Homework Assignment #4
Due: Tuesday 11/24/2009 in class
(arrange with AI to demo the code by end of 11/24/09)
(total: 100 points)

Problem 1 (10 points) Denning et al., Problem 3.1 (page 81)

Problem 2 (9 points) Denning et al., Problem 3.2 (page 81)

Problem 3 (4 points) Denning et al., Problem 3.6 a and b (page 82)

Problem 4 (4 points) Denning et al., Problem 3.8 (page 83)

Problem 5 (5 points) Construct a deterministic finite-state accepter M for the language

$$T(M) = (110(0 \cup 1)^*) \cap ((0 \cup 1)^*101)$$

Consider that the input alphabet for your automaton is $\Sigma = \{0, 1\}$.

Problem 6 (8 points) For the order statistics problem (see class from October 16th), show that the complexity of the recurrence $T(n) = cn + T(n/5) + T(3n/10)$ is linear. What will happen if the array is split into fragments of size 3? What if they are of size 7?

Problem 7 (10 points) Textbook, Exercise 32.3-2 (page 922)

Problem 8 (5 points) Textbook, Exercise 32.4-1 (page 930)

Programming part

Problem 9 (45 points) String matching.

(a) (35 points) Implement and test Naïve String Matcher and Rabin-Karp Matcher. These algorithms should accept a user-defined pattern and text strings composed of the 26 English alphabet characters ONLY.

(b) (10 points) Plot and compare the running times of these algorithms across a range of scenarios. Independently devise a way to properly compare the algorithms and gain maximum insight into their performance.

IMPORTANT
- Implement a single `main.m` file that calls the two algorithms
• Output different running times and number of comparisons made by each algorithm.
• Provide descriptive answers to explain which algorithm worked better in particular scenarios you considered.

For homework assignment policies please see the class syllabus located at

http://www.informatics.indiana.edu/predrag/classes/2009falli500/syllabus.htm

Good Luck!