Open Problems in the formal verification of SPIDER

Lee Pike

Formal Methods Group,
NASA Langley Research Center (NASA LaRC)

Department of Computer Science,
Indiana University, Bloomington

28 April, 2004
Outline

• NASA LaRC Formal Methods Group

• SPIDER Project

• Preliminary Dissertation Ideas
NASA LaRC Formal Methods Group
NASA LaRC Formal Methods Group

- 9 Civil Servants
- 3 National Institute of Aerospace Researchers
NASA LaRC FM Group: Current Research

- Formal methods for embedded systems
- Theorem-prover Databases
- Model checking
- PVS extensions/improvements
- Accident investigation
- Formal analysis of air traffic management
- Standards development for software/hardware development
- Other applications of formal methods
NASA LaRC FM Group: Goals

- Technology Transfer
 - Industry
 - Academic Institutions
 - Government

- Basic Research
- Developing Industry/Government Standards
- Education
- Promoting Formal Methods
The SPIDER Project

“Time turns the improbable into the inevitable”

—Unknown

lee.s.pike@nasa.gov

Lee Pike
SPIDER: What?

- Synchronized Processor-Independent Design for Electromagnetic Resilience (SPIDER)

- A synchronized, reconfigurable, fault-tolerant communications bus, the Reliable Optical BUS (ROBUS)
SPIDER: What?

Software Application
Middleware
OS
Drivers
Processor
PE-ROBUS
Interface
BIUs
RMUs
ROBUS

Processor Element

Software

Hardware

lee.s.pike@nasa.gov
SPIDER: What?

Processor
Element

Software Application
Middleware
OS
Drivers

Processor

PE-ROBUS
Interface

BIUs
RMUs

ROBUS

Hardware

Software

Lee Pike
lee.s.pike@nasa.gov
SPIDER: What?

The ROBUS

BIU

RMU

BIU

RMU

BIU

RMU

BIU

The ROBUS

lee.s.pike@nasa.gov
SPIDER: Who?

- **Formal methods:**
 - Paul Miner (lead)
 - Jeffrey Maddalon
 - Alfons Geser (NIA)
 - Radu Siminiceanu (NIA)
 - Lee Pike

- **Engineering:**
 - Mahyar Malekpour
 - Wilfredo Torres-Pomales

- **Industry Partners:**
 - Derivation Systems, Inc.
SPIDER: Who?

- We are a small group:
 - Approx. 2 FTE formal methods
 - Approx. 1.5 FTE engineering

- (TTTech has over 110 FTE employees)

lee.s.pike@nasa.gov
What Distinguishes SPIDER?

- Formal methods integrated into system design.

- A generous maximum fault assumption.

- Sophisticated fault-tolerant protocols.
 - Interactive Consistency
 - Distributed Diagnosis
 - Clock Synchronization
 - Reintegration
 - Start-up/Restart
 - Schedule update
SPIDER: Project Goals

- Develop an ultra-reliable communications bus for use in safety-critical applications such as
 - Federated commercial avionics
 - Space-exploration vehicles
 - Unmanned aerial vehicle communications (UAVs)

- Provide a case-study for FMs in systems development.
 - For FAA guidelines in hardware design assurance.
 - For demonstrating the feasibility & utility for other x-by-wire safety-critical systems.

- Basic research in formal methods, fault-tolerance, distributed systems, and intrusion-tolerance.
SPIDER: Project Goals

• Design a fault-tolerant system for extreme environments:
 • Probability of bus failure $\leq 10^{-10}$ for a 10 hour mission.
 • High malicious fault-arrival rates acceptable.
 • Long mission times/repair intervals feasible.

• Make formal methods understandable to non-experts.
 • Engineers, architects, etc.
 • Certification authorities
Many formal methods, no formal integration

- Theorem proving (PVS)

- Model checking (SMART, etc.)

- Hardware Synthesis (DRS, VHDL)
• Different specifications of the protocols.
 • PVS: Specs compose processes and the environment.
 • SMART/DRS/VHDL: Specs are of individual processes (and all but SMART do not model the environment).

• What good are our formal specs if our engineers and certification authorities cannot decipher them?
Specification Differences

- **A process-level behavioral specification:**
 - Is how we think about distributed algorithms & protocols (?).
 - Can be decomposed from the environment.
 - Is the initial specification from which an implementation of a single process can be derived.

- **A system-level behavioral specification:**
 - Allows for simple & transparent proof methods, especially in a theorem-prover.
 - Is the natural model for reasoning about global environmental assumptions.