
Soundcomber: A Stealthy and Context-Aware

Sound Trojan for Smartphones

Roman Schlegel

City University of Hong Kong

sschlegel2@student.cityu.edu.hk

Kehuan Zhang, Xiaoyong Zhou, Mehool Intwala, Apu Kapadia, XiaoFeng Wang

Indiana University Bloomington

{kehzhang, zhou, mintwala, kapadia, xw7}@indiana.edu

Abstract

We explore the threat of smartphone malware with ac-

cess to on-board sensors, which opens new avenues for il-

licit collection of private information. While existing work

shows that such “sensory malware” can convey raw sen-

sor data (e.g., video and audio) to a remote server, these

approaches lack stealthiness, incur significant communica-

tion and computation overhead during data transmission

and processing, and can easily be defeated by existing pro-

tections like denying installation of applications with ac-

cess to both sensitive sensors and the network. We present

Soundcomber, a Trojan with few and innocuous permis-

sions, that can extract a small amount of targeted private

information from the audio sensor of the phone. Using

targeted profiles for context-aware analysis, Soundcomber

intelligently “pulls out” sensitive data such as credit card

and PIN numbers from both tone- and speech-based inter-

action with phone menu systems. Soundcomber performs

efficient, stealthy local extraction, thereby greatly reducing

the communication cost for delivering stolen data. Sound-

comber automatically infers the destination phone number

by analyzing audio, circumvents known security defenses,

and conveys information remotely without direct network

access. We also design and implement a defensive architec-

ture that foils Soundcomber, identify new covert channels

specific to smartphones, and provide a video demonstration

of Soundcomber.

1 Introduction

Today’s mobile handsets are becoming full-fledged com-

puting platforms capable of supporting complete operating

systems, complicated applications and software develop-

ment toolkits. With this technological revolution, however,

come new security and privacy challenges. Like their PC

counterparts, smartphones are no exception to the plague

of data-stealing malware and recently there have been a

number of incidents1,2 and proofs-of-concept,3,4 illustrat-

ing that smartphone malware is indeed a credible threat.

The presence of unique sensors on these mobile platforms

opens even more avenues for illicit collection of private

user data. For example, a Trojan with access to the video

camera [15] or microphone can tape a user’s phone con-

versations and send the recording to other parties, which

enables remote surveillance. Industry and academia have

taken serious note of such threats, which we refer to as sen-

sory malware. Newly released smartphone OSes all offer

security protections: as an example, Google’s Android sep-

arates different applications with Java virtual machines to

mediate the interactions among them according to security

policies. Anti-virus companies are moving their products

to the mobile platform, e.g., McAfee’s VirusScan Mobile5

and Symantec’s Norton Smartphone Security.6 New secu-

rity services [5] have been proposed to control installing un-

trusted software with dangerous security configurations, for

example, applications that request both access to the micro-

phone and an Internet connection, and to control communi-

cation between applications [10].

Such protections seem to be reasonably effective against

phone-borne malware, whose complexity and stealthiness

1http://www.sophos.com/blogs/gc/g/2010/07/29/

android-malware-steals-info-million-phone-owners/
2http://news.cnet.com/8301-27080_3-20013222-245.

html
3http://www.bbc.co.uk/news/technology-10912376
4http://www.reuters.com/article/

idUSTRE66T52O20100730
5http://us.mcafee.com/root/product.asp?

productid=mobile_info
6http://www.symantec.com/norton/

smartphone-security

http://www.sophos.com/blogs/gc/g/2010/07/29/android-malware-steals-info-million-phone-owners/
http://www.sophos.com/blogs/gc/g/2010/07/29/android-malware-steals-info-million-phone-owners/
http://news.cnet.com/8301-27080_3-20013222-245.html
http://news.cnet.com/8301-27080_3-20013222-245.html
http://www.bbc.co.uk/news/technology-10912376
http://www.reuters.com/article/idUSTRE66T52O20100730
http://www.reuters.com/article/idUSTRE66T52O20100730
http://us.mcafee.com/root/product.asp?productid=mobile_info
http://us.mcafee.com/root/product.asp?productid=mobile_info
http://www.symantec.com/norton/smartphone-security
http://www.symantec.com/norton/smartphone-security


are constrained by its smartphone host, a platform charac-

terized by its simpler design and weaker computing capabil-

ity compared with a desktop system. As an example, con-

sider the permission of microphone access, which has to be

granted to applications such as a voice dialer. The threat

of a malware with such a permission can be mitigated by

those existing approaches. Specifically, a behavior-based

malware detector [3] can pick up anomalous behavior such

as regular CPU-intensive operations and heavy use of band-

width, which could be associated with activities like per-

forming an in-depth speech recognition and transmitting a

large amount of phone recordings (typically, on the order of

100 KB per minute) to the Internet. A reference monitor

could deny installation of applications asking for both mi-

crophone access and other dangerous permissions: particu-

larly, access to the numbers being called, which allows mal-

ware to target a small set of calls involving high-value infor-

mation, and Internet connections. As a result, the malware

is left without any apparent way to communicate stolen in-

formation to its master.

Contrary to this intuition, we show that sophisticated

malware can be built over the smartphone platform to evade

such defenses. This is possible because of two new observa-

tions. First, the context of a phone conversation can be pre-

dicted and fingerprinted under some circumstances, which

enables an efficient analysis to extract a small amount of

high-value information from the conversation. A prominent

example is one’s interaction with an automatic phone menu

service, also known as interactive voice response (IVR) sys-

tem, which is routinely provided by customer service de-

partments of different organizations (e.g., credit-card com-

panies). The detailed steps of such an interaction were

found to be easily recognizable in our research, from a small

set of features of the conversation and related side-channel

information. As a result, sensitive data such as credit-card

numbers can be accurately identified at a small cost. Sec-

ond, like other computing systems, smartphones contain a

set of built-in covert channels, which can be leveraged to

transmit a small amount of sensitive information without

direct access to the Internet. To demonstrate that this threat

is realistic, we present an example of such malware in this

paper, called Soundcomber , a sound Trojan that masquer-

ades as an application with the legitimate need to use the

microphone, such as a voice dialer or a voice memo appli-

cation. Soundcomber is capable of stealing a user’s credit-

card number from her interactions with credit-card compa-

nies’ IVR. This is achieved through a suite of techniques

for hotline detection, profile-based extraction, lightweight

speech/tone recognition and covert-channel communica-

tion. The hotline detection component analyzes the initial

part of a call to determine whether an IVR is called, and

if so, which IVR (based on IVR fingerprinting). Based on

the detected IVR, Soundcomber uses a preset profile (state

machine) for that IVR and intelligently analyzes a phone

menu to determine the interaction path, i.e., the sequence

of menu selections in terms of the digits a user enters, that

leads to the situation where the user has to reveal her credit

card number.

Although performing speech recognition over the whole

recording is computationally intensive, Soundcomber only

needs to work on a small portion of it, according to the pro-

file, to identify the digits a user speaks or types to the IVR,

which turns out to be lightweight. Of particular interest here

is the analysis of typing: the tones produced thereby are ac-

tually not part of the phone conversation. We demonstrate,

however, that they can be picked up by the microphone

when the tones are played back to the user. While this is not

surprising, it turns out to be technically challenging to ex-

tract information from this audio side channel, because the

tones are drowned out by background noise in the record-

ings — the microphone picks up a faint “echo” of the dig-

its pressed. Using tailored signal processing techniques we

show that it is feasible to isolate these tones and recover the

actual digits pressed with high accuracy. We note that even

though we use credit card numbers as a proof of concept,

the same technique can be applied to target other valuable

information such as shorter PIN numbers, social security

numbers (the last four digits are often requested as part of

authentication), passphrases such as mother’s maiden name,

and so on. Thus, even though profile-based processing of

text transcripts can be done offline, profile-based process-

ing on the smartphone itself (a) reduces the amount of re-

sources needed to process the entire speech recording to

generate the transcript, (b) reduces the amount of data sent

by the smartphonewhichwould be noticeable if all recorded

phone calls are uploaded and (c) relieves the burden of the

malware master to process potentially lengthy transcripts

from a large number of sources (in Section 4 we provide

some conservative estimates to show such costs can be pro-

hibitive).

Because Soundcomber is doing the processing and ex-

traction of relevant data locally on the phone, the large

amount of phone call recordings can be distilled into a very

small amount of valuable data. If the whole recording were

transmitted to the master, the data required to be transmitted

would be several orders of magnitude larger. Further com-

pounding this communication woe is the fact that the mal-

ware cannot access the number being called and therefore

would have to record and transmit every single phone con-

versation if the processing was not done locally. The com-

munication/computation overhead incurred thereby would

significantly reduce the stealthiness of the malware. Given

the much simpler task of transmitting merely 16 digits of

a credit-card number, Soundcomber can easily make the

communication less observable: for example, this can hap-

pen through a legitimate network-facing application, such



as a browser. In the presence of a colluding application

with a networking permission, which we found is easy to

find or install (see Sections 4.1 and 4.2), Soundcomber can

pass the digits to it through a covert channel. This even

evades the protection based on mediating the overt commu-

nication between applications, as described in a recent pro-

posal [10]. Our research discovers multiple covert channels

on the smartphone platform, including file locks, vibration

and screen settings. Leveraging these channels to transmit

the digits is found to be completely practical.

Finally, since no existing defenses work on Sound-

comber, we designed and implemented a defensive architec-

ture that foils the malware. In essence, all audio recording

and phone call requests are mediated by a reference moni-

tor, which can disable (blank out) the recording when nec-

essary. The decision on when to turn off the switch is made

according to the privacy policies that forbid audio recording

for a set of user-specified phone numbers, such as those of

credit-card companies. We evaluate our prototype defensive

architecture and show that it can prevent our demonstrated

attacks with minimal processing overhead.

We now summarize our major contributions:

• Targeted, context-aware information discovery from

sound recordings. We demonstrate that smartphone-

based malware can easily be made to be aware of

the context of a phone conversation, which allows it

to selectively collect high-value information. This is

achieved through techniques we developed to profile

the interactions with a phone menu, and recover dig-

its either through a side-channel in a mobile phone

or by recognizing speech. We also show how only

limited permissions are needed and how Soundcomber

can determine the destination number of the phone call

through IVR fingerprinting.

• Stealthy data transmission. We studied various chan-

nels on the smartphone platform that can be used

to bypass existing security controls, including data

transmission via a legitimate network-facing applica-

tion, which has not been mediated by the existing

approaches, and different types of covert channels.

We also discovered several new channels, such as vi-

bration/volume settings, and demonstrated that covert

channel information leaks are completely realistic on

smartphones.

• Implementation and evaluation. We implemented

Soundcomber on an Android phone and evaluated

our technique using realistic phone conversation data.

Our study shows that an individual’s credit-card num-

ber can be reliably identified and stealthily disclosed.

Therefore, the threat of such an attack is real.

• Defensive architecture. We discuss security measures

that could be used to mitigate this threat, and in par-

ticular, we designed and implemented a defensive ar-

chitecture that prevents any application from recording

audio to certain phone numbers specified by privacy

policies.

2 Overview

Assumptions. Soundcomber is designed to work under

limited privileges. Specifically, we assume the Trojan is

granted access to the microphone, as required by its le-

gitimate functionality, but is denied network connections

and other risky permissions. Simultaneous access to mi-

crophone and networking is well known to be a dangerous

combination of permissions that should not be bestowed to

untrusted code [5], as a user’s speech is not supposed to be

recorded and transmitted to untrusted recipients. The mal-

ware is also denied other risky permissions such as inter-

cepting phone calls. It can acquire other information nec-

essary for its mission, e.g., the phone number being called,

through analyzing phone recordings. Avoiding dangerous

permission combinations can be achieved during the instal-

lation of an application: as an example, Android explicitly

displays the permissions requested by an application and

asks the user whether to grant these permissions (although

the options are limited to install/do not install). Alterna-

tively, a system like Kirin [5] could be used to disallow

dangerous combinations.

Architectural overview. The main goal of Soundcomber is

to extract a small amount of high-value private data from

phone conversations and transmit it to a malicious party. It

also aims to do so in a stealthy manner, by evading detec-

tion and not degrading the user experience, and under pos-

sibly restricted configurations as described above. These

goals are served by a design illustrated in Figure 1, which

includes two key components: a context-aware data collec-

tor (collector for short) and a data transmitter (transmit-

ter). The collector monitors the phone state and makes a

short recording of the calls it deems interesting based on

a profile database. The recording is then analyzed based

on the specific profile to extract user data that is passed to

the transmitter, which manages to send it to the malware’s

master. Since Soundcomber does not have direct access to

the Internet, this transmission needs to be done through a

second application, either a legitimate network-facing ap-

plication like the browser or a colluding program with the

networking permission. To deliver the data to the latter, the

transmitter needs to use covert channels when overt com-

munication is monitored by a protection mechanism [10].

In the following we explain how the Trojan can be used to

steal a phone user’s credit-card number.

Detailed credit-card theft scenario. Armed with access



microphone

Soundcomber

collection

trans-

mission

Internet

collection /
communication

overt /
covert
channel

transmission

Deliverer
app

app

microphone

collection

audio

audio
recording

processing

profile
database

data
extraction

trans-
mission

Figure 1. The left drawing shows the architecture of Soundcomber with the collection and commu­

nication part on the left, connected through an overt or covert channel to a second application on

the right which can access the Internet and forward extracted data. The right drawing focuses on
the collection part of Soundcomber. Audio is recorded using the microphone, and processed, and

high­value data is extracted and forwarded to the communication part.

to the microphone, Soundcomber records a person’s call

and performs an audio analysis of the recording. The pro-

cessing of the audio (i.e. recognizing speech and touch

tones) and data extraction (i.e. extracting relevant infor-

mation from transcribed speech/tones) is profile-driven so

that speech/audio processing is targeted at specific types

of information. As a proof of concept, we demonstrate

Soundcomber’s effectiveness at extracting credit-card num-

bers from spoken as well as touch-tone based audio sam-

ples. In this case, the profile contains a state machine of

a credit-card company’s IVR system, i.e., the automated

menu-driven systems usually encounteredwhen calling cus-

tomer service, thereby allowing Soundcomber to under-

stand the semantics of various parts of the audio recording

through a very lightweight analysis and target specific re-

gions of the audio for extracting the speaker’s credit card

number. An example of the profile is the sequence of the

digits the user enters for selecting different menu options,

which can be built through analyzing the IVR menu of a

specific credit-card company. This sequence can be eas-

ily recognized by Soundcomber’s collector component from

the tones of individual digits. Such a profile-driven analy-

sis provides a general approach to target specific regions

of speech samples and extract precise and relevant infor-

mation for improved analysis and minimal transmission re-

quirements of such data. More specifically, the identified re-

gions go through a tone/speech recognition, which is tuned

to identifying digits and therefore very efficient. Once the

credit card digits have been extracted, it is sent by the trans-

mitter component to the adversary in one of several ways. In

the case of a restricted security configuration, the transmit-

ter has several available options: it can leverage an existing

application such as the web browser by directly invoking it

to load a URL to a malicious website, thereby transmitting

sensitive information with relative ease; alternatively, it can

use one of several covert channels on the Android platform,

when a paired malicious application with network access is

present. In Section 4.2.1, we discuss several ways to ensure

such a paired application is installed.

In the follow-up sections, we elaborate our designs of

the collector and the transmitter, and our implementation

of Soundcomber on an Android phone. We also show that

the threat posed by the malware can be mitigated using

a context-sensitive reference monitor, which blocks audio

recording when certain numbers are being called.

Video Demonstration. We have uploaded a video demon-

stration of Soundcomber that shows the entire process from

calling a real credit-card company, to the (fake) credit

card number being extracted through audio analysis, trans-

ferred to a paired Trojan application via a covert chan-

nel, and then to the (pretend) Malware master’s server (lo-

cated in another country). We point the reader to our

video demo at http://www.youtube.com/watch?

v=_wDhzLuyR68.

3 Context-Aware Information Collection

The collector is designed to monitor the phone state to

identify and record phone conversations of interest, then de-

code the recording to perform a lightweight analysis, which

uses tone/speech recognition and the profile of the call to

locate and extract high-value information. This process is

illustrated in the right part in Figure 1. Here we elaborate

its design and implementation.

3.1 Audio recording

We now describe how Soundcomber can acquire an au-

dio recording of a phone call alongwith the number that was

http://www.youtube.com/watch?v=_wDhzLuyR68
http://www.youtube.com/watch?v=_wDhzLuyR68


dialed, which is later used for profile-based data extraction.

When to record. The first step to extract high-value infor-

mation such as credit-card numbers, is to record the user’s

phone conversation. To this end, Soundcomber monitors

the phone state and starts recording whenever the user ini-

tiates a phone call. This step is performed in a completely

unobtrusive and stealthy fashion — Soundcomber does not

even have to be running prior to the phone conversation, as

it will be started automatically by the Android OS.

Recording in the background. Once Soundcomber is

invoked when a phone conversation is initiated, it starts

recording the audio input from the microphone. This

recording is done in the background and no indication is

given to alert the user that the call is being recorded. Sound-

comber stops recording when the call has ended or after a

pre-defined maximum recording length. Since one’s sensi-

tive information, such as credit-card number, social security

number, etc., is often required at the beginning of a phone

conversation with an IVR, the recording can be short, typi-

cally a few minutes.

Determining the number called. After a call has ended,

Soundcomber needs to decide whether the recording de-

serves analysis. Soundcomber makes this decision based

on profiles specific to the number called. For example, if a

credit-card customer service line is detected, Soundcomber

knows that the recording could include a credit card num-

ber and therefore starts working on it using the profile of the

service. While Android offers a special permission, inter-

cept outgoing phone calls, that allows to easily determine

the called number, this is deemed an unusually high privi-

lege with significant security implications. A less obtrusive

path to retrieve the called phone number is by going through

a call list and extracting the number of the most recent call.

The permission needed to access the call list is less sen-

sitive and is shown as read contact data (it is conceivable

that voice dialer and memo apps would benefit from access

to the contact data). Nevertheless, to reduce the permis-

sions necessary for Soundcomber we decided to determine

the number called without any additional permissions by us-

ing the data already collected by Soundcomber, namely the

audio recording.

By analyzing the beginning of a recording, Sound-

comber checks whether it matches an internal database of

service hotlines and if that is the case, the recording is pro-

cessed further. Specifically, the analysis consists of look-

ing at the first segment in the recording, which for a ser-

vice hotline is typically a greeting or introduction. Sound-

comber will run speech recognition on the first segment and

compare the extracted words to an internal database of key-

words for different hotlines. If a match is detected, the

recording is processed further as described in Section 3.2,

using the profile of the detected hotline. To pick the defin-

ing keywords for each hotline, we wrote a program which

analyzes several samples of hotlines and determines the rel-

evant, non-overlapping keywords for each hotline. As an

example, the hotline of HSBC in America greets a user with

“Thank you for calling HSBC, the world’s local bank.” Our

tool determined that the keywords which were recognized

consistently and which did not overlap with other hotlines

were for, calling, local and banking. In fact, banking is not

contained in the recording, but the speech recognition con-

sistently returned banking as one of the keywords (in fact

“misrecognizing” bank), and as such it became a relevant

and reliable keyword.

The advantage of analyzing the beginning of a recording

is that the permissions necessary for Soundcomber can be

kept to a minimum. In return, Soundcomber has to spend

more time analyzing recordings to detect service hotlines.

Using either of the other two methods above (intercept call

or go through the call list) would be less expensive in terms

of computation required and would also be more accurate,

but would require Soundcomber to declare an additional

permission (intercept outgoing phone calls or read contact

data) potentially looking suspicious. In summary, with lim-

ited permissions to 1) read phone state and 2) record au-

dio, Soundcomber can record outgoing phone calls. Work-

ing under these permissions, Soundcomber does not know

the number of an ongoing call, and thus needs to make and

analyze a short (e.g., < 1 minute) recording of every call

and then discard the recording if no corresponding profile is

found.

3.2 Audio processing

We now describe the second stage of the collection pro-

cess. If a profile for the dialed number is found, Sound-

comber proceeds with audio processing (shown in Fig-

ure 2) to first decode the sound file, then determineswhether

speech or tone recognition is needed using lightweight anal-

ysis, and finally proceeds with either speech or tone extrac-

tion aided with profiles for targeting sensitive information.

We discuss profiling in detail in Section 3.3.

3.2.1 Tone recognition

The traditional analog telephone system uses tones to al-

low users to navigate the IVRs frequently used by customer

service lines. Specifically, today’s systems use dual-tone

multi-frequency (DTMF) [6] to transmit keypad presses on

a phone or mobile phone. For each possible key (0 to 9, *,

#) a combination of two tones is sent in-band through the

voice channel (see Table 1). To send a “4”, for example, the

phone will generate two sine tones, one at 770 Hz and one

at 1209 Hz and send them through the voice channel.

Technically, mobile phones do not send actual tones but

instead use a signaling channel to inform the mobile phone



audio

processing decoding

profile
database

tone recognition

speech recognition

Figure 2. This figure shows the audio pro­
cessing step of Soundcomber, with the de­

coding of the audio and tone and speech

recognition before the output is forwarded to
the data extraction (not visible).

Table 1. DTMF tones
1209 Hz 1336 Hz 1477 Hz

697 Hz 1 2 3

770 Hz 4 5 6

852 Hz 7 8 9

941 Hz * 0 #

network of the pressed key. Nevertheless, a mobile phone

usually plays the corresponding tones locally to give aural

feedback to the user. We discovered that such tones are

leaked through a side-channel and can be used to identify

the phone user’s inputs. Specifically, although the tone is

played back only in the earpiece of the phone, the sound is

conducted through the inside of the phone and picked up

(faintly) by the microphone. Our experiments confirmed

that the tones can still be detected accurately, precisely be-

cause they occupy specific frequencies, and can be reliably

identified even with low signal-to-noise ratios.

For Soundcomber we used Goertzel’s algorithm [12], an

algorithm often applied for recognizingDTMF tones in dig-

ital signal processing [11]. Goertzel’s algorithm is more ac-

curate and also more efficient than a general FFT when used

to detect DTMF tones. This helps cover Soundcomber’s

analysis operations by using less processing power. Nev-

ertheless, using an unmodified Goertzel still did not pro-

vide the necessary accuracy. The tone energy levels are

much lower than what is normally the case because they are

recorded through a side channel. To increase noise rejec-

tion, we developed adaptive and frequency-dependent de-

tection thresholds as described below.

Using the Goertzel algorithm, Soundcomber calculates

the spectrum for all relevant frequencies fi. The algorithm

processes individual frames consisting of N consecutive

samples and outputs i spectral coefficients for each frame.

Consider an audio recording containing n frames with N
samples each. We compute the average spectral power for

each frequency i over the whole recording as follows:

γi =
1

n

n−1
∑

k=0

GN (x(kN, (k + 1)N − 1)),

where GN is the Goertzel algorithm using N samples (cor-

responding to one frame). For each frequency we set a

threshold γthr,i = β ·γi to detect in which frames frequency

i has a peak, with β constant across all i. Applying differ-

ent thresholds for different frequencies removes detection

errors caused by frequency-dependent noise in the record-

ings.

Soundcomber processes the audio recording frame by

frame and for each frame and for each frequency compares

the spectral energy of a particular frequency j, γj , with the

frequency-specific threshold γthr,j : if γj > γthr,j the fre-

quency j is assumed to be present in the current frame. In

our prototype we used a value of β = 2 so the thresholds

used were twice the average signal energy per frequency.

Those thresholds were found to be effective at identifying

tone signals (see Section 6).

After detecting the peaks, Soundcomber checks each

frame to see whether the peaks exceed the thresholds. Ide-

ally, if a DTMF tone is present in the recording, exactly two

frequencies are detected and the corresponding tone can be

determined. Noise in the recording can lead to the detection

of more than two frequencies. When this happens, all de-

tected frequencies except the two with the highest peaks are

eliminated. In the following, we present a visual example

of this detection process. In the example, three peaks are

detected (corresponding to the 1’s in the peak vector). The

lowest peak is eliminated to yield two peaks, which corre-

spond to the DTMF tone for “4”.

γ1

?

> γthr,1

.

.

.

γi

?

> γthr,i

9

>

>

>

=

>

>

>

;

→
peak

detection
→

0

B

B

B

B

B

@

1
0
.
.
.

1
1

1

C

C

C

C

C

A

→

peak

elimination
→

0

B

B

B

B

B

@

1
0
.
.
.

1
0

1

C

C

C

C

C

A

→
tone

detection
→ “4”

Moreover, a tone is deemed to be identified only after the

combination of its two frequencies has been found consis-

tently in multiple frames in a row, typically at least 2 frames.

3.2.2 Speech recognition

To perform the speech recognition part for Soundcomberwe

first looked at the available options. The Android platform

contains speech recognition functionality using a Google

service, but the functionality is not usable for Soundcomber



audio signal

am
p
li
tu
d
e
[V

]

time timetime

Goertzel’s

algorithm

threshold

threshold

852Hz 1477Hz

|X
(k

)|
2

|X
(k

)|
2

Figure 3. The audio signal shown in the left part is analyzed using Goertzel’s algorithm that generates

the two spectra on the right (for two different frequencies). Each frequency has a custom thresh­
old (dotted line). In this example, the spectral energy of both frequencies is above the threshold

simultaneously for several frames in a row, indicating that the digit “9” was pressed.

for several reasons. First, Google’s speech processing can-

not detect tones for tone recognition. Second, it can only

do speech recognition interactively by prompting the user,

and cannot be run in the background on an already recorded

audio file.7 In addition, the voice application offloads the

processing to Google by uploading the recorded audio over

the Internet, which is easily noticeable and thus not suited

for Soundcomber.

We instead ported PocketSphinx developed by the

Carnegie Mellon University8 to Android using the Native

Development Kit (NDK) and wrote an intermediate layer

between PocketSphinx and Soundcomber and integrated

both parts using the Java Native Interface (JNI).

Soundcomber segments the audio (described below) be-

fore processing the individual segments in PocketSphinx

to get the transcribed text. Segmentation of audio allows

Soundcomber to work only on some portions of the audio,

which reduces the overhead of speech recognition, thereby

making Soundcomber stealthier. Currently, Soundcomber

focuses on stealing information that can be transmitted as

digits (e.g., credit card numbers, social security number,

personal identification number, and so on) and we there-

fore adopted a language model that covers spoken digits for

extracting information. The hotline detection described in

Section 3.1 on the other hand uses a small language model

for general spoken text.

Segmentation. Speech recognition with PocketSphinx is

still fairly expensive in terms of processing time. To re-

7http://www.4feets.com/2009/04/

speech-recognition-in-android-sdk-15/
8http://www.speech.cs.cmu.edu/pocketsphinx/

duce this overhead to a minimum, Soundcomber does not

work on the whole audio recording directly: instead, it pre-

processes the recording to identify the segments that con-

tain speech. Soundcomber first analyzes the signal power

of the recording by calculating the mean power of individ-

ual frames containing ns samples. For each frame k, we
compute:

δk =
1

ns

ns
∑

j=0

x(j)2

The average power over the whole recording with nf

frames is then computed as:

δRecording =
1

nf

nf
∑

k=0

δk

By comparing the signal power δk of individual frames

with a threshold δthr = α · δRecording for a certain α, we
can locate the audio segments with sufficiently high sig-

nal power levels, which indicates the presence of relevant

sounds:

if

{

δk ≤ δthr silence

δk > δthr sound

Like tone recognition, we also check the presence of

multiple consecutive frames with signal power levels above

the threshold, which collectively form a segment. This sim-

ple approach is both efficient and effective, as shown in our

experimental study. Assuming for example that only 20%

of a recording contains speech (as could be the case when

navigating an IVR), then 60 seconds of audio would take

http://www.4feets.com/2009/04/speech-recognition-in-android-sdk-15/
http://www.4feets.com/2009/04/speech-recognition-in-android-sdk-15/
http://www.speech.cs.cmu.edu/pocketsphinx/


about 21.4 seconds of processing time if speech recognition

is run on the whole recording, but only 5.2 seconds if the

audio is segmented first and only the segments with actual

speech are run through the speech recognition.

3.3 Targeted data extraction using profiles

The objective of Soundcomber is to extract a small

amount of high-value data from an audio recording. This

cannot be achieved without understanding the semantics of

the recorded audio. Although an effective semantic analysis

in general can be hard, our research shows that it can cer-

tainly be done for some specific scenarios, particularly in-

teractions with IVRs. Such an analysis is based upon a pre-

determined profile, which indicates to Soundcomber how a

sequence of user behaviors (e.g., the digits entered or spo-

ken) can move an IVR to the state where sensitive user data

is input. The profile also allows Soundcomber to skip over

the segments that do not involve useful information, thereby

reducing overhead.

In their general form, profiles model a context and de-

scribe the location of high-value information under such a

context. An example of the context can be audio features of

some keywords, like “enter your PIN”, which is supposed

to be followed by one’s password. Again, our research fo-

cuses on IVRs, whose interactions with a phone user can be

modeled as simple state machines. The sequence of such

transitions, as observed from the user’s digit inputs recov-

ered from an audio recording, points to the position where

credit-card numbers or other important data is entered.

We first describe the profile for a phonemenu system and

then discuss how to apply the profiling idea more generally.

3.3.1 Profiling phone menus

Many businesses and organizations offer hotline services

through IVR systems. An IVR includes a phone menu,

which guides the caller step by step to the service she is

seeking. During such a process, confidential user informa-

tion, such as credit-card number, social security number,

PIN, etc., is input by the user for authentication and other

purposes. As an example, the phone menu of Chase bank

lets a customer first press “2” on the main menu, then “2”

on the submenu and finally “1” before asking a customer

to enter their 16-digit credit-card number. Therefore, a pro-

file for this menu needs to include a sequence (‘2’, ‘2’, ‘1’,

CC number), indicating the expected input to reach a state

in the IVR with high-value information. Following this se-

quence, Soundcomber can easily locate the segment that in-

cludes a credit-card number. The same idea can be applied

to model the interactions with other IVR systems. The ad-

versary can analyze an IVR phone menu offline, identify all

the sequences that lead to the desired user input, and then

assemble these sequences into a finite state machine, which

serves as the profile. Figure 4 shows the state machine

corresponding to the IVR described above. In our current

proof-of-concept implementation, Soundcomber stores lin-

ear sequences and detects credit numbers after the sequence

“2, 2, 1” for example. A profile can be expressed as {d1,

d2, d3, {target}}, where the di are the expected sequential

inputs and {target} the information which will be extracted.

We leave a full implementation with general finite state ma-

chines to future work.

To use such a profile, our prototype of Soundcomber first

runs tone recognition on the recorded audio to recover the

digits and lightweight speech recognition on the identified

segments to extract spoken digits. The output of tone and

speech recognition is combined into a transcript, which is

used to explore the state machine and identify the high-

value information in the transcript. If at any point a state is

reached which does not lead to high-value information, the

analysis is stopped and the recording discarded. A further

optimization is to run only tone recognition first and use the

digits to explore the state machine. Once a state is reached

where high-value data is available, the speech recognition

is run on the relevant segments.

3.3.2 General profiles

Apart from the finite state machine-based profiles, the con-

text of phone conversations can also be fingerprinted in

other, more generic ways, as described below. In-depth

studies and implementation of these approaches are left to

future research.

Speech signatures: Soundcomber could take advantage of

the sound samples included in the incoming audio such as

the voice prompt to “speak or type your credit card number

now”. If this phrase is detected, then the outgoing audio

immediately after this signature is likely to be a spoken or

typed credit card number.

Sequence detection. Since a sequence of 12–16 digits is

quite likely a credit card number, profiles can also instruct

Soundcomber to scan for long numeric sequences. While

this method will work in some cases, we found that a se-

mantic understanding of the speech transcript aided in pick-

ing out specific, targeted pieces of information. Neverthe-

less, sophisticated combinations of different techniques can

improve the accuracy of detection.

Speech characteristics. Profiles could specify certain

sound features that are typically exhibited by spoken credit

card numbers. For example, Soundcomber could perform

a high-level analysis of speech to hone in on specific fea-

tures unique to spoken credit card numbers (e.g., rhythmic

or monotonous speech). Once these features are observed,

Soundcomber can apply targeted speech extraction on the



Initial Menu
Options

Prompt for

Prompt for

Account Number

other
other input
input

1

1

22

Enter

Enter

Enter
Account#

Acquire PIN
PIN Sensitive Information

Acquired

Loan & Credit Card
Credit Card Information Credit Card#

CC#

Termination

Figure 4. A model of a service line with two different paths leading to high­value information. The

branches indicate the input required by the user to take the corresponding transition. For this IVR,
the expected input sequence for reaching high­value information would either be “1” or “2, 2, 1”.

identified segments.

4 Stealthy Data Transmission

Once the sensitive information has been obtained via the

collection phase, it must be transmitted to the malware’s

master stealthily. This is where the advantage of Sound-

comber of processing recorded audio and extracting high-

value information locally becomes apparent. If the mal-

ware master were to do processing centrally, Soundcomber

would have to transmit approximately 94KB of data for

each minute of recorded audio. This would not only make

it more difficult for Soundcomber to operate stealthily, but

would also place a much larger burden on the infrastructure

of the malware master. Assuming for example anywhere be-

tween 100, 000 and 1, 000, 000 infected smartphones9, this

could easily generate in the order of several tens of giga-

bytes to a terabyte of data per day10 which would need to be

processed centrally by the malware master. By extracting

the relevant information locally, Soundcomber significantly

reduces the data necessary to be transmitted to the malware

master. For one call, a one-minute recording would require

94KB to be transmitted to the malware master if no local

processing is done, but if a credit card number is extracted

locally then at most 16 bytes have to be transmitted, a reduc-

tion by a factor of 6000. Transmitting such a small amount

of data is much easier done stealthily and the remaining

work for the malware master becomes minimal.

As already mentioned, we assume Soundcomber does

not have permission to use the network to circumvent tools

9Android malware steals info from one million phone owners—

http://www.sophos.com/blogs/gc/g/2010/07/29/

android-malware-steals-info-million-phone-owners/.
10Assuming between 100, 000 and 1, 000, 000 infected smartphones,

on average 5 calls a day, where Soundcomber records the first minute of

each call.

such as Kirin [5]. In fact, a recent paper [10] further pro-

poses to mediate the explicit communication between two

untrusted applications, by restricting access from one appli-

cation to another based on installation-time permissions and

run-time state. We present two methods that will circum-

vent such prevention and detection mechanisms. In the first

method, Soundcomber uses a legitimate, existing applica-

tion with network access (such as the browser) to transmit

the sensitive information. In the second method, Sound-

comber uses a paired Trojan application with network ac-

cess and communicates with it through a covert channel.

Both methods circumvent known, existing defenses.

4.1 Leveraging third­party applications

The permission mechanism in Android only restricts

individual applications, not the relations between appli-

cations. This allows Soundcomber to communicate with

its master through a legitimate network-facing applica-

tion, such as a web browser. Specifically, the malware

can request the browser to open an URL in the form

http://target?number=N with N the credit card

number to pass it to a target web site. A weakness of this ap-

proach is that the transmission is more noticeable to the user

because the browser will be brought to the foreground. Such

an activity, however, could be easily “explained away”. For

example, an application which displays ads in its interface

can pretend to open a browser window for a more detailed

version of an ad, first transmitting the valuable information

before immediately redirecting to the actual ad. Or a user

could be tricked into believing that a new browser window

is opend caused by a stray click that leads to a standard sites

such as Google or CNN. Nevertheless, we consider this ap-

proach to be more intrusive than a paired Trojan application,

which once installed, performs all such communication in

the background.

http://www.sophos.com/blogs/gc/g/2010/07/29/android-malware-steals-info-million-phone-owners/
http://www.sophos.com/blogs/gc/g/2010/07/29/android-malware-steals-info-million-phone-owners/


4.2 Covert channels with paired Trojans

Next we consider communication between two Trojan

applications. In this case, Soundcomber is paired with a

Deliverer Trojan with network access, which transmits the

extracted sensitive information (typically only a few dozen

bytes) to the malware master over the Internet. Under the

current Android security model, the Soundcomber and De-

liverer applications could communicate through overt chan-

nels, however such communication will be limited with re-

cently proposed defenses [10]. To be as stealthy as possible

and to circumvent such defenses, covert channels on the An-

droid platform can be used instead to covertly transfer the

extracted information from Soundcomber to Deliverer and

thereby to the malware’s master. This paper thus also iden-

tifies and evaluates new covert channels of communication

on smartphone platforms and demonstrates that communi-

cation through such channels is realistic for sensory mal-

ware.

4.2.1 Installation of paired Trojan applications

To leverage a second installed application (Deliverer) for

transmitting the extracted information to the Internet, we

have to convince the user to install such an application. We

assume that Soundcomber itself is packaged as a Trojan into

an application that is attractive enough to get users to install

it. Once the user has installed Soundcomber itself, we have

to make sure that the Deliverer application is also installed.

We have explored a number of options and believe that they

will trick enough users into installing the Deliverer applica-

tion.

Since an Android application can launch the installation

of another application, we investigated two possibilities:

Pop-up ad. The Deliverer application could implement a

cover functionality and hide the transmission functionality

as a Trojan part. When the user first executes the cover func-

tionality of Soundcomber, a pop-up ad is displayed, adver-

tising the Deliverer application (respectively its cover func-

tion) as another fun, hip, cool, useful application. When

clicking on the ad, Soundcomber will tell Android to open a

web browser with the webpage of the Deliverer application

or even directly initiate the download in the web browser.

Packaged app. An Android application can include cus-

tom resources, e.g., the installation file for the Deliverer ap-

plication can be included in the Soundcomber app. When

Soundcomber is started for the first time, it launches the

installation of the included application package for the De-

liverer app. Users might thus be tricked into confirming the

installation, or be gently persuaded by informing them that

a “necessary helper application” has to be installed before

Soundcomber (respectively its cover function) can be used.

4.2.2 Covert channels on the smartphone

We discovered several covert channels on the Android plat-

form, some of which are specific to Android, and others

that are specific to Android’s underlying Linux system. The

channels have different properties in terms of stealthiness,

transmission rate and reliability (i.e., error rate). For Sound-

comber even low bit-rate covert channels are sufficient to

transmit the high-value information, which is typically very

small. Here we describe a few covert channels we found

on Android that make use of vibration settings, volume set-

tings, the handset screen, and file locks.

Vibration Settings. The covert channel based on vibration

settings is specific to Android. Any application can change

the vibration settings and every time this setting is changed

the system sends a notification to interested applications.

Our prototype exploits these notifications as a communica-

tion channel. Soundcomber codes the sensitive data into a

sequence of vibration settings and then applies these set-

tings sequentially. Deliverer listens to the setting changes

and decodes them back into the data.

While changing the settings might indirectly be noticed

by the user if a call or message arrives during transmission,

saving and restoring original settings after the transmission

as well as transmitting at opportune times (e.g., at night) can

mitigate this problem.

In our experiments we achieved a bandwidth of 87 bits

per second through this channel (see Section 6). Higher

bandwidth was prone to overload the Android system with

notifications. Nevertheless, 87 bits seems sufficient for

transmitting the small amount of data Soundcomber col-

lects: for example, sending the 16 digits of a credit-card

number (54 bits) takes less than 1 second. Other advantages

of using this channel include that no permissions are needed

to access it and it does not leave any traces. We thus sug-

gest that isolation mechanisms like the one proposed in [10]

for smartphones must also restrict covert communication

through event notifications, otherwise they will not provide

complete mediation of communication channels.

Volume settings The volume-setting covert channel is sim-

ilar to the vibration-setting channel. The difference is that

changes in the volume setting are not automatically broad-

casted, which means that two applications communicating

through this channel have to set and check the volume alter-

natively, requiring tighter synchronization in time (i.e., the

receiving application has to be certain that it only checks

after next setting has been set by the sending application).

On the other hand, because the volume is a setting be-

tween 0 and 7, the channel allows Soundcomber to transmit

3 bits per iteration. Generally speaking, the sending appli-

cation will set the volume at times ts = k · ti ms within

each second, for k = 0, . . . , (1000ms
ti

− 1) while the re-

ceiving application will read the volume setting at times



tr = k ·ti+(ti/2). Initial experiments indicated that setting

and getting the volume settings takes on the order of 7ms, so

we set the iteration length to ti = 20 ms and thus achieved

150 bps. Specifically, the sender will set the volume at times

0ms, 20ms, 40ms, and so forth, while the receiver will read

the volume at times 10ms, 30ms, 40ms, and so on. At this

speed, however, here is a small chance that if Android is

doing some “housekeeping” during the transmission that ei-

ther the sender or receiver will miss a window and get out

of sync. No permission is needed to exploit this channel.

Screen Another channel specific to Android, which might

well be specific to mobile phones, is the mobile phone

screen. This channel is particularly interesting because it

turns out to be an invisible visible channel. Mobile phones

typically conserve power by switching off the screen if the

user is not using it for a certain period of time. The screen

can be re-awakened through a press of a button or touching

the screen.

Android allows individual applications to influence the

screen. For example, applications that need to prevent the

screen from dimming out (e.g., a car GPS application) can

request a wake-lock from the operating system. Acquisition

of the wake-lock immediately turns on the screen if it was

dark, and the screen will only be switched off again when

the lock is released. The change of the screen states (on or

off) triggers a notification mechanism, which Android uses

to inform applications of the screen setting. These notifica-

tions are used by Soundcomber to create a covert channel

with its colluding application. More specifically, Sound-

comber acquires and releases a wake-lock at regular inter-

vals, which transmits to Deliverer one bit of information for

each iteration through the notifications issued by the sys-

tem.

At first glance, this channel is not stealthy: the alteration

of screen states seems to be too conspicuous to go unno-

ticed. We found, however, that on the Android G1 phone, if

the wake-lock was held for a short enough time, a latency in

the electronics of the device would prevent the screen from

actually turning on, but the notification that the screen had

been turned on was still sent. The channel is thus again

invisible to the user.

Compared with the vibration and volume settings

channels, exploiting this channel needs the permission

WAKE_LOCK, which is explained by Android as prevent

phone from sleeping. Also, the bandwidth of the channel

is fairly low, less than 5.29 bits per second. Nevertheless,

it offers a practical way to deliver a small amount of data

within a short period of time: for example, sending a 16-

digit credit card number (54 bits) takes around 11 seconds.

File Locks Covert channels using file locks have been

known since 1989 [9] and are far from specific to the An-

droid platform. We show, however, that this channel also

works well (we characterize the bit rate) on a smartphone

platform and can be used to practically leak sensitive data

to an unauthorized party. The basic idea is that two applica-

tions can stealthily exchange information through compet-

ing for a file lock.

Specifically, if Soundcomber wants to signal a 1 to De-

liverer, it requests a file lock on a file shared between them.

Deliverer also tries to lock that file: if this attempt fails,

‘1’ is sent, otherwise, ‘0’ is sent. Communication through

this channel can even evade the stringent Bell-LaPadula

(BLP) [2] model: a high process (the process with access

to microphone) can read-lock the shared file, while the low

process (Deliverer) tries to get a write-lock on it. This does

not violate the “no-reads-up” and “no-writes-down” poli-

cies of the BLP.

Our implementation of the file-locking channel on An-

droid employs an efficient synchronization mechanism.

Soundcomber and Deliverer each maintain m signaling

files, S1 · · ·Sm and one data file. The signaling files are or-

ganized in a round-robin fashion. Before transmitting data,

both parties lock their own signaling files (S1 to Sm/2 for

Soundcomber, Sm/2+1 to Sm for Deliverer) and Deliverer

also blocks itself by attempting to lock S1, a file already

locked by Soundcomber. Soundcomber then sets/releases

the lock on the data file according to the first bit it wants

to transmit, and after that, wakes up Deliverer by releas-

ing its lock on S1 and blocks itself by waiting for the lock

on Sm/2+1, the first of the signaling files already held by

Deliverer. Deliverer then tests the data file to acquire the

bit, removes its lock on Sm/2+1 to invoke Soundcomber

and waits for the next bit by attempting to lock S2. By ro-

tating through the m signaling files, the two processes can

synchronize themselves during the data transmission, which

helps achieve a bandwidth of more than 685 bps. Develop-

ing the idea of rotating file locks became necessary because

experiments showed that Android does not honor the se-

quence of file locking requests if the requests are made very

closely spaced.

5 Defense Architecture

The current Android platform performs only static per-

mission checks, without taking context information into ac-

count. For example, once an application is granted the

permission to record the microphone, it can always make

use of the permission, independent of the phone state (e.g.,

idle/call in progress) or the number currently called. This

threat cannot be mitigated by the reference monitor archi-

tectures proposed in prior research [10]. Even though such

work considers context while regulating inter-application

communication, the collection of one type of sensor data

based on other context information is not yet supported.

In our research, we built the first defense architecture to



counter this threat. Our approach is not meant to be a re-

placement for the defense mechanism proposed by prior re-

search. Instead, we intend to develop a new technique that

can be incorporated into existing mechanisms. To this end,

we implement a prototype to add a context-sensitive refer-

ence monitor to control the AudioFlinger service, the An-

droid kernel service in charge of media data. This approach

prevents audio data from leaking to untrusted applications

during a sensitive call.

Our reference monitor is designed to block all applica-

tions from accessing the audio data when a sensitive call is

in progress. It consists of two components:

• Reference Service: The reference service determines

whether the phone enters or leaves a sensitive state by

monitoring call activity. When a sensitive call is made

the reference service alerts the controller. In our pro-

totype the reference service is implemented in the RIL,

the “radio interface layer” which mediates access from

the Android OS to the baseband hardware. Any at-

tempt to make a call, no matter how it is made, has

to pass through the RIL. The reference service inter-

cepts attempts to make outgoing calls and checks the

called number. Whenever a call to a sensitive number

is made, it notifies the controller.

• Controller: The controller embedded in the Au-

dioFlinger service mediates access to audio data. It

operates in one of the following two modes:

– Exclusive Mode: In exclusive mode, the con-

troller blanks all audio data being delivered to

applications requesting audio data. Instead of the

actual audio data, these applications will simply

record silence.

– Non-Exclusive Mode: In non-exclusivemode, the

controller does not intervene and the audio data

is delivered normally to applications.

When the reference service detects that a sensitive call is

being made, it alerts the controller. On receiving the alert

from the reference service, the controller enters exclusive

mode and blanks all audio data being delivered to applica-

tions. Once the sensitive call has ended, the reference ser-

vice again notifies the controller, which reverts back to non-

exclusive mode. Our reference service can be used by exist-

ing reference monitor architectures to intercept phone calls,

and use the controller to enable/disable recording from the

microphone. Although we focus on audio data, the princi-

ple of adding context information to protect Android kernel

services can be extended to protect other sensor data. We

believe that existing architectures can use a similar tech-

nique to defend against sensory malware.

With the controller being a part of the AudioFlinger, we

assume that the integrity of the Android OS itself is guaran-

teed. If the OS has been compromised by malware then the

malware already has access to all data and can circumvent

the controller. With the integrity intact, on the other hand,

the controller can guarantee that no application can record

audio while a sensitive call is in progress. Since the refer-

ence service is on the critical path to making a phone call,

we measure the delay added by the service in Section 6 and

show that it is negligible.

6 Evaluation

In this section, we report on our evaluation of Sound-

comber. Our experimental study was aimed at under-

standing Soundcomber’s capabilities to detect whether a

hotline number was called, extract high-value data from

a phone conversation using profiles, recover digits from

tones/speech and transmit them through covert channels.

We also wanted to determine the performance of these op-

erations and the overhead they incurred.

6.1 Experiment settings

We carefully designed a set of experiments which stud-

ied hotline detection, tone/speech recognition, profile-based

data discovery and different covert channels. Speech

recordings from three participants were used.11 Each par-

ticipant was asked to speak or dial menu choices or credit

card numbers, just as they normally would during a call to a

bank service line. These credit card numbers were obtained

from an online automatic generator.12 After each phone

conversation, Soundcomber analyzed the recordings, identi-

fied and delivered the credit-card numbers, which was mon-

itored and measured to evaluate the effectiveness and per-

formance of its operations. All the experiments were per-

formed on an Android development phone with Firmware

version 1.6 and kernel version 2.6.29-00479-g3c7df37. The

phone contained a 1GB SD card and was connected to the

Internet through Wi-Fi. We elaborate on the settings for in-

dividual experiments below.

Service hotline detection. When detecting whether the

user called a service hotline it is important to minimize

false positives. Too many false positives means that Sound-

comber spends time analyzing phone calls that do not con-

tain relevant sensitive information such as credit card num-

bers. We tested Soundcomber with 5 different service hot-

lines of financial institutions. For each hotline we recorded

4 samples and then extracted keywords using speech recog-

nition to build a database of hotlines. The accuracy of the

11Indiana University IRB Approved Protocol ID: 1001000932.
12http://mediakey.dk/˜cc/wp-dyn/

credit-card-number-generator.php

http://mediakey.dk/~cc/wp-dyn/credit-card-number-generator.php
http://mediakey.dk/~cc/wp-dyn/credit-card-number-generator.php


detection was then tested using another set of 4 recordings

each per hotline. To determine the false positive rate, we

created 20 simulated normal phone calls by formatting nor-

mal speech from a corpus13 to look like a phone conversa-

tion. We then ran the hotline detection on those simulated

calls.

Tone recognition. To test the accuracy and performance

of tone recognition, we recorded 20 samples of phone con-

versations with a phone line that we controlled.14 The out-

comes of the recognition were compared with the real digits

the participant entered to determine the accuracy. We also

measured the performance. The Goertzel’s algorithm we

implemented (see Section 3.2.1) utilized a frame length of

N = 205 samples, corresponding to 25.625ms. Our exper-
iment required 5 frames in a row to minimize false positives

when detecting DTMF tones, and used a detection threshold

parameter β = 2 (see Section 3.2.1).

Speech recognition. The performance of speech recog-

nition was tested by analyzing 60 recordings of simulated

phone calls (20 samples from three subjects each) where a

user spoke a credit card number by pronouncing individual

digits. Again, the accuracy can be determined by compar-

ing the recognized numbers with the spoken numbers and

the performance was measured using the getrusage()

function call.

Profile-based data discovery. To test the effectiveness of

using profiles to discover high-value data, we created two

profiles describing service hotlines. Participants then sim-

ulated 20 calls following a specific script for each of the

hotlines and tested whether Soundcomber correctly recog-

nized and extracted the high-value information. We also let

the participants deviate from a given script to understand

whether Soundcomber could correctly identify the opera-

tions that did not lead to high-value information.

Covert channel study. The most important performance

measurement for covert channels is bandwidth in bits per

second, which determines how long it takes to covertly

transmit the extracted high-value information from Sound-

comber to the Deliverer application. To measure the band-

width of each channel, we ran a pair of applications to ex-

change 440-bit (55-byte)messages through the channel. All

channels were parameterized to guarantee zero bit errors,

sometimes at the cost of achievable bandwidth.

Reference monitor. To measure the performance impact

of the reference monitor we first made the relevant modifi-

cations to the AudioFlinger service and then compiled the

modified Android OS and installed it onto an Android de-

13VoxForge—http://www.voxforge.org/
14Our demo shows a real phone call to a real credit card company, but

we hesitated to have our subjects call real credit card company hotlines

repeatedly. We thus had subjects follow a script for a simulated phone call.

veloper phone (HTC Dream). We then made test calls to

numbers marked as sensitive to measure effectiveness and

performance.

6.2 Experiment results

6.2.1 Effectiveness

Service hotline detection. When testing the hotline detec-

tion on 20 recordings of actual hotlines, Soundcomber cor-

rectly identified 55% of the hotlines (among 5 different hot-

lines), detected 5% as the wrong hotline and missed 40%
of hotline calls. Running the detection on 20 recordings of

simulated normal conversations resulted in 100% being cor-

rectly identified as normal conversations, i.e., the false pos-

itive rate of the hotline detection is 0%. If a malware master

includes detection information for the 5 largest financial in-

stitutions, the accuracy of the hotline detection is sufficient

for Soundcomber to detect more than half of all the calls

to those hotlines on average and analyze them, while not

analyzing any calls containing a normal conversation. We

deem this performance as sufficient for a malware master to

collect a large number of credit card numbers.

Tone/speech recognition. Table 2 presents the accuracy

of tone/speech recognition Soundcomber achieved. For

speech recognition, Soundcomber identified 55% of the

credit card numbers we tested without any error, and 20%

with either one digit wrong or one missing digit. Note

that single digit errors are often easy to correct: given the

known digit pattern of credit card numbers and the use of

the Luhn algorithm to remove invalid sequences, the brute-

force search space is only 16 possible credit card numbers,

or, when knowing the bank name, 12. The attacker could

try charging each of these 12 numbers to see which one is

valid. Tone recognition was found to be even more suc-

cessful: Soundcomber could recover 85% of all credit card

numbers correctly, and incur one-digit errors for the remain-

ing 15%.

Detection by anti-virus applications. We tested two anti-

virus applications for the Android platform: VirusGuard

from SMobile Systems15 and AntiVirus from Droid Secu-

rity.16 Neither of them reported Soundcomber as malware,

even when it was recording audio and uploading data to the

malware master.

Reference monitor. To test the performance overhead of

both reference service and controller, we implemented them

on an Android Developer Phone (HTC Dream). Since the

reference monitor is on the critical path it is effective at

blocking recording of audio from sensitive calls. We tested

15http://www.smobilesystems.com/
16http://www.droidsecurity.com/

http://www.voxforge.org/
http://www.smobilesystems.com/
http://www.droidsecurity.com/


Table 2. Accuracy of speech and tone recognition
No error 1 error 2 error > 2 error

Speech 55% 12.5% 10% 5%

Tone 85% 5% 0 0

1 missing 2 missing > 2 missing

Speech 7.5% 7.5% 2.5%

Tone 10% 0 0

this functionality and present the performance overhead be-

low.

6.2.2 Performance

Service hotline detection. As described earlier, Sound-

comber looks at the first segment of a recording to deter-

mine the hotline. In our experiments the first segment had

an average length of 6.1 seconds (σ = 3.9s) and recognition
of the hotline took on average 34.6 seconds (σ = 23.0s).
In general, hotline detection requires computation time of

around 6 times the length of the segment analyzed.

Tone/speech recognition. The performance of tone/speech

recognition is given in table 3, including time, power and

memory. The recordings with speech inputs had an average

length of 19.7 seconds, with a standard deviation of 4.485

seconds. It took Soundcomber 6.749 seconds on average to

analyze and extract relevant menu choices and credit card

numbers. However, due to other delays caused by I/O oper-

ation and scheduling, it took Soundcomber a total of 7.168

seconds on average from starting to output the final results.

The recordings with tone-based inputs were much longer,

45.3 seconds on average. Presumably, this was caused by

the extra time needed to switch between listening and tap-

ping numbers. However, Soundcomber turned out to be ef-

fective at processing such recordings. It located credit-card

numbers and extracted them within 5.524 seconds on av-

erage. The total time for such operations was found to be

7.694 seconds on average.

We ran PowerTutor17 to measure the power consump-

tion of Soundcomber. The average consumptions for an-

alyzing speech and tone data were 94 mW and 101 mW

respectively, which is higher than operations such as web

browsing (varying between 54 mW and 87 mW, depend-

ing on the content of a web page). This is understandable

because Soundcomber requires a number of computation-

intensive operations. However, such difference does not

seem to be significant. Also, Soundcomber could take

measures to make its power consumptions less conspicu-

ous, through distributing the analysis over a longer period

time as discussed in Section 7. The memory usage was

measured in our study by running the Android phone in

17http://powertutor.org/

debugging mode and using the Android developing plug-

in for Eclipse18 to read the heap size. Soundcomber took

less than 3MB memory, which is reasonable, given some

Android applications consume similar amounts of memory

(e.g., vRecorder, voicememo, calendar and alarm clock: 2.8

MB each, VoiceDialer: 3.0 MB), and others could use even

more (browser: 5.0 MB).

Covert channels. We also measured the bandwidths of dif-

ferent covert channels: the file-locking channel achieved

685 bps and the vibration channel transmitted data at a rate

of about 87 bps. These two channels can deliver a credit

card number in sub-seconds. The screen-setting channel

was found to be much slower at 5.29 bps. Nevertheless,

it was still able to transmit the 16 digits in 11 seconds. The

volume channel was found to be 150 bps. This research

shows that using covert-channels to leak sensitive informa-

tion is completely practical on smartphones.

Reference monitor. Since the reference service resides in

the RIL, it causes a certain delay when making a call. For

a sensitive call, the reference service makes an RPC call to

notify the controller, which on average causes a delay of

4.27ms. When a non-sensitive call is placed, no RPC call

is needed and the time spent in the reference service is just

0.09 ms. Both delays will not be perceptible by users in

practice.

The overhead of the controller of blanking audio when

in exclusive mode affects audio recording applications. We

ran an audio recorder software and measured the time spent

in the controller. On average only 0.85% of the time is spent

in the controller, showing that the overhead of the controller

is indeed minimal.

7 Discussion

7.1 Improvements to the attack

We believe that sensory malware can take the following

measures to improve its performance and stealthiness.

Stealthiness. To further reduce detectability, Soundcomber

can choose the right time to analyze audio recordings:

18http://developer.android.com/intl/fr/guide/

developing/eclipse-adt.html

http://powertutor.org/
http://developer.android.com/intl/fr/guide/developing/eclipse-adt.html
http://developer.android.com/intl/fr/guide/developing/eclipse-adt.html


Table 3. Performance of speech and tone recognition
Data length

(seconds)

CPU time only

(seconds)

Total time

(seconds)

Power

(mW)

Memory

(MB)
Mean Std Mean Std Mean Std

Speech 19.172 4.485 6.749 2.243 7.168 2.463 93.68 2.945

Tone 45.300 5.814 5.524 0.678 7.694 0.943 101.4 2.883

• Analysis at night: Soundcomber can defer processing

a recording to an opportune moment when heavy CPU

usage is less noticed, for example during the night or

during longer periods of inactivity.

• Analysis when user is not present: the Android plat-

form allows its applications to sense whether the user is

present or not. Tracking the usage allows Soundcomber

to find the right time to analyze recordings, so as to min-

imize the chance of being detected.

• Analysis when charging: prior research proposes to de-

tect malware by tracking the power usage of a phone [8].

To evade this type of detection, Soundcomber can work

on recordings only when the phone is charging and no

power consumption information is available.

• Throttle processing: Soundcomber could easily be

made to refrain from using up all CPU cycles, and in-

stead only steal a small fraction of CPU time to analyze

the recording. This makes detection of its presence even

harder.

Performance. A more technical optimization is using

fixed-point algorithms for DTMF detection. Current smart-

phones typically use ARM (Advanced RISC Machine) pro-

cessors, which often do not include floating-point units,

making floating-point operations expensive as they have to

be emulated. Using fixed-point algorithms should increase

DTMF detection significantly. We leave this exploration to

future work.

Hotline detection. The algorithm used to detect the ser-

vice hotline called can be improved. Brief experiments

with another algorithm [14] (used by Shazam19) to deter-

mine which hotline was called seemed to be more accurate

and efficient. We will study better detection techniques in

follow-up research.

7.2 Defenses

We demonstrate the serious risk that sensory Trojan mal-

ware with even limited privileges poses to users. Sensitive

information from a person’s phone calls can be extracted

stealthily and all known mechanisms are inadequate to stop

the attack. In addition to the defense architecture we built,

19http://www.shazam.com/

here we list some other measures that could be taken to mit-

igate this threat:

Tone playback settings. A simple defense against our

tone-based attack is to to mute local playback of tones

(available on some phones). While not normally selected

by users, selecting it would prevent the tone-based attack,

but not the speech-based attack.

Isolation. A simple defense would be to isolate the phone

application by disallowing simultaneous access to any re-

source used by the phone application from other applica-

tions in the background. Unfortunately, this would also

preclude legitimate applications such as call voice memo,

speech translator and others.

Finer-grained sensor access. Given the sensitive nature of

sensors such as the microphone and video camera, a more

fine-grained permission model should be considered. For

example, recording the microphone during a call could be

a separate permission. Time in general could be used to

regulate accesses (e.g., no recording during periods marked

as meetings in the calendar) or potentially even the place

(e.g., no recording at home).

Mediation of event management. Another problematic

area highlighted by our work is the use of the event system

as a covert channel. Android already has access control in

place for some events, but this should be revisited and tight-

ened, by monitoring and restricting (or having finer-grained

control over) event flows between applications.

Anomaly detection. Anomaly detection could identify

unauthorized uses of the microphone. Unfortunately, some

applications might legitimately need access to the micro-

phone even during phone calls, such as an application which

records all phone calls for archival.

Network monitoring. Monitoring the network for anoma-

lous traffic is unlikely to identify the Deliverer app because

of the small amount of information that is sent over the net-

work. This information can be included as an unnoticeable

overhead in addition to its normal communication with the

remote server (recall that the Deliverer app has legitimate

Internet access). Obfuscated communications (e.g., through

encryption) eliminate the possibility of detecting credit card

numbers being leaked over the network interface.

http://www.shazam.com/


8 Related Work

Using sensors such as the microphone [1] and video [15]

to capture secret information has been studied in prior re-

search. For example, Xu et al. [15] present a data collec-

tion technique using video cameras embedded in 3G smart-

phones. Their malware (also installed as a Trojan) stealthily

records video and transmits it using either email or MMS.

However, it does not automatically extract relevant infor-

mation from the video recording and only limited process-

ing of the captured data is done on the phone, informa-

tion extraction is offloaded to a colluding server, which is

not stealthy. In contrast, Soundcomber performs an effi-

cient data analysis locally and transmits much less informa-

tion (tens of bytes as opposed to video files). Also, with

Soundcomber the malware master is not bombarded with

numerous videos or data files from infected smartphones

that need processing. Soundcomber distributes the compu-

tation onto those phones itself, and the malware master re-

ceives only a small amount of high-value information. As

another example, Cai et al. [4] highlight the problems of

more and more capable smartphones with sensors such as

microphone, camera and GPS and how they can be used to

snoop on the user. They also propose (but did not imple-

ment) a framework that could mitigate such threats, which

involves black-/whitelisting and information flow tracking

using taint analysis. Such a defense framework could have

only limited effect on a malware like Soundcomber: for ex-

ample, tracking taint propagation through covert channels

is known to be difficult.

There are several approaches for detecting malicious ap-

plications on smartphones [3, 8]. For example, Bose et

al. [3] propose behavioral detection of malware by moni-

toring system events and low-level API calls of an appli-

cation on the Symbian platform. To classify applications,

Support Vector Machines (SVM) are used and trained with

both malicious and normal behavior of applications. Be-

havioral detection is promising in general; it is less clear,

however, how a Trojan application would be classified, if

the overt functionality mimics the behaviors deemed legiti-

mate under SVM.

Another approach by Liu et al. [8] relies on monitoring

the power consumption of a smartphone. This is only practi-

cal, though, if the smartphone is running on battery; Sound-

comber can defer work to when the phone is charging. It

also relies on hardware power-consumption monitors (not

present on Android). Kim et al. [7] present a similar ap-

proach.

Instead of detecting malware after it is already present

on the device, Enck et al. [5] propose to analyze the permis-

sions requested by an application (specifically for Android)

when the application is first installed. Rules, which specify

what combinations of permissions are admissible, allow or

prevent the installation. In our work we managed to sep-

arate the necessary permissions over two applications and

let them communicate covertly, evading the security pol-

icy enforced by this approach — each application uses a

“reasonable” set of permissions that in conjunction are dan-

gerous. We also demonstrate that malware can use a legiti-

mate application to deliver data it stole. Follow-up research

by Ongtang et al. [10] not only examines permissions dur-

ing the installation but also monitors their use during run-

time, based on location and time, for example. Semanti-

cally rich policies define permissible interactions between

applications. This, however, does not block covert chan-

nels, which are used by Soundcomber.

Other research has focused on the effect of cellular bot-

nets on the network core, such as the research by Traynor et

al. [13]. Our work, on the other hand, focuses more on how

malware can extract information about individuals.

9 Conclusion

In this paper, we report our research on sensory malware,

a new strain of smartphone malware that uses on-board sen-

sors to collect private user information. We present Sound-

comber, a stealthy Trojan with innocuous permissions that

can sense the context of its audible surroundings to target

and extract a very small amount of high-value data.

As sensor-rich smartphones become more ubiquitous,

sensory malware has the potential to breach the privacy of

individuals at mass scales. While naive approachesmay up-

load raw sensor data to the malware master, we show that

sensory malware can be stealthy and put minimal load on

the malware master’s resources. While we provide a de-

fense for Soundcomber, more research is needed to control

access to other types of sensor data depending on the con-

text in which such data is being requested. We hope that

our work with Soundcomber has highlighted the threat of

stealthy sensory malware to stimulate further research on

this topic.

Acknowledgments

We thank Zhou Li for his helpful comments. This re-

search was funded in part by the National Science Founda-

tion under grants CNS-0716292 and CNS-1017782.

References

[1] D. Asonov and R. Agrawal. Keyboard acoustic emanations.

Security and Privacy, IEEE Symposium on, 0:3, 2004.

[2] Bell and LaPadula. Secure Computer Systems: Unified Ex-

position and Multics Interpretation. Technical Report ESD-

TR-75-306, MTR 2997 Rev. 1, The MITRE Corporation,

Mar. 1976.



[3] A. Bose, X. Hu, K. G. Shin, and T. Park. Behavioral detec-

tion of malware on mobile handsets. In MobiSys ’08: Pro-

ceeding of the 6th international conference on Mobile sys-

tems, applications, and services, pages 225–238, New York,

NY, USA, 2008. ACM.

[4] L. Cai, S. Machiraju, and H. Chen. Defending against

sensor-sniffing attacks on mobile phones. InMobiHeld ’09:

Proceedings of the 1st ACM workshop on Networking, sys-

tems, and applications for mobile handhelds, pages 31–36,

New York, NY, USA, 2009. ACM.

[5] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mo-

bile phone application certification. In CCS ’09: Proceed-

ings of the 16th ACM conference on Computer and com-

munications security, pages 235–245, New York, NY, USA,

2009. ACM.

[6] ITU-T. Recommendation Q.23, 1994.

[7] H. Kim, J. Smith, and K. Shin. Detecting energy-greedy

anomalies and mobile malware variants. In Proceeding of

the 6th international conference on Mobile systems, appli-

cations, and services, pages 239–252. ACM, 2008.

[8] L. Liu, G. Yan, X. Zhang, and S. Chen. Virusmeter: Pre-

venting your cellphone from spies. In E. Kirda, S. Jha, and

D. Balzarotti, editors, RAID, volume 5758 of Lecture Notes

in Computer Science, pages 244–264. Springer, 2009.

[9] J. Millen. Finite-state noiseless covert channels. In Pro-

ceedings of the computer security foundations workshop II,

pages 81–86, 1989.

[10] M. Ongtang, S. E. McLaughlin, W. Enck, and P. D. Mc-

Daniel. Semantically rich application-centric security in an-

droid. In ACSAC, pages 340–349. IEEE Computer Society,

2009.

[11] A. V. Oppenheim and R. W. Schafer. Digital Signal Pro-

cessing. Prentice–Hall, 1975.

[12] J. Proakis and D. Manolakis. Digital Signal Processing:

Principles, Algorithms, and Applications, pages 480–481.

Upper Saddle River, NJ: Prentice Hall, 1996.

[13] P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger, P. Mc-

Daniel, and T. La Porta. On cellular botnets: Measuring the

impact of malicious devices on a cellular network core. In

Proceedings of the 16th ACM conference on Computer and

communications security, pages 223–234. ACM, 2009.

[14] A. Wang. The shazam music recognition service. Commun.

ACM, 49(8):44–48, 2006.

[15] N. Xu, F. Zhang, Y. Luo, W. Jia, D. Xuan, and J. Teng.

Stealthy video capturer: a new video-based spyware in 3g

smartphones. InWiSec ’09: Proceedings of the second ACM

conference on Wireless network security, pages 69–78, New

York, NY, USA, 2009. ACM.


	Introduction
	Overview
	Context-Aware Information Collection
	Audio recording
	Audio processing
	Tone recognition
	Speech recognition

	Targeted data extraction using profiles
	Profiling phone menus
	General profiles


	Stealthy Data Transmission
	Leveraging third-party applications
	Covert channels with paired Trojans
	Installation of paired Trojan applications
	Covert channels on the smartphone


	Defense Architecture
	Evaluation
	Experiment settings
	Experiment results
	Effectiveness
	Performance


	Discussion
	Improvements to the attack
	Defenses

	Related Work
	Conclusion

