A Lattice-Based Approach to Deterministic Parallelism with Shared State

Lindsey Kuper and Ryan R. Newton
Indiana University
University of California, Berkeley
August 16, 2012
let _ = put l 3 in
let par v = get l
 _ = put l 4
 in v
What do we want?
What do we want?

- A **deterministic** program is one that always produces the same observable result on multiple runs.
What do we want?

- A **deterministic** program is one that always produces the same observable result on multiple runs.
- A **deterministic-by-construction** programming model is one that only allows deterministic programs to be written.
What do we want?

- A **deterministic** program is one that always produces the same observable result on multiple runs.

- A **deterministic-by-construction** programming model is one that only allows deterministic programs to be written.

- Examples: Kahn process networks, Intel Concurrent Collections, Haskell’s monad-par, ...
let _ = put \(l \ 3 \) in

let par \(v = \) get \(l \)

\[_ = \text{put} \ l \ 4 \]

in \(v \)
let _ = put l 3 in
let par v = get l
 _ = put l 4
 in v

Serialize?
let _ = put l 3 in
let par v = get l in
let _ = put l 4
in v
Serialize?

```
let _ = put l 3 in
let par v = get l
_ = put l 4
in v
```
Disallow shared state?

```
let _ = put l 3 in
let \(\text{par } v\) = get \(l\)
    _ = put \(l\) 4
    in \(v\)
```
Disallow shared state?

\[
\begin{align*}
\text{let } _ &= \text{put } l \ 3 \ \text{in} \\
\text{let par } v &= \text{get } l \\
_ &= \text{put } l \ 4 \\
\text{in } v
\end{align*}
\]
Disallow shared state?

let _ = put \(l \ 3 \) in

let par \(v = \) get \(l \)

_ = put \(l \ 4 \)

in \(v \)
let _ = put l 3 in
let par \(v = \) get l
 _ = put l 4
in \(v \)
Disallow multiple assignment?

```
let _ = put l 3 in
let par v = get l
  _ = put l 4  
  X

in v
```
A few single-assignment languages
A few single-assignment languages

- Historically:
 - Compel (Tesler and Enea, 1968)
A few single-assignment languages

- Historically:
 - Compel (Tesler and Enea, 1968)
 - Id, I-Structures and IVars (Arvind et al., 1989)
A few single-assignment languages

- Historically:
 - Compel (Tesler and Enea, 1968)
 - Id, I-Structures and IVars (Arvind et al., 1989)

- Today:
 - Intel Concurrent Collections (Budimlić et al., 2010)
 - Specifically, Featherweight CnC
A few single-assignment languages

Historically:
- Compel (Tesler and Enea, 1968)
- Id, I-Structures and IVars (Arvind et al., 1989)

Today:
- Intel Concurrent Collections (Budimlić et al., 2010)
 - Specifically, Featherweight CnC
- monad-par for Haskell (Marlow et al., 2011)
Disallow multiple assignment?

```
let _ = put l 3 in
let par v = get l
  _ = put l 4 ×
  in v
```
Deterministic programs that single-assignment forbids

let _ = put l 3 in
let par v = get l
 _ = put l 3
 in v
Deterministic programs that single-assignment forbids

\[
\begin{align*}
\text{let } _ &= \text{put } l \ 3 \ \text{in} \\
\text{let } \text{par } v &= \text{get } l \\
\text{in } v
\end{align*}
\]

\[
\begin{align*}
\text{let } \text{par } _ &= \text{put } l \ (4, \bot) \\
&\quad _ = \text{put } l \ (\bot, 3) \\
&\quad \text{in let } v = \text{get } l \ \text{in } v
\end{align*}
\]
Kahn process networks (Kahn, 1974)
Kahn process networks (Kahn, 1974)
Kahn process networks (Kahn, 1974)

Diagram showing network connections between nodes labeled C_1, C_2, C_3, C_4, and C_5. Arrows indicate direction of process flow.
Kahn process networks (Kahn, 1974)

\[\text{hist}(\text{in}(C_3)) : [3, 0, 5, \ldots] \]
Kahn process networks (Kahn, 1974)

\[\text{hist(in(C3)): [3, 0, 5, ...]} \quad \text{hist(out(C3)): [6, 1, 120, ...]} \]
Monotonicity
Monotonicity
Monotonicity

f is monotonic iff $x \leq y \implies f(x) \leq f(y)$
Monotonicity in KPNs

\[f \text{ is monotonic iff } x \leq y \implies f(x) \leq f(y) \]
Monotonicity in KPNs

\[f \text{ is monotonic iff } x \leq y \implies f(x) \leq f(y) \]
Monotonicity in KPNs

\[f \text{ is monotonic iff } x \leq y \implies f(x) \leq f(y) \]
Monotonicity in KPNs

\[f \text{ is monotonic iff } x \leq y \implies f(x) \leq f(y) \]

\[
\begin{array}{c}
C_1 \quad \xrightarrow{0} \quad C_3 \quad \xrightarrow{3} \quad C_5 \\
\text{in}(C_3) \quad \text{out}(C_3)
\end{array}
\]
Monotonicity in KPNs

\[f \text{ is monotonic iff } x \leq y \implies f(x) \leq f(y) \]

Diagram:

\[C_1 \xrightarrow{5 \ 0 \ 3} C_3 \xrightarrow{\text{in}(C_3) \ \text{out}(C_3)} C_5 \]
Monotonicity in KPNs

\[f \text{ is monotonic iff } x \leq y \implies f(x) \leq f(y) \]
Monotonicity in KPNs

f is monotonic iff $x \leq y \implies f(x) \leq f(y)$
Monotonicity in KPNs

f is monotonic iff $x \leq y \implies f(x) \leq f(y)$
Monotonicity in KPNs

\[f \text{ is monotonic iff } x \leq y \implies f(x) \leq f(y) \]

For KPNs, the \(\leq \) relation is just \textit{prefix-of}:

\[
\begin{align*}
[3, 0] \text{ prefix-of } [3, 0, 5] & \implies [6, 1] \text{ prefix-of } [6, 1, 120] \\
& \ldots
\end{align*}
\]
Monotonicity causes deterministic parallelism!
Back to single-assignment languages

let _ = put l_1 4 in
 let _ = put l_2 3 in
 let par _ = put l_4 3
 _ = put l_3 5
 in get l_4
Back to single-assignment languages

let _ = put \(l_1 4 \) in
 let _ = put \(l_2 3 \) in
 let par _ = put \(l_4 3 \)
 _ = put \(l_3 5 \)
 in get \(l_4 \)

Store:

<table>
<thead>
<tr>
<th>(l_1)</th>
<th>4</th>
</tr>
</thead>
</table>
let _ = put l_1 4 in
let _ = put l_2 3 in
let par _ = put l_4 3
_ = put l_3 5
in get l_4

Store:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>l_1</td>
<td>4</td>
</tr>
<tr>
<td>l_2</td>
<td>3</td>
</tr>
</tbody>
</table>
Back to single-assignment languages

```
let _ = put $l_1$ 4 in
let _ = put $l_2$ 3 in
let par _ = put $l_4$ 3
_ = put $l_3$ 5
in get $l_4$
```

Store:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>l_1</td>
<td>4</td>
</tr>
<tr>
<td>l_2</td>
<td>3</td>
</tr>
<tr>
<td>l_3</td>
<td>5</td>
</tr>
</tbody>
</table>
let _ = put l_1 4 in

let _ = put l_2 3 in

let par _ = put l_4 3

_ = put l_3 5

in get l_4

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>l_1</td>
<td>4</td>
</tr>
<tr>
<td>l_2</td>
<td>3</td>
</tr>
<tr>
<td>l_3</td>
<td>5</td>
</tr>
<tr>
<td>l_4</td>
<td>3</td>
</tr>
</tbody>
</table>
Back to single-assignment languages

let _ = put \(l_1 \ 4 \) in

let _ = put \(l_2 \ 3 \) in

let par _ = put \(l_4 \ 3 \)

_ = put \(l_3 \ 5 \)

in get \(l_4 \)

Store:

\(l_1 \)	4
\(l_2 \)	3
\(l_3 \)	5
\(l_4 \)	3

For stores, the \(\leq \) relation is \(\subseteq \):

\[
\{ l_1 \rightarrow 4, \ l_2 \rightarrow 3 \} \subseteq \{ l_1 \rightarrow 4, \ l_2 \rightarrow 3, \ l_3 \rightarrow 5 \} \implies
\]

\[
\{ l_1 \rightarrow 4, \ l_2 \rightarrow 3, \ l_4 \rightarrow 3 \} \subseteq \{ l_1 \rightarrow 4, \ l_2 \rightarrow 3, \ l_3 \rightarrow 5, \ l_4 \rightarrow 3 \}
\]
Generalizing our notion of monotonicity

For stores, the \(\leq \) relation is \(\subseteq \):

\[
\{ l_1 \rightarrow 4, \ l_2 \rightarrow 3 \} \subseteq \{ l_1 \rightarrow 4, \ l_2 \rightarrow 3, \ l_3 \rightarrow 5 \} \implies \\
\{ l_1 \rightarrow 4, \ l_2 \rightarrow 3, \ l_4 \rightarrow 3 \} \subseteq \{ l_1 \rightarrow 4, \ l_2 \rightarrow 3, \ l_3 \rightarrow 5, \ l_4 \rightarrow 3 \}
\]

- Given stores \(S \) and \(S' \), we say that \(S \leq S' \) iff:
 - \(\text{dom}(S) \subseteq \text{dom}(S') \), and
 - for all locations \(l \) in \(\text{dom}(S) \), \(S(l) = S'(l) \)
Generalizing our notion of monotonicity

For stores, the \(\leq \) relation is \(\subseteq \):

\[
\{l_1 \rightarrow 4, \ l_2 \rightarrow 3\} \subseteq \{l_1 \rightarrow 4, \ l_2 \rightarrow 3, \ l_3 \rightarrow 5\} \implies \quad \{l_1 \rightarrow 4, \ l_2 \rightarrow 3, \ l_4 \rightarrow 3\} \subseteq \{l_1 \rightarrow 4, \ l_2 \rightarrow 3, \ l_3 \rightarrow 5, \ l_4 \rightarrow 3\}
\]

- Given stores \(S \) and \(S' \), we say that \(S \leq S' \) iff:
 - \(\text{dom}(S) \subseteq \text{dom}(S') \), and
 - for all locations \(l \) in \(\text{dom}(S) \), \(S(l) \subseteq S'(l) \)
Idea: restrict reads

let _ = put l 3 in

let par v = get l 4

_ = put l 4

in v
Idea: restrict reads

let _ = put l 3 in

let par \(v = \) get \(l(4) \)

\(_ = \) put \(l(4) \)

in \(v \)
Idea: restrict reads

let _ = put l 3 in
let par v = get l \(4\)
 _ = put l 4
in v

let _ = put l 3 in
let par v = get l 4
 _ = put l 4
 _ = put l 5
in v
Idea: restrict reads

```
let _ = put l 3 in
  let par v = get l 4
    _ = put l 4
    in v
let _ = put l 3 in
  let par v = get l 4
    _ = put l 4
    _ = put l 5
    in v
```
Idea: restrict reads

```
let _ = put l 3 in
  let par v = get l (4)
    _ = put l 4
    in v
```

```
let _ = put l 3 in
  let par v = get l 4
    _ = put l 4
      _ = put l 5
    in v
```
Idea: restrict reads

```
let _ = put l 3 in
  let par v = get l 4
    _ = put l 4
  in v

let _ = put l 3 in
  let par v = get l 4
    _ = put l 4
    _ = put l 5
  in v

return 4
```
Monotonically increasing writes
+ restricted reads
= deterministic-by-construction parallelism
Parameterizing our language: “LVars”

IVar

Pair of IVars

Counter
Parameterizing our language: “LVars”

Pair of IVars
Parameterizing our language: “LVars”

Pair of lVars
Parameterizing our language: “LVars”

Pair of LVars

getFst

getSnd

"tripwire"
Parameterizing our language: “LVars”

\[
\text{let } p = \text{new in}
\]
\[
\text{let } _ = \text{put } p \{(\bot, 4)\} \text{ in}
\]
\[
\text{let par } v_1 = \text{getFst } p
\]
\[
\text{let } _ = \text{put } p \{(3, 4)\}
\]
\[
\text{in ... } v_1 ...
\]
More in our paper draft and TR
More in our paper draft and TR

- Complete syntax and semantics
More in our paper draft and TR

- Complete syntax and semantics
- Proof of determinism
 - A “frame-rule-like” property
 - Location renaming is surprisingly tricky!
More in our paper draft and TR

- Complete syntax and semantics
- Proof of determinism
 - A “frame-rule-like” property
 - Location renaming is surprisingly tricky!
- Subsuming existing models
 - KPNs, CnC, monad-par
More in our paper draft and TR

- Complete syntax and semantics
- Proof of determinism
 - A “frame-rule-like” property
 - Location renaming is surprisingly tricky!
- Subsuming existing models
 - KPNs, CnC, monad-par
- Support for controlled nondeterminism
 - “probation” state
Thanks!

Email: lkuper@cs.indiana.edu
Twitter: @lindsey
Web: cs.indiana.edu/~ lkuper
Research group: lambda.cs.indiana.edu