Announcement: Midterm Exam: Oct. 29th, in class

Last time: Heap
Today: Heapsort and Binary Search Trees (BST)

I Heapsort
1. heap

2. Heapsort(A)

Build_heap(A) \hspace{1cm} T=O(n)
For i←length(A): -1: 2
 Swap(A[1],A[i])
 heapsize←heapsize-1
 heapify(A, 1)
end \hspace{1cm} T<O(nlogn)

for example:
A: 5 13 2 25 7 17 20 8 4
Build a heap, the steps are as follow:

T=O(n)
To sort, the steps are as follow:

Time=O(nlogn)

II Binary Search Trees
Goal: to support insert, delete, member, minimum, maximum fast

BST property:

x.left
x.right
x.parent
x.key

1. Print all elements sorted

in_order_tree_walk(x) %here x is the pointer%
if x ≠ NIL
 in_order_tree_walk(x.left)
 print (x.key)
 in_order_tree_walk(x.right)
end

2. member(x, k)
if x=NIL ∨ k=x.key
 return x
end
if k<x.key
 return member(x.left, k)
else
 return member(x.right, k)
end
3. Minimum
while x.left ≠ NIL
 x ← x.left
end
return x

4. Maximum(x)
While x.right ≠ NIL
 x ← x.right
end
return x

5. Insert(IDEA)
 • Always insert as leaf
 • Follow BST Property and go down the right branch
Example:

```
Insert 10
12
  7
  15
  10
  14
  25

Insert 11
12
  7
  15
  10
  14
  25
  11

Insert 11.5
12
  7
  15
  10
  14
  25
  11
  11.5
```

6. Find the next element
Tree_successor(x)
If x.right ≠ NIL
 Return minimum(x.right)
Else
 y ← x.parent
 while y ≠ NIL ∧ x = y.right
 x ← y
 y ← y.parent
 end
 return y
end
Here if \(x=5 \)
\(x.\text{right} \neq \text{NIL} \)
Then successor\((x) = 7 \)

If \(x=7 \)
\(x.\text{right} = \text{NIL} \)
\(y = x.\text{parent} = 5 \)
\(x = y = 5 \)
Then the successor = \(y.\text{parent} = 12 \)

7. delete\((y)\)

If \(y.\text{left} = \text{NIL} \)
If \(y.\text{left} \neq \text{NIL} \), find \(y \)'s successor

Lamma: let \(T \) be a BST of depth \(d \) then, any of minimum, maximum, insert, delete, member operations can be executed in \(O(d) \) steps

BST with \(n \) nodes has \(d \) bounded by \(\log n \leq d \leq n - 1 \)