A Formal Verification of the SPIDER Reintegration Protocol

Lee Pike

Formal Methods Group
NASA Langley Research Center
lee.s.pike@nasa.gov

May 12, 2005
Acknowledgments

- The reintegration protocol was developed by Wilfredo Torres-Pomales, Mahyar Malekpour, and Paul Miner (NASA LaRC).
- Bruno Dutertre and Leonardo de Moura (SRI) provided many helpful suggestions concerning Timeout Automata and SAL.
SPIDER Overview

The Reintegration Protocol

The Verification
 SAL
 k-Induction
 An Optimized Model of Timed Computation

Conclusion
Motivation

- Safety-critical distributed x-by-wire applications are deployed in inhospitable environments.
- Failure rates must be on the order of 10^{-9} per hour of operation.
Bus Architecture Desiderata

- Integration
 - Off-the-shelf application integration
 - Off-the-shelf fault-tolerance
 - Eliminate redundancy
- Partitioning
 - Fault-partitioning
 - Modular certification
- Predictability
 - Hard real-time guarantees
 - A “virtual” TDMA bus

1John Rushby’s *A Comparison of Bus Architectures for Safety-Critical Embedded Systems*
SPIDER Architecture

Processor Elements

ROBUS

Software

Hardware
BIU/RMU Modes of Operation

- Self-Test Mode
- Initialization Mode
- Preservation Mode
- Reintegration Mode

Continuous on-line diagnosis...
The Frame Property

- l: number of faulty nodes not accused by the reintegrator
- π: maximum skew of nonfaulty nodes
- P: frame duration

\[P > l\pi + 2\pi \]
Reintegration Overview

- Preliminary Diagnosis Mode
- Frame Synchronization Mode
- Synchronization Capture Mode
Safety Properties

Theorem (No Operational Accusations)
For all operational nodes i, $\text{accs}[i]$ does not hold during the reintegration protocol.

Theorem (Synchronization Acquisition)
For all operational nodes i, $|\text{clock} - \text{echo}(i)| < \pi$ upon termination of the reintegration protocol.
Motivation

- Next formal verification challenge in SPIDER.
- First formal verification of a reintegration protocol (called for by Rushby2).
- Clique-avoidance.
- Uses recently-developed and relatively unstudied techniques combining bounded model-checking and decision procedures.

2Overview of the Time-Triggered Architecture, 1999.
SRI’s SAL Toolset

- Symbolic model-checker (BDDs)
- Witness symbolic model-checker
- Bounded model-checker
- Simulator
- Parser
- Infinite-state bounded model-checker
- Future releases include:
 - Explicit-state model-checker
 - MDDs in the future for symbolic model-checking

All of which are “state-of-the-art”
The Language: Bakery Example

PC: TYPE = {sleeping, trying, critical};

job: MODULE =
BEGIN
 INPUT y2 : NATURAL
 OUTPUT y1 : NATURAL
 LOCAL pc : PC

 INITIALIZATION
 pc = sleeping;
 y1 = 0

 TRANSITION
 [
 pc = sleeping --> y1' = y2 + 1;
 pc' = trying
]
 []
 pc = trying AND (y2 = 0 OR y1 < y2) --> pc' = critical
 []
 pc = critical --> y1' = 0;
 pc' = sleeping
]
END;
Induction (over Transition Systems)

Let \(\langle S, S^0, \rightarrow \rangle \) be a transition system.

For state predicate \(I \), show

- **Base**: If \(s \in S^0 \), then \(I(s) \);
- **IS**: If \(I(s) \) and \(s \rightarrow s' \), then \(I(s') \).

Conclude that for all reachable \(s \), \(I(s) \).
Strengthening Induction

Induction can be generalized in two ways.

- Strengthen the invariant (hard!)
- Strengthen the induction principle...
For state predicate I, show

- **Base**: If $s_0 \in S^0$, then for all trajectories $s_0 \rightarrow s_1 \rightarrow \ldots \rightarrow s_k$, $I(s_i)$ for $0 \leq i \leq k$;
- **IS**: For all trajectories $s_0 \rightarrow s_1 \rightarrow \ldots \rightarrow s_k$, if $I(s_i)$ for $0 \leq i \leq k - 1$, then $I(s_k)$.

Conclude that for all reachable s, $I(s)$.

Induction is the special case when $k = 1$.
Induction

States

Reachable states

I(s)

A Formal Verification of the SPIDER Reintegration Protocol

Lee Pike
k-Induction

- States
- Reachable states
- $I(s)$

[Diagram showing states and reachable states with arrows indicating transitions]
Timeout Automata\(^3\) (Semantics)

An *explicit* real-time model.

▶ **Vocabulary:**
 ▶ A set of state variables.
 ▶ A *global clock*, \(c \in \mathbb{R}^{0\leq} \).
 ▶ A set of *timeout* variables \(T \) such that for \(t \in T, t \in \mathbb{R}^{0\leq} \).

▶ **Construct a transition system** \(\langle S, S^0, \rightarrow \rangle \):
 ▶ States are mappings of all variables to values.
 ▶ Transitions are either *time transitions* or *discrete transitions*.
 ▶ Time transitions are enabled if the clock is less than all timeouts. Updates clock to least timeout.
 ▶ Discrete transitions are enabled if the clock equals some timeout. Updates state variables and timeouts.

No Free Lunch

k-induction is exponential with respect to k.

- Goal: reduce the size of k for k-induction.
- Approach:
 - Optimize the formal model (timeout automata).
 - Optimize the model of the physical world.
Optimization 1: Synchronous Communication

- Communication via shared variables.
- Usual state machine semantics:
 - A transition in which variables are updated by the sender.
 - A transition in which the variables are read.
- Under synchronous semantics, next-state values can be used in guards.

Train-Gate-Controller verification reduced from $k = 14$ to $k = 9$.
Synchronous Communication SAL Example

Asynchronous Composition

train: MODULE =
 t.state = t0
 AND t.to = time
-->
 t.state' = t1;
 flag1' = TRUE;
 msg1' = approach;

controller: MODULE =
 c.state = c0
 AND flag1 = TRUE
 AND msg1 = approach
-->
 c.state' = c1;
 flag1' = FALSE;
Synchronous Communication SAL Example

Asynchronous Composition

train: MODULE =
 t_state = t0
 AND t_to = time
 -->
 t_state’ = t1;
 flag1’ = TRUE;
 msg1’ = approach;

controller: MODULE =
 c_state = c0
 AND flag1 = TRUE
 AND msg1 = approach
 -->
 c_state’ = c1;
 flag1’ = FALSE;

Synchronous Composition

train: MODULE =
 t_state = t0
 AND t_to = time
 -->
 t_state’ = t1;
 msg1’ = approach;

controller: MODULE =
 c_state = c0
 AND t_to = time
 AND msg1’ = approach
 -->
 c_state’ = c1;
Optimization 2: Clockless Semantics

- Remove *time transitions* from the semantics.
- Transitions guarded by a timeout t are enabled if t is the least of all timeouts.
- Train-Gate-Controller verification reduced from $k = 9$ to $k = 5$.
Optimization 3

- Typically, a state transition is taken each time the state changes.
- Another approach: “time-triggered simulation.”
- At fixed intervals of time
 - Determine the sequence of events observed by the reintegrator.
 - Update the state of the reintegrator based on these observations simultaneously.

In a timeout-automata model, care must be taken to ensure that the simulation is conservative...
The Peril of Time-Triggered Simulation
The Peril of Time-Triggered Simulation
The Peril of Time-Triggered Simulation
Future Work

- Benchmarks comparing real-time verification technologies (e.g., UPPAAL & SAL).
- Theoretical results for explicit real-time models of computation in formal verification.
- Complete clique-avoidance proof.
Further Information

Some Talks & Papers

http://www.cs.indiana.edu/~lepike/
Google: lee pike

SPIDER Homepage

http://shemesh.larc.nasa.gov/fm/spider/
Google: formal methods spider

NASA Langley Research Center Formal Methods Group

http://shemesh.larc.nasa.gov/fm/
Google: nasa formal methods
State Variables & Initialization

- **accs**: ARRAY of booleans, one for each monitored node
- **seen**: ARRAY of naturals, one for each monitored node
- **mode**: \{prelim_diag, frame_synch, synch_capture\}
- **clock**: $\mathbb{R}^0 \leq$
- **fs_finish**: $\mathbb{R}^0 \leq$
- **pd_finish**: $\mathbb{R}^0 \leq$

for each i, accs$[i]$:= false;
mode := prelim_diag;
for each i, seen$[i]$:= 0;
Preliminary Diagnosis Mode

\[
pd_{\text{finish}} := \text{clock} + P + \pi;
\]

while \(\text{clock} < pd_{\text{finish}} \) do {
 for each \(i \), when \(\text{echo}(i) \) do {
 if (seen[i] < 2 and not accs[i])
 then seen[i] := seen[i] + 1
 else accs[i] := true;
 }
}

for each \(i \), if \(\text{seen}[i] = 0 \) then \(\text{accs}[i] \);

\(\text{mode} := \text{frame} _ \text{synch} \);
Frame Synchronization Mode

\[
\text{for each } i, \ seen[i] := 0; \\
fs_{\text{finish}} := clock; \\
\text{while } clock - fs_{\text{finish}} < \pi \text{ do } \{ \\
\quad \text{for each } i, \text{ when } echo(i) \text{ do } \{ \\
\quad \quad \text{if } (seen[i] = 0 \text{ and not } accs[i]) \\
\quad \quad \quad \text{then } \{ \\
\quad \quad \quad \quad fs_{\text{finish}} := clock; \\
\quad \quad \quad \quad seen[i] := seen[i] + 1; \\
\quad \quad \quad \}; \\
\quad \quad \text{else } accs[i] := true; \\
\quad \}; \\
\}; \\
mode := synch_{\text{capture}};
\]
Synchronization Capture Mode

for each \(i \), \(seen[i] := 0; \)
while \(seen_cnt \leq trusted/2 \) do {
 for each \(i \), when \(echo(i) \) do {
 if (\(seen[i] = 0 \) and not \(accs[i] \))
 then \(seen[i] := seen[i] + 1; \)
 }
};
\(clock := 0; \)