Prospect: A Library and Compiler for High-Level, High-Performance Scientific Computing in Julia

Lindsey Kuper
Parallel Computing Lab, Intel Labs
April 14, 2016

High Performance Scripting Project
Contributors: Todd Anderson, Raj Barik, Chunling Hu, Victor Lee, Hai Liu, Geoff Lowney, Paul Petersen, Hongbo Rong, Tatiana Shpeisman, Ehsan Totoni, Leonard Truong, Youfeng Wu
You’re a scientist or engineer...

Your problem: designing a bridge, decrypting a message, picking a stock portfolio, processing audio signals, training a car to drive itself, …

Your expertise: differential equations, Fourier analysis, linear algebra, matrix computations, …

Not your expertise: memory management, scheduling parallel tasks
Productivity languages and the “human compiler” problem

Productivity languages: Matlab, Python, R, Julia, …

How do you “scale up” a productivity-language prototype? The answer today: Get an expert to port the code to an efficiency language

The result is fast…and also brittle, hard to experiment with, and hard to maintain

Can we do better?
How about high-performance DSLs?

Idea: trade off generality for productivity and efficiency

Delite (Brown et al. 2011),
SEJITS (Catanzaro et al. 2009),
Halide (Ragan-Kelley et al. 2013),
Copperhead (Catanzaro et al. 2011), …

Amazing results! But, two challenges:

- The learning curve
- The rest of the productivity story…
The rest of the DSL productivity story

Several dimensions to productivity beyond offering the “right” abstractions for a domain:

- Fast compilation time
- Robust to a wide variety of inputs
- Debuggable using familiar techniques
- Available on the platforms users want to use
Our system: Prospect

A combination compiler-library solution

- Accelerate existing language constructs:
 - map, reduce, comprehension

- Support additional domain-specific constructs (runStencil)
 - ...with two implementations: library-only and native

Run in library-only mode during development and debugging

Run in native mode for high performance at deployment
Prospect in practice

Implemented as a package:

github.com/IntelLabs/ParallelAccelerator.jl

Provides an \texttt{@acc} macro to annotate code to be optimized

Under the hood, it’s a Julia-to-C++ compiler, written in Julia

Approach:

- Identify implicit parallel patterns in a subset of Julia code
- Compile to explicit parallel for loops
- Eliminate run-time overheads
A quick preview of results…

Black-Scholes option pricing model
100,000,000 iterations

<table>
<thead>
<tr>
<th>Method</th>
<th>Running time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ParallelAccelerator</td>
<td>0.16</td>
</tr>
<tr>
<td>(36 threads)</td>
<td></td>
</tr>
<tr>
<td>ParallelAccelerator</td>
<td>0.27</td>
</tr>
<tr>
<td>(18 threads)</td>
<td></td>
</tr>
<tr>
<td>ParallelAccelerator</td>
<td>2.97</td>
</tr>
<tr>
<td>(1 thread)</td>
<td></td>
</tr>
<tr>
<td>Julia 0.4.4-pre</td>
<td>20.95</td>
</tr>
</tbody>
</table>

Data from 01/31/2016
2 Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.3GHz processors, 18 cores each (36 cores total)
128 GB RAM
Aside: why Julia?

- Open source
- Faster than many scientific computing languages
- Good support for array-style programming
- Under active development, strong community
- A Julia compiler in Julia works pretty well!
Parallel patterns

- Map: Translate pointwise array operations like .+, _.*, and ./ to data-parallel map operations

- Reduce: Translate minum, maximum, sum, prod, any, and all to data-parallel reduce operations

- Array comprehensions: Translate to in-place map operations

 \[
 \text{avg}(x) = \\
 [0.25*x[i-1] + 0.5*x[i] + 0.25*x[i+1] \text{ for } i = 2:\text{length}(x)-1]
 \]

- Special runStencil form for stencil computations
Domain Transformations: replaces some Julia AST nodes with new “domain nodes” for map, reduce, comprehension, and stencil

Parallel Transformations: replaces domain nodes with “parfor” nodes representing parallel for loops

CGen: converts parfor nodes into OpenMP loops
Example: Black-Scholes

using ParallelAccelerator

@acc function blackscholes(sptprice::Array{Float64,1},
 strike::Array{Float64,1},
 rate::Array{Float64,1},
 volatility::Array{Float64,1},
 time::Array{Float64,1})

 logterm = log10(sptprice ./ strike)
 powterm = .5 .* volatility .* volatility
 den = volatility .* sqrt(time)
 d1 = (((rate .+ powterm) .* time) .+ logterm) ./ den
 d2 = d1 .- den
 NofXd1 = cndf2(d1)
 ...
 put = call .- futureValue .+ sptprice

end

put = blackscholes(sptprice, initStrike, rate, volatility, time)
Black-Scholes demo
runStencils example: Gaussian blur

```plaintext
using ParallelAccelerator

@acc function blur(img::Array{Float32,2}, iterations::Int)
    buf = Array(Float32, size(img)...) 
    runStencil(buf, img, iterations, :oob_skip) do b, a 
        b[0,0] =
            (a[-2,-2] * 0.003 + a[-1,-2] * 0.0133 + a[0,-2] * ... 
            a[-2,-1] * 0.0133 + a[-1,-1] * 0.0596 + a[0,-1] * ... 
            a[-2, 0] * 0.0219 + a[-1, 0] * 0.0983 + a[0, 0] * ... 
            a[-2, 1] * 0.0133 + a[-1, 1] * 0.0596 + a[0, 1] * ... 
            a[-2, 2] * 0.003  + a[-1, 2] * 0.0133 + a[0, 2] * ... 
            return a, b 
        end
    return img
end
```

img = blur(img, iterations)
Gaussian blur demo
More results

Gaussian blur image processing
7095x5322 source image, 100 iters.

Data from 03/02/2016
2 Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.3GHz processors, 18 cores each (36 cores total)
128 GB RAM
Caveats

Package load time
- Can be mitigated using `ParallelAccelerator.embed()`

Compiler limitations
- Only a subset of Julia is accelerated
- Compiler tries to transitively compile the whole call chain
- If anything fails to compile, fall back to standard Julia
To learn more…

Guest post on the Julia blog:
julialang.org/blog/2016/03/parallelaccelerator

Our GitHub repo:
github.com/IntelLabs/ParallelAccelerator.jl

Thanks!