Data Mining: simple algorithms
K-nearest neighbor algorithm (KNN)

- a simple algorithm that stores all available data points (examples) and classifies new data points based on a similarity measure

- for example

<table>
<thead>
<tr>
<th>labeled data</th>
<th>find class labels for the 4 data points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 6 0</td>
<td>0 0 5</td>
</tr>
<tr>
<td>1 1 4 1</td>
<td>1 1 1</td>
</tr>
<tr>
<td>0.4 1 -2 1</td>
<td>0 0.1 1</td>
</tr>
<tr>
<td>1 2 3 0</td>
<td>-1 -1 -1</td>
</tr>
<tr>
<td>0 0 -1 0</td>
<td></td>
</tr>
<tr>
<td>0 1 3.2 0</td>
<td></td>
</tr>
</tbody>
</table>
The closest labeled data point to the first unlabeled data point is data point 1 (Euclidean distance = 1).

Therefore, the class of the first unlabeled data point is predicted to be 0 (which is the class of the closest labeled data point).
The closest 3 labeled data points to the first unlabeled data point is data point 1 are at distance 1, 1.7 and 2.1.

Again, we will predict that the label is 0 based on the majority rule (0 – twice, 1 – once).
K-nearest neighbor algorithm

- find closest K data points and use majority rule to assign class;
- if no class is majority, then pick at random or leave unlabeled

- More formally
 - given:
 - Data set $D = \{(x_i, y_i), i = 1, ..., n\}$
 - where, for example, $x_i \in \mathbb{R}^k$
 - $y_i \in \{0, 1\}$ is the class variable – in this case it is a binary class label
 - K is an integer (odd number preferably)
 - find label for every unlabeled data point $u_i \in \mathbb{R}^k$

- Algorithm
 - find K closest data points to data point u
 - assign class that occurs most times among K neighbors
Web examples of KNN algorithm

- Demo by Prof. Dennis Groth, IU
 (http://www.cs.indiana.edu/~dgroth/mbr.htm)

- Demo by Prof. Jerry Zhu, CMU
 (http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html)
Properties of K-NN algorithm

- This algorithm belongs to the class of “lazy” algorithms. There is no process of learning a model. The examples are simply stored as the data is collected.

- The difficulty comes at classification stage. We need to calculate \(n \) distances and find best \(K \) data points.

- K-NN algorithm is suited for the regression problems as well (remember regression is actually function approximation). Instead of assigning the most frequent classification among the \(K \) examples most similar to a data point \(x \), an average of the function values of the \(K \) examples is calculated as the prediction for the function value \(x \).

- How to choose \(K \)
 - too small: the method might be inaccurate and sensitive to noise
 - too large: the method is more robust but may lose sensitivity to changes in the feature space
 - solution? Try a few \(K \)'s and find optimum based on the estimated accuracy of the predictor
Qualities and problems

- **Qualities**
 - easy to implement
 - no work needed for training
 - robust for wisely selected K
 - easy to interpret, just find the most similar examples are see what they are

- **Some problems**
 - slow at prediction (regression) stage
 - does not scale-up well with large datasets
 - irrelevant features influence distance
 - may not work well in high-dimensional spaces
Variants of K-NN and applications

- Variants
 - use of a different distance measure
 - use of indexing so that the search is sublinear (with the number of data points n); one frequently used application is k-d trees (k-d trees hierarchically decompose space into a relatively small number of cells)

- Possible applications
 - image retrieval - find K closest images to the query image
 - text mining – find K closest web pages
 - collaborative filtering – find best K users of the system and see what else they like
 - GIS – find 5 closest cities to Bloomington
 - data cleaning