SPIDER: A Fault-Tolerant Bus Architecture

Lee Pike

Formal Methods Group
NASA Langley Research Center
lee.s.pike@nasa.gov

May 11, 2005
Motivation

- Safety-critical distributed x-by-wire applications are being deployed in inhospitable environments.
- Failure rates must be on the order of 10^{-9} per hour of operation.
Desiderata

- Integration
 - Off-the-shelf application integration
 - Off-the-shelf fault-tolerance
 - Eliminate redundancy
- Partitioning
 - Fault-partitioning
 - Modular certification
- Predictability
 - Hard real-time guarantees
 - A “virtual” TDMA bus

1John Rushby’s *A Comparison of Bus Architectures for Safety-Critical Embedded Systems*
Prominent Architectures

- TTTech’s Time-Triggered Architecture (TTA)
- Honeywell’s SAFEbus
- FlexRay (being developed by an automotive consortium)
- NASA Langley’s Scalable Processor-Independent Design for Enhanced Reliability (SPIDER)
“Time turns the improbable into the inevitable”
Collaborators

▶ Permanent Investigators
 ▶ Alfons Geser (formerly National Inst. of Aerospace)
 ▶ Jeffrey Maddalon (NASA)
 ▶ Mahyar Malekpour (NASA)
 ▶ Paul Miner (NASA)
 ▶ Radu Siminiceanu (National Inst. of Aerospace)
 ▶ Wilfredo Torres-Pomales (NASA)

▶ Industry Partners
 ▶ DSI, Inc.
 ▶ National Institute of Aerospace
SPIDER: A Fault-Tolerant Bus Architecture

Lee Pike
- Fault-tolerant time-reference and synchronization
- Diagnostic consensus and reconfiguration
- (Application-level) reintegration
- Communication with guaranteed consensus and latency
BIU/RMU Modes of Operation

- Self-Test Mode
- Initialization Mode
 - Initial Diagnosis
 - Initial Synchronization
 - Collective Diagnosis
- Preservation Mode
 - Clock Synchronization
 - Collective Diagnosis
 - PE Communication
- Reintegration Mode

Continuous on-line diagnosis...
A Hybrid Fault Model

- **Nonfaulty** The correct message is received at the scheduled time.
- **Benign** The message is detectably faulty by all receivers:
 - The message is received is outside the communication window.
 - The message is corrupted (or not present).
- **Symmetric** All receivers detect the same fault.
- **Asymmetric (Byzantine)** The messages received are arbitrary (in time and value).
- **Omissive Asymmetric** Each receiver determines the sender to be either nonfaulty or benign.
The Dynamic Maximum Fault Assumption

▶ For each BIU or RMU i, let E_i be i’s eligibility set: the set of nodes i believes to be nonfaulty.
▶ Let N be the set of nonfaulty nodes.
▶ Let B be the set of benign nodes.
▶ Let A be the set of asymmetric nodes.

1. $2|N \cap E_i| > |E_i \setminus B|$ for all nodes i.
2. $|A \cap E_r| = 0$ for all RMUs r, or $|A \cap E_b| = 0$ for all BIUs b.
Motivation

- Fault-injection testing cannot demonstrate 10^{-9} reliability
- Criticality warrants effort
- Complexity warrants effort
- Formal methods being integrated into certification standards
- Improved and structured design and understanding
Formal Methods Challenges

- Modeling faults
 - Variety of faults and locations
 - Nondeterminism in when they occur and duration
- Protocol/mode interaction and interdependence
- Protocols are distributed
- Protocols are real-time
- Varying degrees of synchrony
Formal Methods Tools for SPIDER

- Mechanical theorem-proving **PVS** (SRI)
- Model-checking and decision procedures
 - **SAL** (SRI)
 - **SMART** (William & Mary and National Institute of Aerospace)
- Interactive synthesis from Lisp-like language to a HDL
 DRS (Derivation Systems, Inc. and Indiana University)
Reintegration Overview

Allows a node that has suffered a transient fault to regain state consistent with the operational nodes. The node must regain:

- Clock synchronization
- Diagnostic data
- Dynamic scheduling data and other volatile state
- Developers: Wilfredo Torres-Pomales, Mahyar Malekpour, and Paul Miner (NASA)
- Formal Verification: Lee Pike (NASA)
The Frame Property

- l: number of faulty nodes not accused by the reintegrator
- π: maximum skew of nonfaulty nodes
- P: frame duration

$P > l\pi + 2\pi$
State Variables & Initialization

- **accs**: ARRAY of booleans, one for each monitored node
- **seen**: ARRAY of naturals, one for each monitored node
- **mode**: \{*prelim_diag*, *frame_synch*, *synch_capture*\}
- **clock**: \mathbb{R}^\leq
- **fs_finish**: \mathbb{R}^\leq
- **pd_finish**: \mathbb{R}^\leq

for each i, $accs[i] := false$;

$mode := prelim_diag$;

for each i, $seen[i] := 0$;
Preliminary Diagnosis Mode

\[
pd_{\text{finish}} := clock + P + \pi;
\]
while \(clock < pd_{\text{finish}} \) do {
 for each \(i \), when echo(\(i \)) do {
 if \((seen[i] < 2 \text{ and not } accs[i])\) then
 \(\text{seen}[i] := seen[i] + 1 \)
 else
 \(\text{accs}[i] := true; \)
 }
 for each \(i \), if \(seen[i] = 0 \) then \(accs[i]; \)
 \(mode := frame_synch; \)
for each i, $seen[i] := 0$;

$fs_finish := clock$;

while $clock - fs_finish < \pi$ do {
 for each i, when $echo(i)$ do {
 if ($seen[i] = 0$ and not $accs[i]$)
 then {
 $fs_finish := clock$;
 $seen[i] := seen[i] + 1$;
 };
 else $accs[i] := true$;
 };

$mode := synch_capture$;
for each i, $seen[i] := 0$;
while $seen_cnt \leq trusted/2$ do {
 for each i, when $echo(i)$ do {
 if ($seen[i] = 0$ and not $accs[i]$)
 then $seen[i] := seen[i] + 1$;
 };
};
clock := 0;
Safety Properties

Theorem (No Operational Accusations)

For all operational nodes \(i \), \(accs[i] \) does not hold during the reintegration protocol.

Theorem (Synchronization Acquisition)

For all operational nodes \(i \), \(|clock - echo(i)| < \pi \) upon termination of the reintegration protocol.
Recent Successes

- A unified fault-tolerance protocol
- A fault-tolerant distributed system verification library
- Time-triggered schedule verification
- Case-study for research in model-checking, theorem-proving, and decision-procedures
Future Work

- Intrusion-tolerance
- OS and middleware
- Flight-testing
- Self-stabilization
Some Talks & Papers
http://www.cs.indiana.edu/~lepike/
Google: lee pike

SPIDER Homepage
http://shemesh.larc.nasa.gov/fm/spider/
Google: formal methods spider

NASA Langley Research Center Formal Methods Group
http://shemesh.larc.nasa.gov/fm/
Google: nasa formal methods