosting site. For example,in
response to blacklisting phishing scams can frequently change
their URLs, which leads to a short lifetime per phishing URL
[5], [6]. The question then becomes how to create an effective
defense mechanism against fresh and dynamic phishing sites
before third-party blacklists are updated.

To meet all three requirements, we constructed a machine
learning-based approach that can be executed by the end
users in real time with high accuracy. Other user-centered
and decentralized approaches have been proposed to identify
phishing sites. NetTrust used temporal signals and social
networks [7]. Moore examined crowdsourcing as a method
to identify phishing sites [8].

Our proposed approach augments the existing blacklist
approaches. First, the system described here does not require
frequent updates from central servers. Due to the inherent lag
between the first appearance of a phishing website and when
the website is blacklisted, the users of traditional blacklists
have a window of vulnerability to new phishing (especially



spear-phishing) attacks. In addition to being suitable forclient
as well as server deployment, our machine learning-based
approach is able to identify websites that share a similar
pattern of the known malicious websites but are not yet on the
blacklist. Critically, machine-learning approaches can identify
phishing sites as soon as they are encountered. Once identified
these sites can be reported, thus augmenting blacklists.

B. Machine Learning and Phishing Detection

Machine learning has been increasingly utilized in security.
Both unsupervised and supervised learning approaches have
been explored for identifying malicious websites. Here we use
supervised learning, i.e., there are pre-existing identified cate-
gories and some ground-truth knowledge (known as “training
data”). Supervised learning models are built from this training
data, which take advantage of the ground-truth knowledge.
The data that are not used in training comprise a test set,
which is then used to evaluate the performance of the trained
models. After training and testing, these models can be used
to classify new instances into the pre-defined categories. In
terms of phishing detection, the machine-learning approaches
attempt to distinguish between phishing websites and non-
phishing websites based on the results of training using all
machine-learning features.

Previous research has used both clustering and classifica-
tion (i.e., unsupervised and supervised learning) to identify
phishing, focusing on both phishing emails and the phishing
websites. As an early proposal for email-based phishing detec-
tion, Basnet et al. tested features extracted from the format and
contents of phishing emails. Their resulting machine-learning
model was able to detect the majority of the 500 phishing
email samples [9]. However, several identified features from
2006 now seem outdated. For example, the utilization of
HTML objects and URL-based image source are now common
in legitimate emails. Most importantly, the textual pattern
and formats of phishing emails are easily manipulated by the
adversary should this detection approach be widely deployed.
Like phishing websites, the content of phishing emails is
designed to be identical to legitimate emails, excluding the
embedded URLs.

In contrast our approach is based on features extracted
from the certificates of phishing websites. Previous similar
approaches were primarily focused on the analysis of page
content and classification of web URLs. Rosiello et al. con-
structed the HTML Document Object Model (DOM) trees for
phishing and benign webpages, and used measurements such
as layout similarity for the detection of phishing pages [10].
CANTINA+ [11] is a multi-layer approach to extract features
automatically from the DOM of a page. These features are
then used to categorize the websites. Xiang et al. proposed a
phishing-detection approach that extracts the claimed domain
name from the page content, combined with a DNS lookup
for the legitimate domain. A comparison of the two fields
is then used to detect phishing [12]. A textual analysis of
URLs using machine learning focused on the extraction of
instances of obfuscation (e.g. www.bbc.unknown.com) and

misspellings of the URL [13]. In an expansion of this work,
Ma et al. combined the textual features of the URL (e.g. spe-
cial characters, word appearance) and host information [14].
McGrath et al. examined the length of URL, the lifetime of
a web domain, and other host information [15]. Based on
Google’s blacklist, Whittaker et al. built a phishing detection
system using features extracted from the page URL, and page
content [16].

These approaches utilized online resources that can be
easily modified or forged by an adversary than cryptographic
signatures or certificates. In contrast, the adversary would have
to invest a time and money in order to obtain a valid end-entity
certificate, particularly from a reputable CA. Given the low
rate of return on phishing attacks, this may be economically
significant. This is particularly applicable to fast flux attacks,
for example with rock-phish sites cycling through up to eighty
domains a day [17]. In addition, they would have to get these
certificates significantly prior to a planned attack, which is
another kind of cost increase. With an appropriate set of
features, our proposed approach can be difficult to circumvent.

Ideally every time an end user provides personal identifiable
information, the traffic would be encrypted and the host
certificate would be validated. Unfortunately, this best-case
scenario is not common practice. CAs may request proof
of ownership of a web domain, but not perform additional
verification on the legitimacy of the site owner’s identity
except for the Extended Verification (EV) certificates [18].Site
owners, especially smaller ones rarely obtain EV certificates,
perhaps due to the higher costs and unproven benefit (e.g.,
from end users being unable to distinguish EV and non-EV
certificates [19]). Pan et al. built machine-learning models
based on features including page content, DNS records, etc.
They also tested public key certificates. However the only
feature utilized was the match between the subject field of
the certificate and the web domain [20].

Closely related to our work, Mishari et al. previously
investigated the feasibility of using public key certificates to
identify phishing websites from regular sites [2]. Our approach
differs in the following aspects.

First, in terms of the dataset used, we collected and tested
certificates from all confirmed phishing websites associated
with PhishTank entries, regardless of whether HTTPS was
included in the listed URL. We found that connecting to
TCP port 443 yielded many more certificates, even when
the blacklisted phishing URLs were plain HTTP URLs. This
approach substantially increased the size of our training and
testing datasets, which consequently improved the value ofthe
classification performance evaluation.

Second, by including a more complete view of the certificate
structure in our analysis we achieved a significantly higherper-
formance for both categories (‘phishing’ and ‘non-phishing’).
We have significantly expanded the examination and utilization
of the feature set by including all standard X.509 certificate
fields and optional certificate extensions. In addition to the
certificate field values, relationships between certificatefields
are utilized as features (e.g., between subject name and the



domain name; between initial valid date and date encountered).
Third, our constructed models achieved higher precision and

recall for both the ‘phishing’ and ‘non-phishing’ categories.
The importance of identifying non-phishing instance is equally
important as that of phishing instances. A high false alarm
rate will lead to low overall classification performance and
therefore suboptimal user experience. We report the results in
both categories in Section VI.

Fourth, we tested a larger number of classification algo-
rithms. By analyzing the results from these algorithms, our
proposed mechanism achieved better identification rates for
both categories (again, phishing and non-phishing). We make
recommendations on algorithms efficacy for different cases
based on our experimental dataset.

The difficulty of obtaining a valid public key certificate
that would comply with an optimized machine-learning model
from a trustworthy CA is arguably increased as the constraints
on the certificate are increased. For example, obtaining a
domain name that passes a check grounded in the compar-
ison between subject name and domain name is not trivial,
particularly when the domain name is well-known. The more
constrained a phishing attack must be to avoid detection,
the greater difficulty and the greater the cost of an attack.
Detection would be extremely difficult to circumvent with a
distributed model using machine-learning mechanisms due to
subtle differences in various institution instantiations, as the
models can be continually updated.

III. SYSTEM DESIGN

In this section, we discuss the security threat of phishing.
We then introduce the design of our certificate-based phishing
detection mechanism.

The primary component which defines a phishing attack
is an adversary who creates a malicious website which
masquerades as a legitimate website. The goal is to trick
victims into entering their private information on the phishing
website, particularly authenticating credentials and financial
information. The adversary can easily manipulate the content
of a webpage, use misleading URLs that are similar to their
legitimate counterparts, or even utilize HTTPS. Our proposed
approach targets a subset of phishing attacks in which the
adversary enables HTTPS connections or uses a hosting site
with an active TCP port 443. We examined all identified
phishing websites with an X.509 public key certificate, either
self-signed, or obtained from a CA. Particular cases of interest
include those where phishers have subverted a legitimate host,
leveraging their control to host malicious content.

We make the following assumptions about the adversary.

1) The adversary has the ability to create a self-signed
certificate for any arbitrary website.

2) The adversary may host the phishing content on a
website with a valid server certificate issued by a CA.
For example, the adversary may either have subverted a
legitimate web server.

3) The adversary may purchase a valid server certificate
(corresponding to the phishing domain name) from a

CA.
4) The adversary does not have the ability to compromise

a CA that is trusted by major web browsers.
5) The adversary has access to a potentially large number

of certificates that are classified as ‘non-phishing’ by
our system. That is, the multi-year collection of valid
certificates could be repeated over time by adversaries.

6) The adversary has access to our proposed phishing
detection system.

The design goals of the system are as follows.

1) Detect phishing websites with high precision and recall.
This is the primary objective of all phishing detection
techniques.
We assume that the web domain and corresponding host
server certificate are available to the machine-learning
mechanism on the client. Following the classification,
our mechanisms generates the predicted category, i.e.,
‘phishing’ or ‘non-phishing’.

2) Achieve superior classification performance in the non-
phishing category. Effectively this requires low false
positives with no false negatives. While categorizing
non-phishing instances sometimes is sometimes over-
looked, they are in fact of the same importance of the
phishing category. A system making too many false
classifications are not useful to support an informed
decision by the end user. While such detection must be
complemented by appropriaterisk communication[21].
Without reliable detection such communications, nudges
or warnings are not feasible. Too many warnings will re-
sult in people ignoring these profligate warnings. While
warning design and usable security are not a focus of
this paper, either requires an underlying detection system
with few false alarms.

3) Prevent two adversarial learning attacks to circumvent
the phishing detection system: evasion and poisoning.
circumvention of the phishing detection mechanism.
Defeating evasion requires a set of features that are, as a
whole, difficult to forge or manipulate by the adversary.
Prevent poisoning attack requires additional verification.
In our case, a human analyst to filter out suspicious non-
phishing instances from the training set. We discuss this
in Section VII.

The structure and component interaction of our phishing-
detection system is illustrated in Figure 1. The proposed
system consists of the following four components.

Certificate downloader: The certificate downloader obtains
a certificate from a server in two ways. First, through HTTPS
the certificate may be provided by default to the browser
during the connection. If no certificate is provided by default
when connecting to the specific URL, the certificate down-
loader makes a separate call to TCP port 443 of the server.
The downloaded certificate is stored in Base-64 format (PEM),
with the corresponding domain name and the time of download
creating a single record.

Feature extractor: The certificate downloader provides the



record (including the certificate and corresponding connection
meta-data) to the feature extractor. The feature extractorparses
the downloaded records into a set of actionable features. This
requires transforming the data type of many of the certificate
fields based on pre-processing rules, for example into boolean
variables. The feature extractor also calculates the values for
features which are a function of two or more fields in the
record. The comparison of subject name and domain name is
an obvious example. There are other internal evaluations, such
as comparisons of dates. Some operations are simplifications;
for example, the content of extensions is stripped and the
features are number of extensions and existence of some
classes of extensions. The values for all resulting features are
stored in a vector (V) and are forwarded to the classification
executor.

Creating a permutation of all possible fields and combina-
tions is certainly possible, but not optimal. We selected mean-
ingful features through examination of patterns of phishing,
leveraging our understanding of the underlying problem using
both personal observations and previous research. We used the
resulting set of candidate features and then iterated on these
sets as described in Section IV.

Classification executor: The feature extractor provides a
vector of all features in the vector form required for the
classification executor. The executor component comprisessix
previously trained machine-learning models. The algorithms
used in these models are described in Section V-B. The specific
models resulting from the application of these algorithms
are described in Section VI. This component applies the
six machine-learning models to the vector generated by the
feature extractors. and the classification results of each model.
Classification results are stored in another vector (R) to support
final decision making. These are not purely Boolean data but
can include probabilities and other details.

We evaluated a range of algorithms for the challenge of
phishing detections. The classification executor utilizesmulti-
ple algorithms and instantiations. For example, Random Forest
is constructed by the use of multiple decisions trees. The six
algorithms are Random Forrest, K-Nearest Neighbors, C4.5,
Decision Table, Naive Bayes Tree, and Simple Logistic. These
are discussed in detail in Section V-B.

Decision maker: The decision maker calculates the sin-
gle final probability after being provided with the detailed
classification results. The decision making component is the
final determination and thus recommendations of the website
category. Depending on the personal or organization risk
tolerances, end users may customize the policy to support
their own decision-making. The decision maker used in our
current instantiation was optimized for the highest true positive
rate and the lowest false positive rate. Some organizations,
for example, may choose to tolerate many false positives to
avoid any risk of a false negative. The decision maker allows
any organization to make this choice without requiring any
understanding of the underlain machine learning mechanisms.

The decision maker component provides two options for
the evaluation of the classification executor output:Random

Forest and Average Probability. These two algorithms are
complementary in that they provide different false negatives.
Random Forest alone has good performance and it has a slight
timing advantage over Average Probability while providing
very good ROC curves. Average Probability results in fewer
false negatives.

Thus the choice between these options is one between an
increase in speed and a certainty in avoiding false positive.
The choice would be determined both by risk tolerance of the
user and other constraints (i.e., on a mobile phone Average
Probability may be result in user-detectable delay). Thus the
individual organization (or, less likely, user) can choosea
different threshold for Random Forest , Average Probability,
or a different manner of combining the outputs for their own
risk posture. In our results we use majority likelihood, i.e., our
decisions threshold is 0.5.

IV. FEATURE SELECTION

Effective machine learning requires identification of the
salient features. More or less salient features can be iden-
tified iteratively through, for example, examining the vary-
ing weights created by different machine-learning algorithms.
However, such an approach is insufficient and risks missing
features that are important for structural reasons of both the
dataset and the context of use.

If two features are highly correlated, such a process also
risks selecting the dependent feature or variable. For example
foot size is the greatest indicator is changes in ability to read;
however the actual variable of interest is years of education.
Changes in reading ability tend to plateau at adulthood, as
does foot size. However the ability to predict changes is a
function of continuing education, despite the fact that few
obtain doctorates.

In contrast, our feature selection began with observationsof
previous work in phishing detection, selecting from the subject
name and domain name match, and the date of initial validity.
We also build on our previous work in domain reputation
systems [7]. Self-signed certificates are obviously an indicator
but not a determinant of a certificate being used for phishing.
We identified further features, including contents of some indi-
vidual fields, existence (or not) of other fields, characteristics
of fields (e.g., length), and the relationship between two or
more of these. The end result was a set of 42 features based
on the structure and content of the X.509 certificate and the
data associated with the context of its observation (e.g., date,
domain name). Some fields have been treated as indicators
but were not included here both due to their widespread use in
legitimate certificates and timelines of verification for the user.
For example, trust chain verification would require validation
of multiple certificates for each individual certificate classified,
including connection time and signature validation. Here we
enumerate the features selected for in the final classifiers.

A. Temporal Features

Features:Diff(NotBefore, NotAfter), Diff(NotBefore, Date-
Downloaded), Diff(DateDownloaded, NotAfter).



Fig. 1. Certificate-based Phishing Detection System

The expiration date of a certificate is an important security
indicator; however, we also calculated the number of days
between certificate expiration and the date we downloaded the
certificate. In addition we examined the entire validity period
by a simple subtraction ofNotBeforefrom NotAfter. We found
these differences to be important features in some cases. While
it is crucial to possess a valid certificate, it is not a secure
practice for a CA to issue a server certificate that is valid for an
extremely long period of time (e.g. a decade or more). Further,
certificates that are newly issued are more suspicious than a
certificate that has been used for a relatively long period (e.g.
one year). We therefore identified the number of days since a
given certificate was issued as a machine-learning feature.A
large time between initial issuance and observance was also
suspicious.

B. Issuer, Subject and Domain Name

Issuer and Subject are two special fields of the X.509
certificate. Instead of assigning one string value to each
field, the CA can provide a richer set of information using
‘Distinguished Names’ (DNs). Detailed information such as
country, state, city, email, common name, organization name,
and organizational unit can be included as sub-fields, knownas
‘Relative Distinguished Names’ (RDNs). We developed three
groups of machine-learning features based on the sub-fieldsof
Issuer and Subject.

1) Relationship between Sub-fields:Common Name (CN),
Organization (O), and Organizational Unit (OU) are three sub-
fields that are closely related to the identity of the issuer or
subject. We examined the relationships between the following
three data tuples to create five additional features.

a) Match(IssuerCN, IssuerO), Match(IssuerO,
Issuer OU).
These two features can reveal the structure and naming
conventions of the CA. Patterns extracted from these
two features are useful for detecting sudden but crypto-
graphically valid changes in the issuer field. They could
indicate different CA policies and may even be used
to detect rogue certificates that are technically valid.
Insecure certificates have become a particular focus of
large online entities such as Microsoft [22].

b) Match(domain, SubjectCN).
Following the IETF RFC 6125 [23] and based on current
common practice, we determine whether the subject’s
common name matches the present domain name. Note
that we consider this an indicator and not a determinant
of phishing, as the domain name may also be listed in
the Subject Alternative Name extension.

c) Match(IssuerCN, SubjectCN), Match(IssuerCN, do-
main).
These two attributes are designed primarily for detection
of self-signed certificates. They are not used as deter-
ministic flags for phishing websites. Larger companies
such as Google may operate their own CAs and issue
certificates to their sites. Similarly, universities and other
public institutions may run CAs and sign their own
certificates.

2) White and Blacklists for Issuer and Subject.:

a) isTrustedCA (Issuer), isHighlyTrustedCA(Issuer).
These two features are indicators of the CAs’ repu-
tations. Since there is no limitation on the jurisdic-
tion of a CA, it is technically feasible for a rogue
CA to issue a valid certificate for any website. We
therefore created a “Trusted CA list”, consisting of a
subset of the certificate authorities that are trusted by
major web browser manufacturers (Microsoft, Apple,
and Mozilla). Google Chrome relies on the underlying
operating system to maintain root certificates, so it is
also covered by this list [24]. We maintain a second trust
list that only contains VeriSign and Thawte. VeriSign
is a highly reputable CA that has issued certificates
for many large organizations. Thawte, which is also
owned by Symantec, provides low-cost solutions to
smaller websites. This list provides another candidate
feature for reliable CAs. Again, the CA itself is not
the sole indicator. Suspicious certificates may come
from reputable CAs For example, Flame illustrates a
cryptographic attack that can be used against certificates
from highly trusted CAs (particularly those with weak
algorithms, as described in Section IV-C).

b) isProhibited (Issuer), isProhibited (Subject).



Due to the transient nature of phishing sites, a complete
blacklist cannot be created a priori. Yet, certain values
should never appear on the issuer and subject fields, for
example, local network addresses: 192.168.x.x, 10.x.x.x,
127.0.0.1, or localhost. These prohibited entries alone do
not prove that a certificate is used for phishing, however
they can serve as an important indicator. As another
widely observed example, default self-signed certificates
in website hosting software by Parallels and VMWare
are not secure in practice. Further, although wildcard
certificates are technically permitted, having only the
star character (‘*’) in the issuer or subject creates a
certificate that can be easily exploited by an adversary.

3) Other Sub-fields: Email, Organization, Organizational
Unit, City, State, Country of Issuer and Subject, respectively.

Although we do not try to match other optional sub-fields of
the issuer or subject, the length of each field (besides country)
is examined. The information is used by different machine-
learning algorithms to extract the underlying pattern of a CA.
For example, VeriSign and GeoTrust provide only the country
of the issuer, not state or city. Several self-signed certificates,
however, fill in every optional field. Similarly, some optional
sub-fields may be omitted by certain CAs. Finally, for the
country of issuer or subject, we recorded whether it is located
in the US. Country codes can serve as important additional
information for the classification, as the rates of malicious
websites in different countries vary significantly [25], [26].

C. Other Required Fields

Features: Cryptographic algorithms, CertVersion,
len(CertSerial).

The first feature in this group consists of the cryptographic
algorithm and hash function that are used for generating the
signature of the certificate. We consider this feature as an
important indicator for insecure certificates, as MD5 is still
among the candidate hash functions. This may also reveal
conventions for certificates issued by a specific CA. Certificate
version indicates the structure of the certificate and implies
level of cryptographic strength, since later certificate versions
have the choice of stronger algorithms. Extensions also vary
across versions.

We also use the length of the certificate serial number as
a candidate indicator of the pattern for each CA. While the
actual serial numbers are assigned randomly the length of the
number rarely changes.

D. Certificate Extensions

Features:Extension count, existence of common extensions
and whether they are critical, other extension count.

The certificate extensions can serve as an important in-
dicator of a fraudulent certificate (e.g. the Flame malware
certificate) or an insecure certificate (e.g. self-signed certifi-
cates by Plesk). For the optional certificate extensions, we
first count the total number of extensions. We then check on
whether each of the 12 most frequently used extensions is
defined in the certificate. Although none of these extensions

is required for an X.509 certificate, important information
may be embedded by the CAs. This information includes
the identity of the issuer and subject, constraints and policies
on the usage of public keys, and Certificate Revocation List
(CRL). There is also a feature that indicates whether the
certificate is an Extended Validation (EV) certificate, implying
a greater investment in certificate issuance. In addition tothe
existence of an extension, we also examine whether each of
the extensions has been labeled as ‘critical’ by the issuer.

Here is a list of common extensions:authorityKeyIden-
tifier, subjectKeyIdentifier, keyUsage, certificatePolicies, sub-
jectAltName, issuerAltName, subjectDirectoryAttributes, bas-
icConstraints, isExtendedValidation, extendedKeyUsage, crlD-
istributionPoints, freshestCRL, authorityInfoAccess.

Additionally, we conduct another count on the number of
extensions not in the list above.

V. EXPERIMENTAL DESIGN

A. Data Collection

Our data collection began Dec. 2012 and continues. It uses
PlanetLab [27] and initiates connections with servers from
three continents. We also have servers in Eastern and Pacific
time zones in the United States. Our data collection of non-
phishing certificates began in December 2012. Our script has
been downloading a list of the top 1 million websites daily
from Alexa [28] since that time. On occasion for institutional
reason collection was interrupted. Thus there are a few days
with no data.

We connected to each targeted website via TCP port 443.
A certificate was downloaded when an HTTPS connection
request was successfully established, and when the certificate
was different from the previous observation. For the purpose of
choosing a representative ‘non-phishing’ category, we choose
the certificates that were downloaded from the top 100,000
websites for classifier training and testing, as described in
Section VI.

We also maintain a constantly updated database of con-
firmed phishing and phishing-related certificates. Our script
checks with PhishTank [29] every six hours for the latest active
phishing list, as phishing pages usually have short lifetimes.
While phishing is normally linked with web pages rather than
domains, we discovered that an increasing number of phishing
pages reside in websites with HTTPS enabled. In addition to
the HTTPS URLs that were listed, we attempted to connect
to all websites associated with the PhishTank list including
those with plain HTTP URLs listed. We then initiated a TCP
connection to port 443, and downloaded any response that
resulted in a certificate. This data collection began in Oct.
2013.

Once a certificate is downloaded from a website, it is parsed
locally into a set of values according to the standard X.509
certificate fields. The 42 features are then calculated from the
values of the required and optional fields. The instances are
then saved in an ARFF format data file for further analysis.
ARFF is the data format of Weka [30]. During the data
collection, we have recorded 95,490 instances in the ‘phishing’



category with an extremely large non-phishing category — 1.1
million unique certificates. To avoid possible negative effect
of an imbalanced dataset, we have taken anunder-sampling
approach [31] to randomly select instances from the ‘non-
phishing’ category. We ended up with 113,156 non-phishing
instances used in the classification from the top 100,000
websites. These websites include the most frequently targeted
(i.e., Paypal, Bank of America) and also follows common
research practices for this area.

B. Machine-Learning Algorithms

In this subsection, we provide a brief overview of the
machine-learning algorithms we used for classification.

To the best of our knowledge, there is no classification
algorithm that performs universally better than other algo-
rithms for all datasets. We therefore tested several well-known
classification algorithms. We did this using the machine-
learning tool Weka [30]. We ranked the algorithms based on
their overall performance. In this section, we describe these
algorithms with the best performance.

C4.5 (Weka implementation: J48) is a basic decision-tree
algorithm. Before adding a node (feature) to the decision tree,
the algorithm calculates theinformation gainfor all features
according to its entropy. It then creates a single decision
based on the feature with the highest value. Then the feature
selection is iterated on the remaining features. It divideson
the feature with the highest value. One advantage of C4.5
over its predecessor ID3 is the reduction ofoverfitting. The
algorithm goes through the decision tree once it is constructed
and replaces unnecessary branches of the decision tree with
leaf nodes. This process is known aspruning.

Different from C4.5, Random Forest adds randomness to
the generation of decision trees. Instead of relying on one
single decision tree to cover the entire dataset and features,
this approach selects features and training data randomly from
the given sets and constructs a series of decision trees based on
these randomly selected inputs. The output of Random Forest
is then calculated by the outputs of the contained decision
trees.

Naive Bayes Tree is a hybrid algorithm that combines the
strengths of decision trees and Naive Bayes classification.
The algorithm builds a tree-like structure with a Naive Bayes
classifier on every leaf node. Based on the comparison of the
current node’sutility versus the utility for splitting the current
node, the algorithm can decide whether a leaf node (Naive
Bayes classifier) or an intermediate node (decision-tree node)
is needed for the model. With Naive Bayes the path through
the decision tree does not determine but rather influences the
classification. The final classification will be a result of the
Bayesian function at the leaf.

Simple Logistic Regression is a regression analysis. It rep-
resents the underlying connections between the set of features
and the categories using one logistic function per category.

Decision Table is another useful algorithm that starts with
a search on the subset of features to find those with the best

performance. Based on the selection of features, a number of
rules are developed for the classification of the new instances.

K-Nearest Neighbors (Weka implementation: iBK) is an
instance-based algorithm. For each unknown instance, its
category is determined by a majority vote of the K training
instances that are closest to that instance (based on the fea-
tures). This algorithm is simpler than the other algorithmsin
terms of model building but requires loading the entire dataset
when making each prediction. Based on theCross Validation
Parameter Selection, our model calculates three neighboring
instances to generate the predicted class (K=3).

C. Evaluation Methods

In order to evaluate the average performance of our classifi-
cations, we applied10-fold cross validationfor each algorithm
in our experiment. Specifically, this approach partitions the
entire dataset into 10 subsets of equal size. A subset is
randomly chosen for validation, while the remaining nine
subsets are used to build the machine-learning model. The
process then repeats nine more times in which each subset is
used for validation once.

Precision and recall are two important metrics that are
commonly used to evaluate the classification performance of
a particular category. Precision is the percentage of instances
classified into a category that have been correctly classified.
That is, if there are a large number of classification into a given
category but many of them should not have been that category,
then that model has low precision for the measured category.
The formula to calculate precision is shown in Equation 1.

Precision =
TP

TP + FP
(1)

In contrast recall measures how many instances have been
missed, rather than how many have been incorrectly added,
for a given category. The formula to calculate recall is shown
in Equation 2.

Recall =
TP

TP + FN
(2)

The overall performance of the trained classifiers is evalu-
ated byKappa Statistic. The measure gives a numeric value
between 0 (equivalent to a random classification) and 1 (per-
fect classification). The formula to calculate Kappa Statistic is
listed in Equation 3.

Kappa =
Prob(Classifier)− Prob(Random)

1− Prob(Random)
(3)

For the ‘phishing’ category, we have also examined theRe-
ceiver Operating Characteristic (ROC)curve. The ROC curve
can provide a direct illustration of how the classifier performs.
The curve is plotted with a series of ‘thresholds’, indicating
different combinations of True Positive Rate (TPR) and False
Positive Rate (FPR). The TPR and FPR are calculated as
shown in Equations 4 and 5, respectively.

TPR =
TP

TP + FN
(4)



FPR =
FP

FP + TN
(5)

The two metrics are ranked and plotted in the form of (TPR,
FPR) on the coordinate system, respectively. An ideal classifier
can achieve the highest TPR with a small FPR, indicating
high correct classification rates with low false alarm rates.
From the chart, an ideal ROC curve should be close to the
upper-left corner of the coordinate system. We have plotted
the ROC curve of our best performing classifier in Figure 2,
while performances of all classifiers are provided using the
Area Under Curve (AUC). This (numeric) metric also gives
a direct view of the performance similar to the actual ROC
curve. The maximum value of AUC is 1, indicating an ROC
curve that is close to the upper-left corner and therefore covers
the entire 1x1 coordinate system.

VI. RESULTS

In this section we provide more details on the classification
performance of our trained models. As stated in the previous
section, we utilized 10-fold cross validation to obtain an
averaged measurement of the performance. Six algorithms
were utilized to train the classification models: C4.5, Random
Forest, K-Nearest Neighbors, Naive Bayes Tree, Decision
Table, and Simple Logistic regression. We also examined
Average Probability, which is anensemblelearning approach
that simply calculates the classification based on the average
probabilities of the six models.

A. Classification Accuracy

Table I demonstrates the classification performance, both
overall and by category. As the primary goal of this paper
is phishing detection, we ranked the algorithms based on the
precision of the ‘phishing’ category. According to the table,
Random Forest, K-Nearest Neighbors (iBK), and C4.5 (J48)
all achieved great precision and recall rates, above 92.8%.The
classification model built using Random Forest even achieved
95.5% precision with 93.7% recall for the phishing category,
demonstrating a high accuracy not only among the websites
that were classified as ‘phishing’, but also among websites that
were actually phishing. When considering multiple algorithms,
Average Probability reached a recall of 94.1% in the phishing
category, with a precision of 93.5%. The precision and recall
of the phishing category are comparable to the performance a
large number of phishing detection proposals [10], [11], [15],
[16].

An important strength of our proposed approach is that our
classification models do not sacrifice precision or recall for the
‘non-phishing’ category for ‘phishing’. The rates in the ‘non-
phishing’ instances are of the same importance as the perfor-
mance of the phishing category. The false positive and negative
rates of the ‘non-phishing’ category would affect the false
alarm rate of the phishing detection system, which directly
links to user experience of the system. False positives create
warning fatigue which in turn results in users ignoring alerts.
Warning fatigue is a relevant (and well established) phenomena

across the field of information security. Even those users aware
of privacy and security risks generally click through EULAs
and privacy policies to accomplish their desired tasks. [32]
An in depth look at users’ ability and SSL warnings found
that in most cases, expert users were not different than non-
experts in that most users were willing to ignore SSL warnings
to get to a desired website. [33] Users may be experiencing
warning fatigue and do not want to be bothered to read pop-
up notifications if the notifications interrupt their desired task,
such as app installation. [34] Even more explicit or graphical
warnings have mixed results. [35] Warning habituation is
also a problem that results in users ignoring alerts [36]. For
Random Forest, the precision achieved 94.7%, and the recall
rate was 96.3%. For Average Probability, the precision of the
‘non-phishing’ category was 95.1% with a recall of 94.6%.
High precision and recall rates in both categories is also a
direct indicator of the high quality of feature selection.

Classifications using Naive Bayes Tree, Decision Table, and
Simple Logistic also yielded good precision and recall rates.
NBTree demonstrated stable performance in terms of precision
and recall for both categories, which were comparable to
the other tree-based algorithms (C4.5 and Random Forest).
Decision Table performed better in the detection of phishing,
with 92.6% of precision and 85% of recall. Although the
performance of Simple Logistic was not as good as other
approaches, we still listed this as a candidate algorithm, since
this algorithm generates models that are smaller and easy
to understand. In addition, since miscategorized certificates
varied across different algorithms, we observed that therewere
several certificates miscategorized by other algorithms but
were correctly categorized by Simple Logistic. In Section VII
we will discuss the miscategorizations of our top two perform-
ing approaches: Random Forest and Average Probability.

Finally, the Kappa Statistic column shows that the rates of
correct classifications were high for every algorithm. Random
Forest and K-Nearest Neighbors both achieved 0.9, which is an
excellent classification result. Additionally, as described in the
previous section, the area under the ROC curve is an important
indicator of the classification performance. The AUC values
for the first five algorithms were all above 0.94, while Simple
Logistic also achieved 86%. The AUC of Average Probability
has reached 0.99. As an example, we plotted the ROC curve of
the Average Probability algorithm, shown in Figure 2. Close
to the ideal case, the curve has a very short distance to the
upper left corner of the coordinate system.

B. Effectiveness

As it is an important aspect of the performance evaluation,
we tested the effectiveness of the system by recording the time
for classification. This consists of the time required to parse
a certificate string into machine-learning features, and then to
conduct classification based on the preferred algorithm as well
as Random Forest, and finally to make a decision based on the
six algorithms. Should the end user choose to be warned based
on Average Probability, the decision-making process will need



TABLE I
CLASSIFICATION PERFORMANCE

Algorithm
Phishing Non-Phishing Kappa

AUCPrecision Recall Precision Recall Statistic
Random Forest 95.5 93.7 94.7 96.3 0.9 0.98
K-Nearest Neighbors 95.3 93.6 94.7 96.1 0.9 0.97
C4.5 93 93.2 93 94.3 0.87 0.97
Decision Table 92.6 85 88.2 94.2 0.8 0.94
Naive Bayes Tree 90.9 90.5 92 92.4 0.83 0.96
Simple Logistic 73.7 87.3 87.3 73.8 0.6 0.86
Average Probability 93.6 94.2 95.1 94.6 0.89 0.99

TABLE II
EFFECTIVENESSEVALUATION OF CERTIFICATE CLASSIFICATION

Component Average Time Per Certificate (ms)
Feature Extractor 2.28

Random Forest (first) 1614
Random Forest (remaining) 0.006

Average Probability 2721

to wait until the slowest algorithm, K-Nearest Neighbors,
finishes.

The classification executor and decision maker were written
in JavaScript to ensure better integration with the web browser.
We implemented the feature extractor in Python, as it could
parse the certificate strings more efficiently than JavaScript.
We then partitioned a total of 208,600 certificates into 10
groups of equal size, and recorded average time for each
component.

One interesting observation in our analysis of classification
executor is the initialization time of this component was
significantly longer than subsequent classifications in tree-
based algorithms (e.g. Random Forest). Therefore, it would
take a similar amount of time for classifying only one certifi-
cate compared to a group of 20,860 certificates. We attribute
the improvement on the average classification time to the
automatic optimization by the Just-In-Time (JIT) compiler
on the ‘if-else’ statements in JavaScript. This phenomenon,
however, did not occur in other algorithms (e.g. K-Nearest
Neighbors) with fewer conditional statements. In Table II we
summarized the time to classify the first certificate and the
average time for classifying each of the remaining certificates
in the group.

As shown in Table II, feature extraction can be completed
very quickly, within 3 milliseconds. Average Probability re-
quired three seconds to complete, caused by the calculationof
the distances between nearest neighbors for each certificate
instance in the slowest algorithm. Our implementation of
Random Forest required an initialization time of 1.6 sec-
onds, while the subsequent certificates would take only 2.2
milliseconds per certificate including the feature extractor.
(See Section VI-B for more details.) for details) According
to the analysis of correctness and effectiveness, the end user
may choose from Random Forest, which runs more quickly
and with a superior precision, or Average Probability that
runs relatively slower but may be more accurate in phishing
detection.
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Fig. 2. ROC Curve for the Average Probability Classifier

VII. D ISCUSSION

In this section we further analyze the results of classifi-
cation, potential attacks against our proposed certificate-based
classification, and offer some additional observations from our
data analysis.

We demonstrate the classification results of Random Forest
and Average Probability using a waterfall chart in Figure 3.
The horizontal lines in the chart indicate the categories. The
first row in this chart is the actual category of the certificates,
and the lower lines indicate the classification results of our best
performed classification algorithms, respectively. The chart
uses different colors to denote the actual category of the
instances so classification result is visible in each of the clas-
sification categories (non-phishing=green, phishing=dark blue,
but is readable in black and white). A vertical line indicates
an agreement in classification between two algorithms (i.e.the
instances are classified as the same category); while an oblique
line (from the left half to the right half, and vice versa) shows
a disagreement between two algorithms.

We can observe that Random Forest and Average Probability
are complementary in terms of misclassifications. Overall,the
True Positive Rate of Average Probability in the phishing cat-
egory is slightly higher than that of Random Forest (94.2% vs.
93.7%). However, Random Forest has a lower False Positive
Rate (3.7% vs. 5.5%).



Fig. 3. Classification Results based on Random Forest and Average Proba-
bility

A. Limitation

A simple attack to circumvent our certificate-based
phishing-detection system is disabling all HTTPS connections
from the web server. However, rejecting all inbound HTTPS
connections can be a significant indicator when sensitive
information is supposed to be entered on the website. This
case can be detected by an analysis of page DOMs, especially
the password fields in HTML.

There are more complex and typical adversarial learning
attacks: evasion and poisoning.

In evasion, the adversary attempt to modify the values of
several certificate fields in order to obtain a certificate that
looks benign by our classifiers. To increase the success rate, he
can obtain a valid certificate from a highly reputable CA thatis
trusted mutually by the major web browsers, or even purchase
an extended validation certificate for his website. This method
involves substantial financial investment and can fail if the
reputable CA performs regular checks on the page content
and/or domain matches.

Such an increase in cost would possibly defeat fast-flux
attacks, as these would no longer be financially viable. Instead
of relying on a reputable CA, the adversary may create his
own self-signed certificate, which can be captured by multiple
machine learning features (e.g. Match(subject.CN,issuer.CN)).

Further, features such as ‘hash algorithm’ are potential
indicators for hash-collision attacks, which rely on MD5
(although forged certificates are not the focus of this paper).

Lastly, we expect our set of features to evolve over time,
based on new threats. Our certificate-based approach can
also be combined with other indicators to achieve optimal
detection.

Poisoning is the second typical type of adversarial learning
attack. The attacker can intentionally make some phishing
certificates and applies them to the top-visited sites, but
without performing the attack right away on these websites.
This requires long-term commitment with an uncertainty of not
being detected during the poisoning period. Popular websites
are likely to identify these certificates (e.g. Google).

Generally, our results indicate that the more popular a
website is, the easier it is to distinguish from a phishing
website. Notice that the economics of phishing require very
large-scale spam campaigns, so that less popular websites are
less profitable to phish due to size of the target population.

One interesting observation we made was that, besides
pages on the same website, certificates may be reused across
multiple domains. To make the performance evaluation of our
approach comparable to other local anti-phishing approaches
discussed in related work, we allowed duplicate entries of
certificate strings in our dataset if they belonged to the same
category. We have reported separately on the current statusof
banking certificate in another paper [37].

VIII. C ONCLUSION

We have shown that automated analysis of TLS certificates
using machine learning is a promising approach for identifying
phishing websites. We conclude that it is feasible to classify
websites into ‘phishing’ and ‘non-phishing’ categories with
reasonable accuracy using the set of classifiers we have devel-
oped. Public key certificate classification has an advantagein
that it is less dependent on a central server than blacklisting.

This approach changes the economics of phishing. Sensitive
information should only be entered if a connection is protected
by SSL/TLS. The presence or absence of such protection can
easily be detected. Should phishing be limited to subvertedbut
legitimate websites, this changes the economics of phishing.
Legitimate websites have the incentive and the competence
to recover quickly. (Previous work has shown that recovery
time is the most critical variable in preventing epidemics
of subversions [38].) Fastflux would be more difficult. It
is exactly this kind of attack that is most effective against
blacklists. Thus this approach is complementary to blacklisting
and other techniques, such as those examining temporal signals
or performing content-based analysis of websites.

Our findings motivate several avenues for further investi-
gation. While this TLS-based identification is more resilient
to manipulation than URLs and page content, the features we
have selected are subject to different degrees of control by
attackers. We would like to investigate how phishing attacks
would evolve to such defenses. First, we are currently studying
the rate of change in values for various certificate fields. We
see this as a potential feature for phishing detection, as policies
of renewing certificates can vary significantly among websites.
Well-known websites usually present a more stable pattern of
certificate renewal compared to phishing websites. We would
also like to expand the classifier to include the top million
websites.

Additional testing of the classifiers against different certifi-
cate compilations is an important next step. We are seeking
to identify an international partner with a larger certificate
compilation, one that focuses on markets with dominant lan-
guages other than English. We are also seeking a multina-
tional partner for real-time classification into the categories of
legitimate work-related certificates and all other certificates.
This approach has the potential to prevent entering workplace



credentials into any non-employer website, thus preventing
spear-phishing. These experiment could provide verification
of the efficacy of our certificate-based phishing detection
approach in the business world. For this reason, our classifiers
will be public upon publication of these initial results.
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