Gradual Typing for Functional Languages

Jeremy Siek and Walid Taha
(presented by Lindsey Kuper)
Introduction
What we want

• Static and dynamic typing: both are useful! (If you’re here, I assume you agree.)

• So, we want a type system that...
 • ...lets us choose the degree to which we want to annotate programs with types.
 • ...lets us write programs in a dynamically typed style (no explicit coercions to/from type Dynamic).
 • ...uses type annotations for static type checking, not just improving run-time performance.
 • ...behaves just like a static type system on completely annotated programs.

• Siek and Taha’s gradual type system fulfills all these desires.
Contributions

• Siek and Taha present $\lambda_{\rightarrow}^?$ ("lambda-dyn") and show that:
 • $\lambda_{\rightarrow}^?$, with its gradual type system, is equivalent to the STLC for fully-annotated programs. (Theorem 1)
 • They extend the language with references and assignment to show that it’s suitable for imperative languages as well.
 • $\lambda_{\rightarrow}^?$ is type safe: if evaluation terminates, the result is either a value of the expected type or a cast error, but not a type error. (Theorem 2)
 • On the way to Theorem 2, they prove an interesting result about $\lambda_{\rightarrow}^?$: the run-time cost of dynamism in the language is “pay-as-you-go”.
• The proofs are all mechanically verified with Isabelle.
Introduction to Gradual Typing
Syntax of $\lambda?$

- The syntax of $\lambda?$ is simple. We have:
 - variables x
 - ground types γ
 - constants c
 - types $T ::= \gamma \mid ? \mid T \rightarrow T$
 - expressions $e ::= c \mid x \mid \lambda x : T . e \mid e \ e \mid \lambda x . e \equiv \lambda x : ? . e$

- We indicate the unknown portions of a type with $\ ?$, so a type $\text{number } x \ ?$ is a pair of a number and an element of unknown type.

- Programming in a dynamically-typed style in this language is easy. Just leave off the type annotations on parameters. (A λ with no parameter type annotation is sugar for one that has parameter type $\ ?$.)
What the type system does: Easy first-order example

• “The job of the type system is to reject programs that have inconsistencies in the known parts of types.”

• \(((\lambda (x : \text{number}) (\text{succ } x)) \ #t)\)

 • This program is rejected because it’s an application of a function of type \text{number} \rightarrow \text{number} to an argument of type \text{boolean}.

• But \(((\lambda (x) (\text{succ } x)) \ #t)\) is accepted by the static type system (and the type error is caught at run-time).
What the type system does: Fancy higher-order example

map : (number → number) × number list → number list

(map (lambda (x) (succ x)) (list 1 2 3))

• We’d like (lambda (x) (succ x)) to be accepted by our type system, but it has type ? → number and map expects type number → number. How do we design the type system to not reject this program?

• Intuition: require known portions of the two types ? → number and number → number to be equal; ignore the unknown parts.

• In effect, we’re delaying comparison of unknown parts until run-time.

• Analogy with partial functions: two partial functions are consistent when every element in the domain of both functions maps to the same result.
Type consistency rules

• Also known as *compatibility* rules.

• Just four simple rules:

 - **CREFL**: Every type is consistent with itself.

 - **CFUN**: If $\sigma_1 \sim \tau_1$ and $\sigma_2 \sim \tau_2$, then $\sigma_1 \rightarrow \sigma_2 \sim \tau_1 \rightarrow \tau_2$.

 - **CUNL**: Every type is consistent with \Box.

 - **CUNR**: \Box is consistent with every type.

• Reflexive and symmetric, but not transitive.
Typing rules

• Rules for variables, constants, λ expressions: exactly like STLC.

• Rules for application:
 • (GAPP1) If the operator’s type is τ, the type of the entire expression is τ.
 • (GAPP2) If the operator’s type is $\tau \rightarrow \tau'$ and the operand’s type is consistent with τ, then the type of the entire expression is τ'.

• (Theorem 1) For STLC terms (aka fully-annotated terms), $\Gamma \vdash \tau$ typing judgments are just like STLC typing judgments.

• Proof sketch: throw out any typing rules that mention τ. We’re left with the STLC’s typing rules.

• (Corollary 1) If an STLC term isn’t well-typed under STLC typing rules, it isn’t well-typed under $\Gamma \vdash \tau$ typing rules, either.
Run-time semantics
Adding explicit casts

- \(\lambda \) doesn’t make programmers write explicit casts; instead, it inserts them itself, producing an intermediate language we call \(\lambda^{\langle \tau \rangle} \) (“lambda-cast”). \(\lambda^{\langle \tau \rangle} \) is the language we’ll actually evaluate.

- The translation to \(\lambda^{\langle \tau \rangle} \) only requires casts to be inserted for certain kinds of application expressions:

 - (\text{CAPP1}) For function applications where the function’s type is \(? \), just insert a cast to \(T_2 \rightarrow ? \) where \(T_2 \) is the argument’s type.

 - (\text{CAPP2}) For function applications where the function’s type is \(T \rightarrow T' \) and the argument’s type is \(T_2 \), which is \(\sim \) with \(T \), we just cast the argument to \(T \).

- \(\lambda^{\langle \tau \rangle} \)’s typing rules are much like STLC’s, but with a rule added for expressions containing an explicit cast.
Useful properties of $\lambda^{(\tau)}$

- Lemma 1. Inversion lemmas for $\lambda^{(\tau)}$'s typing rules. (These lemmas, which “invert” the typing rules, come in handy for some of the other lemmas.)
- Lemma 2. Every $\lambda^{(\tau)}$ expression has a unique type.
- Lemma 3. Cast insertion produces well-typed $\lambda^{(\tau)}$ terms.
- Lemma 4. Cast insertion does nothing to STLC terms.
Run-time semantics of $\lambda^{\langle \tau \rangle}$

- The result of evaluating a $\lambda^{\langle \tau \rangle}$ term can either be a value, a `CastError`, a `TypeError`, or a `KillError`.

- There are two kinds of run-time type errors: those that cause undefined behavior (like what happens when we have a buffer overflow in C) and those that are caught by the run-time system (like in Scheme). We say that the former are `TypeError`s and the latter are `CastError`s.

- We need `KillError` because of a technicality in the type safety proof. It could have been avoided if we’d been using a small-step semantics rather than a big-step semantics for $\lambda^{\langle \tau \rangle}$.
That canonical forms lemma that we said would be interesting

- Canonical forms lemmas always say something like “If v is of type T, then it must be...”.
- For instance, if v is of type `boolean`, then it must be either `#t` or `#f`.
- Handy for compiler optimizations: we can use an efficient unboxed representation for every value whose type is completely known at compile time.
- And we get these efficient representations proportionally to the amount that we use type annotations in our programs: we “pay as we go” for efficiency.
Evaluation of $\lambda^{\langle \tau \rangle}$

- $\lambda^{\langle \tau \rangle}$ has an operational semantics defined in *big-step* style, where each rule completely evaluates the expression to a result. For instance...

- (ECSTG) If we evaluate e for n steps, producing a result v, and v (unboxed if necessary) has type χ, then e cast to χ can be evaluated for $n+1$ steps to produce v.

- (ECSTE) If e evaluates to v and v has type σ, which is inconsistent with τ, then a cast of e to τ will result in a run-time *CastError*.

- This big-step semantics is unusual and prevents us from using a more typical progress-and-preservation-style proof of type safety.
Examples

• Our original example \(((\text{lambda} \ (x) \ (\text{succ} \ x)) \ #t)\) produces a \textit{CastError} at run-time.

• Our higher-order example

\[((\text{lambda} \ (f : \ ? \rightarrow \text{number}) \ (f \ 1)))\]
\((\text{lambda} \ (x : \text{number}) \ (\text{succ} \ x)))\)

evaluates to the result 2.
A few more lemmas on the way to type safety

- Lemma 6 (Environment Expansion and Contraction). If a term e has type τ under environment Γ...
 - ...and we extend Γ with a binding for a fresh variable, e still has type τ. (Pierce calls this weakening.)
 - ...and we remove something we don’t need from the environment, e still has type τ.
 - ...and we swap in a new store typing for the old one, as long as they agree on the types of all locations, e still has type τ.

- Lemma 7 (Substitution preserves typing). If e has type τ under Γ and we substitute some subexpression x of e with another subexpression e' of the same type as x, e still has type τ.
Finally, a proof of type safety

- Lemma 8 (Soundness of evaluation). If an $\lambda^{(T)}$ expression e is well-typed with type T (which can include ?), it will evaluate to a result r, which will be either a value, a CastError, or a KillError.

- Theorem 2 (Type safety). If a $\lambda^{?}$ expression e with type T can be converted to a $\lambda^{(T)}$ expression e' with type T, it will evaluate to a result r, which will be either a value, a CastError, or a KillError.

- Proof: Lemma 3 (cast insertion produces well-typed $\lambda^{(T)}$ terms) followed by Lemma 8.
Adding references to \(\lambda \)

• A couple of additions to the syntax:
 - types \(\mathcal{T} ::= \ldots \mid \mathsf{ref} \mathcal{T} \)
 - expressions \(e ::= \ldots \mid \mathsf{ref} \mathcal{E} \mid !e \mid e \leftarrow e \)
 - \(\mathsf{ref} \mathcal{E} \) creates; \(!e \) dereferences; \(e \leftarrow e \) assigns and returns the value of the expression on the left after the assignment has happened.

• Interesting typing rules:
 - \((\mathsf{GDEREF1})\) If \(e \)'s type is \(? \) then \(!e \)'s type is \(? \).
 - \((\mathsf{GASSIGN1})\) If \(e_1 \)'s type is \(? \) and \(e_2 \)'s type is \(\mathcal{T} \), then \(e_1 \leftarrow e_2 \) has type \(\mathsf{ref} \mathcal{T} \).
 - \((\mathsf{GASSIGN2})\) If \(e_1 \)'s type is \(\mathsf{ref} \mathcal{T} \) and \(e_2 \)'s type is \(\mathcal{\sigma} \), and \(\mathcal{\sigma} \sim \mathcal{T} \), then \(e_1 \leftarrow e_2 \) has type \(\mathsf{ref} \mathcal{T} \).
 - Types of locations can’t change, or type safety is compromised.
Related work

• We’re probably reading these two papers within the next 1-2 weeks:
 • Quasi-static typing (Section 3)
 • Abadi et al.’s language of explicit casts (Section 6)

• Languages with some degree of gradual typing, previously not formalized: Cecil, Boo, Bigloo, proposed extensions to VB.NET/C# and Java, ... (and since the paper came out: Typed Racket, and maybe also JavaScript)

• Languages with optional type annotations for run-time performance improvement only: Common Lisp, Dylan, ...

• Soft Typing: type inference for run-time performance improvement

• Lots of others!
Conclusion
Main points

• It’s no fun to start writing code in a dynamic language only to have to translate to a static language midway through. Ideally, you could keep the same language, and the language would have a type system that supports gradual addition of static types. Gradual typing gives us that.

• In $\lambda^?\rightarrow$, all programs are type-safe in the sense that non-type-safe actions can’t be completed, either because of static type checking or because of run-time exceptions.

• $\lambda^?\rightarrow$ is pay-as-you-go: the degree to which one or the other mechanism enforces the type safety of a particular program corresponds to the degree to which that program has type annotations. (And we get as much efficiency as we pay for, too.)
Possible directions for future work

• Add support for lists, arrays, ADTs, implicit coercions (such as between numeric types in Scheme) to a gradual type system.

• Investigate relationship between gradual typing and...
 • ...parametric polymorphism.
 • ...Hindley-Milner type inference.

• Incorporate gradual typing into a mainstream dynamic language (Python?) and find out if it really benefits programmer productivity.

• Everything else we’re going to talk about in this course...
(exit)