A tour of ParallelAccelerator.jl
A Library and Compiler for High-Level, High-Performance Scientific Computing in Julia
Lindsey Kuper
Parallel Computing Lab, Intel Labs
June 24, 2016

High Performance Scripting Project Contributors:
Todd Anderson, Raj Barik, Chunling Hu, Victor Lee, Hai Liu,
Geoff Lowney, Paul Petersen, Hongbo Rong, Tatiana Shpeisman,
Ehsan Totoni, Leonard Truong, Youfeng Wu
Productivity languages: Matlab, Python, R, Julia, …

How do you “scale up” a productivity-language prototype? The answer today: Get an expert to port the code to an efficiency language

The result is fast…and also brittle, hard to experiment with, and hard to maintain

Can we do better?
How about high-performance EDSLs?

Idea: trade off generality for productivity and performance

Delite (Brown et al., 2011), SEJITS (Catanzaro et al., 2009), …

Great results! But, two challenges:

- The learning curve
- The rest of the productivity story…
Several dimensions to productivity beyond offering the “right” abstractions for a domain:

- Fast compilation time
- Robust to a wide variety of inputs
- Debuggable using familiar techniques
- Available on the platforms users want to use
ParallelAccelerator

A combination compiler-library solution

- Accelerate existing language constructs:
 - map, reduce, comprehension
- Support additional domain-specific constructs (runStencil)
 - ...with two implementations: library-only and native

Run in library-only mode during development and debugging
Run in native mode for high performance at deployment
ParallelAccelerator

Implemented as a package:

github.com/IntelLabs/ParallelAccelerator.jl

Provides an @acc macro to annotate code to be optimized

Under the hood, it’s a Julia-to-C++* compiler, written in Julia

Approach:

- Find implicit data-parallel patterns in a subset of Julia code
- Compile to explicit parallel for loops
- Minimize run-time overheads
Example: Black-Scholes

```julia
using ParallelAccelerator

@acc function blackscholes(sptprice::Array{Float64,1},
                         strike::Array{Float64,1},
                         rate::Array{Float64,1},
                         volatility::Array{Float64,1},
                         time::Array{Float64,1})

    logterm = log10(sptprice ./ strike)
    powterm = .5 .* volatility .* volatility
    den = volatility .* sqrt(time)
    d1 = (((rate .+ powterm) .* time) .+ logterm) ./ den
    d2 = d1 .- den
    NofXd1 = cndf2(d1)
    ...
    put = call .- futureValue .+ sptprice

end

put = blackscholes(sptprice, initStrike, rate, volatility, time)
```

Example: Black-Scholes
Black-Scholes performance results

Data from 01/31/2016
2 Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.3GHz processors, 18 cores each (36 cores total)
128 GB RAM
Data-parallel patterns

- **Map**: Translate pointwise array operations like `.+`, `. -`, `. *`, and `. /` to data-parallel map operations.
- **Reduce**: Translate `minimum`, `maximum`, `sum`, `prod`, `any`, and `all` to data-parallel reduce operations.
- **Array comprehensions**: Translate to in-place map operations.

\[
\text{avg}(x) = \[0.25x[i-1] + 0.5x[i] + 0.25x[i+1] \text{ for } i = 2:\text{length} (x)-1 \]
\]
- **Special `runStencil` form for stencil computations**
runStencil example: Gaussian blur

using ParallelAccelerator

@acc function blur(img::Array{Float32,2}, iterations::Int)
 buf = Array(Float32, size(img)...
 runStencil(buf, img, iterations, :oob_skip) do b, a
 b[0,0] =
 (a[-2,-2] * 0.003 + a[-1,-2] * 0.0133 + a[0,-2] * ...
 a[-2,-1] * 0.0133 + a[-1,-1] * 0.0596 + a[0,-1] * ...
 a[-2, 0] * 0.0219 + a[-1, 0] * 0.0983 + a[0, 0] * ...
 a[-2, 1] * 0.0133 + a[-1, 1] * 0.0596 + a[0, 1] * ...
 a[-2, 2] * 0.003 + a[-1, 2] * 0.0133 + a[0, 2] * ...
 return a, b
 end
 return img
end

img = blur(img, iterations)
Gaussian blur performance results

Data from 03/02/2016

2 Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.3GHz processors, 18 cores each (36 cores total)
128 GB RAM
ParallelAccelerator compiler pipeline

Domain Transformations: replaces some Julia AST nodes with new “domain nodes” for map, reduce, comprehension, and stencil

Parallel Transformations: replaces domain nodes with “parfor” nodes representing parallel for loops

CGen: converts parfor nodes into OpenMP loops
Why Julia?

Open source
Faster than many scientific computing languages
Good support for array-style programming
Under active development, strong community

A Julia compiler written in Julia is feasible! :D
ParallelAccelerator caveats

Package load time
- Can be mitigated using ParallelAccelerator.embed()

Compiler limitations
- Only a subset of Julia is accelerated
- Compiler tries to transitively compile the whole call chain
- If anything fails to compile, fall back to standard Julia
- These problems should go away with the forthcoming native threading backend
To learn more…

The Julia blog:
julialang.org/blog/2016/03/parallelaccelerator

Our GitHub repo:
github.com/IntelLabs/ParallelAccelerator.jl

Thanks!

@lindsey
lkuper