A Verifying Core for a Cryptographic Language Compiler

Lee Pike\(^1\) Mark Shields\(^2\) John Matthews

Galois Connections

November 21, 2006

\(^1\)Presenting.
\(^2\)Presently at Microsoft.
Thanks

- Rockwell Collins Advanced Technology Center, especially David Hardin, Eric Smith, and Tom Johnson
- Konrad Slind, Bill Young, and our anonymous ACL2 Workshop reviewers
- Matt Kaufmann and the other folks on the ACL2-Help list
- And of course, Pete Manolios and Matt Wilding for a heckuva conference!
Compiler Assurance: The Landscape

- Compilers are complex!
 - Risk of bugs, especially for specialized DSL compilers.
 - Easy target for backdoors and Trojan horses.
- How do we get assurance for correctness?
 - Long-term and widespread use (e.g., gcc).
 - Certification (e.g., Common Criteria, DO-178B).
 - Mathematical proof.
Proofs and Compilers: Two Approaches

1. A verified compiler is one associated with a mathematical proof.
 ▶ One monolithic proof of correctness for all time.
 ▶ Deep and difficult requiring parameterized proofs about the language semantics and the compiler transformations.

2. A verifying compiler\(^3\) is one that emits both object code and a proof that the object code implements the source code.
 ▶ Requires a proof for each compilation (the proof process must be automated).
 ▶ But the proofs are only about concrete programs.
 If you have a highly-automated theorem-prover (hmmm... where can I find one of those?), a verifying compiler is easier.

We take the verifying compiler approach.

\(^3\)Unrelated to Tony Hoare’s concept by the same name.
Overall Infrastructure

front-end

source µCryptol

compilation

shallow embedding

indexed µCryptol

core

compilation

shallow embedding

canonical µCryptol

back-end

compilation

binary AAMP7

deep embedding

Common Lisp

Isabelle

equivalence proof

ACL2

automated equivalence proof

equivalence proof (cutpoint reasoning)

ACL2

Common Lisp

binary AAMP7 on lisp simulator
What We’ve Done: Snapshot

- A “semi-decision procedure” in ACL2 for proving correspondence between μCryptol programs in “indexed form” and in “canonical form”.

- A semi-decision procedure for proving termination in ACL2 of μCryptol programs (including mutually-recursive cliques of streams).

- A simple translator for shallowly embedding μCryptol into ACL2.

- An ACL2 book of executable primitive operations for specifying encryption protocols (including modular arithmetic, arithmetic in Galois Fields, bitvector operations, and vector operations).

These results are germane to

- Verifying compilers for other functional languages

- The verification of cryptographic protocols in ACL2

- Industrial-scale automated theorem-proving
Applications and Informal Metrics

Framework for *Automated* translations, correspondence proofs, and termination proofs for, e.g.,
- Fibonacci, factorial, etc.
- TEA, RC6, AES

Caveat: `mcc` doesn’t output the correspondence proof itself yet.

ACL2 Condition of Nontriviality: for AES, *ACL2* automatically generates
- About 350 definitions
- 200 proofs
- 47,000 lines of proof output
The Details: Outline

1. Language overview
2. Automated termination proofs
3. Verifier infrastructure
4. What’s left
5. “Dirty laundry”

\textit{µCryptol} in One Slide

\[\text{fac} : \mathbb{B}^{32} \rightarrow \mathbb{B}^{8}; \]
\[\text{fac} \ i = \text{facs} @@ i \]

where \{
 \text{rec}
 \]
 \text{index} : \mathbb{B}^{8}^{\text{inf}};
 \text{index} = [0] \#\# [x + 1 \mid x \leftarrow \text{index}] ;
 \text{and}
 \text{facs} : \mathbb{B}^{8}^{\text{inf}};
 \text{facs} = [1] \#\# [x \times y \mid x \leftarrow \text{facs} \\
 \qquad \mid y \leftarrow \text{drops}{\mathbb{1}} \text{ index}] ;
\} ;
\]

\[
\begin{align*}
\text{index} &= 0, 1, 2, 3, 4, \ldots, 255, 0, 1, \ldots \\
\text{facs} &= 1, 1, 2, 6, 24, 120, 208, 176, \ldots \\
\text{fac}3 &= \text{facs} @@ 3 = 6
\end{align*}
\]
Well-Definedness

The “stream delay from stream x to occurrence of stream y is d” means, for sufficiently large index $k \in \mathbb{N}$, that the k’th element of stream x depends on the value of the $(k - d)$’th element of stream y.

Let S be the set of stream names defined by a mutually-recursive clique of stream definitions. Then we say the clique is well defined if there exists a measure function

$$f : (\mathbb{N} \times S) \rightarrow \mathbb{N}$$

such that for each occurrence of a stream y in the body of the definition of stream x with delay d, we have

$$\forall k \in \mathbb{N}. \ k \geq d \Rightarrow f(k - d, y) < f(k, x)$$
Decidable! (Thanks, Mark)

The `mcc` compiler type system ensures well-definedness

- The compiler constructs a minimum delay graph for the clique of streams.
- N.B.: Only linearly-recursive programs can be written in μCryptol. This appears to be all you need for encryption protocols.

...But can we trust the compiler’s type system?
Well-Definedness Example (Indexed Form)

rec
 index : B^∞;
 index = [0] ## [x + 1 | x <- index];
and
 facs : B^∞;
 facs = [1] ## [x * y | x <- facs
 | y <- drops{1} index];

(defun fac-measure (i s)
 (acl2-count
 (+ (* (+ i (cond ((eq s 'facs) 0)
 ((eq s 'index) 0))) 2)
 (cond ((eq s 'facs) 1)
 ((eq s 'index) 0))))))

All termination proofs are *automatic* in ACL2.
Transformations: Source to Canonical

Front-End Transformations
1. Introduce safety checks
2. Simplify vector comprehensions
3. Eliminate patterns
4. Convert to indexed form

Indexed Form Generated

Begin Core Transformations
5. Push stream applications
6. Collapse arms
7. Align arms
8. Takes/segments to indexes
9. Convert to iterator form
10. Eliminate simple primitives
11. Eliminate zero-sized values
12. Inline and simplify
13. Introduce temporaries
14. Eliminate nested definitions
15. Share top-level value definitions
16. Box top-level definitions
17. Eliminate shadowing

Canonical Form Generated
Contributed *ACL2* Book: Cryptographic Primitives

- **Arithmetic in \mathbb{Z}_{2^n} (arithmetic modulo 2^n):** addition, negation, subtraction, multiplication, division, remainder after division, greatest common divisor, exponentiation, base-two logarithm, minimum, maximum, and negation.

- **Bitvector operations:** shift left, shift right, rotate left, rotate right, append of arbitrary width bitvectors, extraction of n bitvectors from a bitvector, append of fixed-width bitvectors, split into fixed-width bitvectors, bitvector segment extraction, bitvector transposition, reversal, and parity.

- **Arithmetic in \mathbb{GF}_{2^n} (the Galois Field over 2^n):** polynomial addition, multiplication, division, remainder after division, greatest common divisor, irreducibility, and inverse with respect to an irreducible polynomial.

- **Pointwise extension of logical operations to bitvectors:** bitwise conjunction, bitwise disjunction, bitwise exclusive-or, and negation bitwise complementation.

- **Vector operations:** shift left, shift right, rotate left, rotate right, vector append for an arbitrary number of vectors, extraction of n subvectors extraction from a vector, flattening a vector vectors, building a vector of vectors from a vector, taking an arbitrary segment from a vector, vector transposition, and vector reverse.
Correspondence Proof

We prove the following property for the core transformations: for source program S and compiled program C,

“If S has well-defined semantics (does not go wrong), then S and C are observationally equivalent.”

– Xavier Leroy
Example: Factorial Proof

(make-thm :name |inv-facs-thm|
 :thm-type invariant
 :ind-name |idx_2_facs_2|
 :itr-name |iter_idx_facs_3|
 :init-hist ((0) (0))
 :hist-widths (0 0)
 :branches (|idx_2| |facs_2|))

This top-level macro call, with the appropriate keys, generates the correspondence theorem.
Two Problems for Automated Proof Generation

Two problems:

- The proof infrastructure must be general enough to automatically prove correspondence for arbitrary programs.
- The proof infrastructure must not fall over on real programs (factorial took about a day; AES took a couple of months).
Some Mitigations

The two difficulties are mitigated by ACL2 (and its community):

- **Generality:**
 - Use powerful ACL2 books, particularly Rockwell Collins’ `super-ihs` (slated for public release).
 - For any other “hard” lemmas, have the macros instantiate them with concrete values (usually making their proofs trivial) and prove them at “run-time” – these are usually bitvector theorems where we want to fix the width of the bitvectors.

- **Scaling:**
 - Package up large conjunctions in recursive definitions to prevent gratuitous expensive rewrites.
 - “Cascading” computed hints that iteratively enable definitions after successive occurrences of being stable under simplification.
Dirty (Clean?) Laundry

How hard was all this? Regarding the first author,

► Experience:
 ► Some Common Lisp experience.
 ► Little compiler experience.
 ► Little ACL2 experience.
 ► No μCryptol experience.
 ► No AAMP7 experience.

► Effort:
 ► Approx. 3 months to complete the core verifier.
 ► About 2 months investigating back-end verification.

DSL verifying compilers are feasible!
What the ACL2 Folks Got Right

Or... “How an ACL2 novice can quickly do something useful.”

► Powerful and easy macros:
 ▶ Avoid (hard) general proofs by simple instantiation of parameters.
 ▶ Simplifies creating a “proof framework” that is essential for an automated verifying compiler.

► “Industrial strength prover” – able to handle models as large as the AAMP7 model and easily generate proofs tens of thousands of lines long.

► First-order language forces the user to consider specifications that have more automated proofs from the get-go.

► Engaged user-community and active acl2-help listserv.

► Good documentation.

► Powerful user-defined books (e.g., ihs books).

► Work with the folks at Rockwell Collins :)
What could have helped even more?

- A better way to find/search books (e.g., priorities on hints).
- Better integration with decision procedures/SMT?
- Heuristics for searching for inconsistent hypotheses.
What’s Left?

► Front end: in *Isabelle* (because of higher-order language constructs); just a few transformations and pattern-matching.
► Back-end: more substantial: Galois helped do an initial cutpoint-proof of factorial on the *AAMP7*.
 ► Without the *AAMP7* model, the back-end verification is infeasible: Stay tuned for the next talk!
Additional Resources

Example *μCryptol* & *ACL2* specs and cryptographic primitives
http://www.galois.com/files/core_verifier/

μCryptol design and compiler overview (solely authored by M. Shields)
http://www.cartesianclosed.com/pub/mcryptol/

μCryptol Reference Manual (solely authored by M. Shields)
http://galois.com/files/mCryptol_refman-0.9.pdf
Shallow Embedding

mcc contains a small (1.2klocs, excluding libraries) translator from \(\mu Cryptol \) to \(Common Lisp \) (the translator is unverified). Some highlights:

- \(\mu Cryptol \) types as ACL2 predicates: \(\mathbb{B}^{32}^2 \),

```lisp
(defund |$ind_0_typep| (x)
  (and (true-listp x)
       (natp (nth 0 x))
       (< (nth 0 x) 4294967296)
       (natp (nth 1 x))
       (< (nth 1 x) 4294967296)))
```
defunded because AES has types like \(\mathbb{B}^{8}^{4}^{4}^{11} \).

- \(\mu Cryptol \) primitives: ...
Proof Macros

Correspondence proofs are generated from a few macros:

- **Function correspondence theorems** of non-recursive definitions.
- **Type correspondence theorems** of type declarations.
- **Vector comprehension correspondence theorems**.
- **Stream-clique correspondence theorems** of recursive cliques of stream comprehensions.
- **Vector-splitting correspondence theorems** of type correspondence for vectors that have been split into a vector of subvectors.
- **Inlined segments/takes correspondence theorems** for inlined segments and takes operators over streams.
(defthm factorial-invariant
 (implies
 (and (natp i) (natp lim)
 (true-listp hist) (<= i (+ lim 1))
 (equal (nth (loghead 0 i) (nth 0 hist))
 (ind-facs i 'idx))
 (equal (nth (loghead 1 i) (nth 1 hist))
 (ind-facs i 'facs))
 (and (equal (nth (loghead 0 lim) (itr-facs i lim hist))
 (ind-facs lim 'idx))
 (equal (nth (loghead 1 lim) (itr-facs i lim hist))
 (ind-facs lim 'facs))))
 (and (natp i) (natp lim)
 (true-listp hist) (<= i (+ lim 1))
 (equal (nth (loghead 0 i) (nth 0 hist))
 (ind-facs i 'idx))
 (equal (nth (loghead 1 i) (nth 1 hist))
 (ind-facs i 'facs))))