Data Mining
Classification: Alternative Techniques

Lecture Notes for Chapter 5

Introduction to Data Mining
by
Tan, Steinbach, Kumar

(modified by Predrag Radivojac, 2018)
Rule-Based Classifiers

- Classify records by using a collection of “if…then…” rules

- **Rule:** \((Condition) \rightarrow y\)
 - where
 - \(Condition\) is a conjunction of attributes
 - \(y\) is the class label
 - **LHS**: rule antecedent or condition
 - **RHS**: rule consequent

- **Examples of classification rules:**
 - \((\text{Blood Type} = \text{Warm}) \land (\text{Lay Eggs} = \text{Yes}) \rightarrow \text{Birds}\)
 - \((\text{Taxable Income} < 50K) \land (\text{Refund} = \text{Yes}) \rightarrow \text{Evade} = \text{No}\)
Rule-based Classifiers (Example)

\[R_1: (\text{Give Birth} = \text{no}) \land (\text{Can Fly} = \text{yes}) \rightarrow \text{Birds} \]
\[R_2: (\text{Give Birth} = \text{no}) \land (\text{Live in Water} = \text{yes}) \rightarrow \text{Fishes} \]
\[R_3: (\text{Give Birth} = \text{yes}) \land (\text{Blood Type} = \text{warm}) \rightarrow \text{Mammals} \]
\[R_4: (\text{Give Birth} = \text{no}) \land (\text{Can Fly} = \text{no}) \rightarrow \text{Reptiles} \]
\[R_5: (\text{Live in Water} = \text{sometimes}) \rightarrow \text{Amphibians} \]
Application of Rule-Based Classifiers

- A rule \(r \) covers an instance \(x \) if the attributes of the instance satisfy the condition of the rule

\[
\begin{align*}
R_1 : & \ (\text{Give Birth} = \text{no}) \land (\text{Can Fly} = \text{yes}) \rightarrow \text{Birds} \\
R_2 : & \ (\text{Give Birth} = \text{no}) \land (\text{Live in Water} = \text{yes}) \rightarrow \text{Fishes} \\
R_3 : & \ (\text{Give Birth} = \text{yes}) \land (\text{Blood Type} = \text{warm}) \rightarrow \text{Mammals} \\
R_4 : & \ (\text{Give Birth} = \text{no}) \land (\text{Can Fly} = \text{no}) \rightarrow \text{Reptiles} \\
R_5 : & \ (\text{Live in Water} = \text{sometimes}) \rightarrow \text{Amphibians}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Name</th>
<th>Blood Type</th>
<th>Give Birth</th>
<th>Can Fly</th>
<th>Live in Water</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>hawk</td>
<td>warm</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>?</td>
</tr>
<tr>
<td>grizzly bear</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>?</td>
</tr>
</tbody>
</table>

The rule \(R_1 \) covers a hawk => **Bird**

The rule \(R_3 \) covers the grizzly bear => **Mammal**
Rule Coverage and Accuracy

- Coverage of a rule:
 - Fraction of records that satisfy the antecedent of a rule

- Accuracy of a rule:
 - Fraction of records that satisfy both the antecedent and consequent of a rule

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

\[
R_1: (\text{Status} = \text{Single}) \rightarrow \text{No}
\]

Coverage = 40%, Accuracy = 50%
How Rule-based Classifiers Work

\[R_1: (\text{Give Birth} = \text{no}) \land (\text{Can Fly} = \text{yes}) \rightarrow \text{Birds} \]
\[R_2: (\text{Give Birth} = \text{no}) \land (\text{Live in Water} = \text{yes}) \rightarrow \text{Fishes} \]
\[R_3: (\text{Give Birth} = \text{yes}) \land (\text{Blood Type} = \text{warm}) \rightarrow \text{Mammals} \]
\[R_4: (\text{Give Birth} = \text{no}) \land (\text{Can Fly} = \text{no}) \rightarrow \text{Reptiles} \]
\[R_5: (\text{Live in Water} = \text{sometimes}) \rightarrow \text{Amphibians} \]

<table>
<thead>
<tr>
<th>Name</th>
<th>Blood Type</th>
<th>Give Birth</th>
<th>Can Fly</th>
<th>Live in Water</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>lemur</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>?</td>
</tr>
<tr>
<td>turtle</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>?</td>
</tr>
<tr>
<td>dogfish shark</td>
<td>cold</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>?</td>
</tr>
</tbody>
</table>

A lemur triggers rule \(R_3 \), so it is classified as a mammal
A turtle triggers both \(R_4 \) and \(R_5 \)
A dogfish shark triggers none of the rules
Characteristics of Rule-Based Classifiers

- Mutually exclusive rules
 - Classifier contains mutually exclusive rules if the rules are independent of each other
 - Every record is covered by at most one rule

- Exhaustive rules
 - Classifier has exhaustive coverage if it accounts for every possible combination of attribute values
 - Each record is covered by at least one rule
From Decision Trees To Rules

Classification Rules

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single, Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single, Divorced}, Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Rules are mutually exclusive and exhaustive.
The rule set contains as much information as the tree.
Rules Can Be Simplified

Initial Rule: \[(\text{Refund} = \text{No}) \land (\text{Status} = \text{Married}) \rightarrow \text{No}\]

Simplified Rule: \[(\text{Status} = \text{Married}) \rightarrow \text{No}\]
Effect of Rule Simplification

● Rules are no longer mutually exclusive
 – A record may trigger more than one rule
 – Solution?
 ◆ Ordered rule set
 ◆ Unordered rule set – use voting schemes

● Rules are no longer exhaustive
 – A record may not trigger any rules
 – Solution?
 ◆ Use a default class
Ordered Rule Set

- Rules are rank ordered according to their priority
 - An ordered rule set is known as a decision list
- When a test record is presented to the classifier
 - It is assigned to the class label of the highest ranked rule it has triggered
 - If none of the rules fired, it is assigned to the default class

\[\begin{align*}
R_1: & \quad \text{(Give Birth = no)} \land \text{(Can Fly = yes)} \rightarrow \text{Birds} \\
R_2: & \quad \text{(Give Birth = no)} \land \text{(Live in Water = yes)} \rightarrow \text{Fishes} \\
R_3: & \quad \text{(Give Birth = yes)} \land \text{(Blood Type = warm)} \rightarrow \text{Mammals} \\
R_4: & \quad \text{(Give Birth = no)} \land \text{(Can Fly = no)} \rightarrow \text{Reptiles} \\
R_5: & \quad \text{(Live in Water = sometimes)} \rightarrow \text{Amphibians}
\end{align*}\]

<table>
<thead>
<tr>
<th>Name</th>
<th>Blood Type</th>
<th>Give Birth</th>
<th>Can Fly</th>
<th>Live in Water</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>turtle</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>?</td>
</tr>
</tbody>
</table>
Rule Ordering Schemes

- **Rule-based ordering**
 - Individual rules are ranked based on their quality

- **Class-based ordering**
 - Rules that belong to the same class appear together

Rule-based Ordering

- (Refund=Yes) ==> No
- (Refund=No, Marital Status={Single, Divorced}, Taxable Income < 80K) ==> No
- (Refund=No, Marital Status={Single, Divorced}, Taxable Income > 80K) ==> Yes
- (Refund=No, Marital Status={Married}) ==> No

Class-based Ordering

- (Refund=Yes) ==> No
- (Refund=No, Marital Status={Single, Divorced}, Taxable Income < 80K) ==> No
- (Refund=No, Marital Status={Married}) ==> No
- (Refund=No, Marital Status={Single, Divorced}, Taxable Income > 80K) ==> Yes
Building Classification Rules

● Direct Method:
 ◆ Extract rules directly from data
 ◆ e.g.: RIPPER, CN2, Holte’s 1R

● Indirect Method:
 ◆ Extract rules from other classification models (e.g. decision trees, neural networks, etc.).
 ◆ e.g: C4.5rules
Direct Method: Sequential Covering

1. Start from an empty rule
2. Grow a rule using the Learn-One-Rule function
3. Remove training records covered by the rule
4. Repeat Step (2) and (3) until stopping criterion is met
Example of Sequential Covering

(i) Original Data

(ii) Step 1
Example of Sequential Covering...

(iii) Step 2

(iv) Step 3
Aspects of Sequential Covering

- Rule Growing
- Instance Elimination
- Rule Evaluation
- Stopping Criterion
- Rule Pruning
Rule Growing

- Two common strategies

We need a criterion to pick the best path:

Data set: 60 positives and 100 negatives
- \(R_1 \): covers 50 positives and 5 negatives
- \(R_2 \): covers 2 positives and no negatives

Which rule is better?
Rule Growing (Examples)

● CN2 Algorithm:
 – Start from an empty conjunct: \{\}\n – Add conjuncts that minimizes the entropy measure: \{A\}, \{A,B\}, …
 – Determine the rule consequent by taking majority class of instances covered by the rule

● RIPPER Algorithm:
 – Start from an empty rule: \{\} \rightarrow \text{class}
 – Add conjuncts that maximizes FOIL’s information gain measure:
 ✦ \text{R}_0: \{\} \rightarrow \text{class} \quad \text{(initial rule)}
 ✦ \text{R}_1: \{A\} \rightarrow \text{class} \quad \text{(rule after adding conjunct)}
 ✦ \text{Gain}(\text{R}_0, \text{R}_1) = t \left[\log \left(\frac{p_1}{p_1+n_1} \right) - \log \left(\frac{p_0}{p_0 + n_0} \right) \right]
 ✦ where \ t: \text{number of positive instances covered by both } \text{R}_0 \text{ and } \text{R}_1
 \ p_0: \text{number of positive instances covered by } \text{R}_0
 \ n_0: \text{number of negative instances covered by } \text{R}_0
 \ p_1: \text{number of positive instances covered by } \text{R}_1
 \ n_1: \text{number of negative instances covered by } \text{R}_1
Instance Elimination

- Why do we need to eliminate instances?
 - Otherwise, the next rule is identical to previous rule

- Why do we remove positive instances?
 - Ensure that the next rule is different

- Why do we remove negative instances?
 - Prevent underestimating accuracy of rule
 - Compare rules R2 and R3 in the diagram
Rule Evaluation

Metrics:
- **Accuracy** = \(\frac{n_c}{n} \)
- **Laplace** = \(\frac{n_c + 1}{n + k} \)
- **M-estimate** = \(\frac{n_c + kp}{n + k} \)

\(n \): Number of instances covered by rule
\(n_c \): Number of instances covered by rule, in class
\(k \): Number of classes
\(p \): Prior probability
Stopping Criterion and Rule Pruning

- **Stopping criterion**
 - Compute the gain
 - If gain is not significant, discard the new rule

- **Rule Pruning**
 - Similar to post-pruning of decision trees
 - Reduced Error Pruning:
 - Remove one of the conjuncts in the rule
 - Compare error rate on validation set before and after pruning
 - If error improves, prune the conjunct
Summary of Direct Method

- Grow a single rule
- Remove Instances from rule
- Prune the rule (if necessary)
- Add rule to Current Rule Set
- Repeat
Direct Method: RIPPER

- For 2-class problems, choose one of the classes as positive class, and the other as negative class
 - Learn rules for positive class
 - Negative class will be default class
- For multi-class problems
 - Order the classes according to increasing class prevalence (fraction of instances that belong to a particular class)
 - Learn the rule set for smallest class first, treat the rest as negative class
 - Repeat with next smallest class as positive class
Direct Method: RIPPER

Growing a rule:
- Start from empty rule
- Add conjuncts as long as they improve FOIL’s information gain
- Stop when rule no longer covers negative examples
- Prune the rule immediately using incremental reduced error pruning
- Measure for pruning: \(v = \frac{p-n}{p+n} \)
 - \(p \): number of positive examples covered by the rule in the validation set
 - \(n \): number of negative examples covered by the rule in the validation set
- Pruning method: delete any final sequence of conditions that maximizes \(v \)
Direct Method: RIPPER

- Building a Rule Set:
 - Use sequential covering algorithm
 - Finds the best rule that covers the current set of positive examples
 - Eliminate both positive and negative examples covered by the rule
 - Each time a rule is added to the rule set, compute the new description length
 - stop adding new rules when the new description length is \(d \) bits longer than the smallest description length obtained so far
Direct Method: RIPPER

- **Optimize the rule set:**
 - For each rule r in the rule set R
 - Consider 2 alternative rules:
 - Replacement rule (r^*): grow new rule from scratch
 - Revised rule (r'): add conjuncts to extend the rule r
 - Compare the rule set for r against the rule set for r^* and r'
 - Choose rule set that minimizes MDL principle
 - Repeat rule generation and rule optimization for the remaining positive examples
Indirect Methods

Rule Set

r1: (P=No, Q=No) ==> -
r2: (P=No, Q=Yes) ==> +
r3: (P=Yes, R=No) ==> +
r4: (P=Yes, R=Yes, Q=No) ==> -
r5: (P=Yes, R=Yes, Q=Yes) ==> +
Indirect Method: C4.5rules

- Extract rules from an unpruned decision tree
- For each rule, \(r: A \rightarrow y, \)
 - consider an alternative rule \(r': A' \rightarrow y \) where \(A' \) is obtained by removing one of the conjuncts in \(A \)
 - Compare the pessimistic error rate for \(r \) against all \(r' \)'s
 - Prune if one of the \(r' \)'s has lower pessimistic error rate
 - Repeat until we can no longer improve generalization error
Indirect Method: C4.5rules

- Instead of ordering the rules, order subsets of rules (class ordering)
 - Each subset is a collection of rules with the same rule consequent (class)
 - Compute description length of each subset
 - Description length = $L(\text{error}) + g L(\text{model})$
 - g is a parameter that takes into account the presence of redundant attributes in a rule set (default value = 0.5)
Example

<table>
<thead>
<tr>
<th>Name</th>
<th>Give Birth</th>
<th>Lay Eggs</th>
<th>Can Fly</th>
<th>Live in Water</th>
<th>Have Legs</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>human</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>python</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>reptiles</td>
</tr>
<tr>
<td>salmon</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>fishes</td>
</tr>
<tr>
<td>whale</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>frog</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>sometimes</td>
<td>yes</td>
<td>amphibians</td>
</tr>
<tr>
<td>komodo</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>reptiles</td>
</tr>
<tr>
<td>bat</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>pigeon</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>birds</td>
</tr>
<tr>
<td>cat</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>leopard shark</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>fishes</td>
</tr>
<tr>
<td>turtle</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>sometimes</td>
<td>yes</td>
<td>reptiles</td>
</tr>
<tr>
<td>penguin</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>sometimes</td>
<td>yes</td>
<td>birds</td>
</tr>
<tr>
<td>porcupine</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>eel</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>fishes</td>
</tr>
<tr>
<td>salamander</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>sometimes</td>
<td>yes</td>
<td>amphibians</td>
</tr>
<tr>
<td>gila monster</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>reptiles</td>
</tr>
<tr>
<td>platypus</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>owl</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>birds</td>
</tr>
<tr>
<td>dolphin</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>eagle</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>birds</td>
</tr>
</tbody>
</table>
C4.5 versus C4.5rules versus RIPPER

C4.5rules:
(Give Birth=No, Can Fly=Yes) → Birds
(Give Birth=No, Live in Water=Yes) → Fishes
(Give Birth=Yes) → Mammals
(Give Birth=No, Can Fly=No, Live in Water=No) → Reptiles
() → Amphibians

RIPPER:
(Live in Water=Yes) → Fishes
(Have Legs=No) → Reptiles
(Give Birth=No, Can Fly=No, Live In Water=No) → Reptiles
(Can Fly=Yes, Give Birth=No) → Birds
() → Mammals
C4.5 versus C4.5rules versus RIPPER

C4.5 and C4.5rules:

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
<th>Amphibians</th>
<th>Fishes</th>
<th>Reptiles</th>
<th>Birds</th>
<th>Mammals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibians</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fishes</td>
<td></td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Reptiles</td>
<td></td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

RIPPER:

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
<th>Amphibians</th>
<th>Fishes</th>
<th>Reptiles</th>
<th>Birds</th>
<th>Mammals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibians</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Fishes</td>
<td></td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reptiles</td>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
Advantages of Rule-Based Classifiers

- As highly expressive as decision trees
- Easy to interpret
- Easy to generate
- Can classify new instances rapidly
- Performance comparable to decision trees
Instance-Based Classifiers

Set of Stored Cases

<table>
<thead>
<tr>
<th>Atr1</th>
<th>.......</th>
<th>AtrN</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>

- Store the training records
- Use training records to predict the class label of unseen cases

Unseen Case

<table>
<thead>
<tr>
<th>Atr1</th>
<th>.......</th>
<th>AtrN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Instance Based Classifiers

Examples:

- Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly

- Nearest neighbor
 - Uses k “closest” points (nearest neighbors) for performing classification
Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck
Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of \(k \), the number of nearest neighbors to retrieve

- To classify an unknown record:
 - Compute distance to other training records
 - Identify \(k \) nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)
Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x.
1 nearest-neighbor

Voronoi Diagram
Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

 \[d(p,q) = \sqrt{\sum (p_i - q_i)^2} \]

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - Weigh the vote according to distance
 - weight factor, \(w = 1/d^2 \)
Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes
Nearest Neighbor Classification...

- Scaling issues
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from $10K to $1M
Nearest Neighbor Classification...

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality
 - Can produce counter-intuitive results

\[
\begin{align*}
\text{1 1 1 1 1 1 1 1 1 1 1 0} & \quad \text{vs} \quad \text{1 0 0 0 0 0 0 0 0 0 0 0} \\
\text{0 1 1 1 1 1 1 1 1 1 1 1} & \quad \text{0 0 0 0 0 0 0 0 0 0 0 0 1}
\end{align*}
\]

\[d = 1.4142\] \[d = 1.4142\]

- Solution: Normalize the vectors to unit length
Nearest neighbor Classification...

- k-NN classifiers are lazy learners
 - It does not build models explicitly
 - Unlike eager learners such as decision tree induction and rule-based systems
 - Classifying unknown records are relatively expensive
Example: PEBLS

- PEBLS: Parallel Examplar-Based Learning System (Cost & Salzberg)
 - Works with both continuous and nominal features
 - For nominal features, distance between two nominal values is computed using modified value difference metric (MVDM)
 - Each record is assigned a weight factor
 - Number of nearest neighbor, $k = 1$
Example: PEBLS

Distance between nominal attribute values:

\[d(\text{Single, Married}) = |2/4 - 0/4| + |2/4 - 4/4| = 1 \]
\[d(\text{Single, Divorced}) = |2/4 - 1/2| + |2/4 - 1/2| = 0 \]
\[d(\text{Married, Divorced}) = |0/4 - 1/2| + |4/4 - 1/2| = 1 \]
\[d(\text{Refund=Yes, Refund=No}) = |0/3 - 3/7| + |3/3 - 4/7| = 6/7 \]

\[
d(V_1, V_2) = \sum_i \left| \frac{n_{1i}}{n_1} - \frac{n_{2i}}{n_2} \right|
\]
Example: PEBLS

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>Y</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
</tbody>
</table>

Distance between record X and record Y:

\[
\Delta(X, Y) = w_X w_Y \sum_{i=1}^{d} d(X_i, Y_i)^2
\]

where:

\[
w_X = \frac{\text{Number of times X is used for prediction}}{\text{Number of times X predicts correctly}}
\]

\(w_X \approx 1\) if X makes accurate prediction most of the time

\(w_X > 1\) if X is not reliable for making predictions
Bayes Classifier

A probabilistic framework for solving classification problems

Conditional Probability:

\[
P(C \mid A) = \frac{P(A, C)}{P(A)}
\]

\[
P(A \mid C) = \frac{P(A, C)}{P(C)}
\]

Bayes theorem:

\[
P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}
\]
Example of Bayes Theorem

- **Given:**
 - A doctor knows that meningitis causes stiff neck 50% of the time
 - Prior probability of any patient having meningitis is 1/50,000
 - Prior probability of any patient having stiff neck is 1/20

- If a patient has stiff neck, what’s the probability he/she has meningitis?

\[
P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002
\]
Bayesian Classifiers

- Consider each attribute and class label as random variables

- Given a record with attributes \((A_1, A_2, \ldots, A_n)\)
 - Goal is to predict class \(C\)
 - Specifically, we want to find the value of \(C\) that maximizes \(P(C| A_1, A_2, \ldots, A_n)\)

- Can we estimate \(P(C| A_1, A_2, \ldots, A_n)\) directly from data?
Bayesian Classifiers

- Approach:
 - compute the posterior probability $P(C \mid A_1, A_2, \ldots, A_n)$ for all values of C using the Bayes theorem

$$P(C \mid A_1 A_2 \ldots A_n) = \frac{P(A_1 A_2 \ldots A_n \mid C) P(C)}{P(A_1 A_2 \ldots A_n)}$$

 - Choose value of C that maximizes $P(C \mid A_1, A_2, \ldots, A_n)$

 - Equivalent to choosing value of C that maximizes $P(A_1, A_2, \ldots, A_n \mid C) P(C)$

- How to estimate $P(A_1, A_2, \ldots, A_n \mid C)$?
Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(A_1, A_2, \ldots, A_n | C) = P(A_1 | C_j) \cdot P(A_2 | C_j) \ldots \cdot P(A_n | C_j)$
 - Can estimate $P(A_i | C_j)$ for all A_i and C_j.
 - New point is classified to C_j if $P(C_j) \cdot \prod P(A_i | C_j)$ is maximal.
How to Estimate Probabilities from Data?

- **Class:** \(P(C) = \frac{N_c}{N} \)
 - e.g., \(P(\text{No}) = \frac{7}{10} \), \(P(\text{Yes}) = \frac{3}{10} \)

- **For discrete attributes:**
 \[
P(A_i \mid C_k) = \frac{|A_{ik}|}{N_{c_k}}
 \]
 - where \(|A_{ik}| \) is number of instances having attribute \(A_i \) and belongs to class \(C_k \)
 - Examples:

 \[
 P(\text{Status}=\text{Married} \mid \text{No}) = \frac{4}{7}
 \]
 \[
 P(\text{Refund}=\text{Yes} \mid \text{Yes}) = 0
 \]
How to Estimate Probabilities from Data?

- For continuous attributes:
 - **Discretize** the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
 - **Two-way split:** \((A < v)\) or \((A > v)\)
 - choose only one of the two splits as new attribute
 - **Probability density estimation:**
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability \(P(A_i|c)\)
How to Estimate Probabilities from Data?

- Normal distribution:
 \[P(A_i \mid c_j) = \frac{1}{\sqrt{2\pi\sigma^2_{ij}}} e^{-\frac{(A_i - \mu_{ij})^2}{2\sigma^2_{ij}}} \]
 - One for each \((A_i, c_i)\) pair

- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

\[
P(\text{Income} = 120 \mid \text{No}) = \frac{1}{\sqrt{2\pi(54.54)}} e^{-\frac{(120 - 110)^2}{2(2975)}} = 0.0072
\]

Table

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Evade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Example of Naïve Bayes Classifier

Given a Test Record:
\[X = (\text{Refund} = \text{No}, \text{Married}, \text{Income} = 120\text{K}) \]

naïve Bayes Classifier:

\[
\begin{align*}
P(\text{Refund} = \text{Yes}|\text{No}) &= \frac{3}{7} \\
P(\text{Refund} = \text{No}|\text{No}) &= \frac{4}{7} \\
P(\text{Refund} = \text{Yes}|\text{Yes}) &= 0 \\
P(\text{Refund} = \text{No}|\text{Yes}) &= 1 \\
P(\text{Marital Status} = \text{Single}|\text{No}) &= \frac{2}{7} \\
P(\text{Marital Status} = \text{Divorced}|\text{No}) &= \frac{1}{7} \\
P(\text{Marital Status} = \text{Married}|\text{No}) &= \frac{4}{7} \\
P(\text{Marital Status} = \text{Single}|\text{Yes}) &= \frac{2}{7} \\
P(\text{Marital Status} = \text{Divorced}|\text{Yes}) &= \frac{1}{7} \\
P(\text{Marital Status} = \text{Married}|\text{Yes}) &= 0
\end{align*}
\]

For taxable income:
If class=No: sample mean=110
sample variance=2975
If class=Yes: sample mean=90
sample variance=25

\[
\begin{align*}
P(X|\text{Class}=\text{No}) &= P(\text{Refund} = \text{No}|\text{Class}=\text{No}) \\
&\quad \times P(\text{Married}|\text{Class}=\text{No}) \\
&\quad \times P(\text{Income}=120\text{K}|\text{Class}=\text{No}) \\
&= \frac{4}{7} \times \frac{4}{7} \times 0.0072 = 0.0024
\end{align*}
\]

\[
\begin{align*}
P(X|\text{Class}=\text{Yes}) &= P(\text{Refund} = \text{No}|\text{Class}=\text{Yes}) \\
&\quad \times P(\text{Married}|\text{Class}=\text{Yes}) \\
&\quad \times P(\text{Income}=120\text{K}|\text{Class}=\text{Yes}) \\
&= 1 \times 0 \times 1.2 \times 10^{-9} = 0
\end{align*}
\]

Since \(P(X|\text{No})P(\text{No}) > P(X|\text{Yes})P(\text{Yes}) \)
Therefore \(P(\text{No}|X) > P(\text{Yes}|X) \)
\(\Rightarrow \) Class = No
Naïve Bayes Classifier

- If one of the conditional probability is zero, then the entire expression becomes zero
- Probability estimation:

\[
\text{Original: } P(A_i | C) = \frac{N_{ic}}{N_c}
\]

\[
\text{Laplace: } P(A_i | C) = \frac{N_{ic} + 1}{N_c + c}
\]

\[
\text{m-estimate: } P(A_i | C) = \frac{N_{ic} + mp}{N_c + m}
\]

c: number of classes
p: prior probability
m: parameter
Example of Naïve Bayes Classifier

<table>
<thead>
<tr>
<th>Name</th>
<th>Give Birth</th>
<th>Can Fly</th>
<th>Live in Water</th>
<th>Have Legs</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>human</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>python</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>non-mammals</td>
</tr>
<tr>
<td>salmon</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>non-mammals</td>
</tr>
<tr>
<td>whale</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>frog</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
<tr>
<td>komodo</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
<tr>
<td>bat</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>pigeon</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
<tr>
<td>cat</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>leopard shark</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>non-mammals</td>
</tr>
<tr>
<td>turtle</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
<tr>
<td>penguin</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
<tr>
<td>porcupine</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>eel</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>non-mammals</td>
</tr>
<tr>
<td>salamander</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
<tr>
<td>gila monster</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
<tr>
<td>platypus</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>owl</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>non-mammals</td>
</tr>
<tr>
<td>dolphin</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>eagle</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
</tbody>
</table>

Calculation:

\[P(A | M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06 \]

\[P(A | N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042 \]

\[P(A | M)P(M) = 0.06 \times \frac{7}{20} = 0.021 \]

\[P(A | N)P(N) = 0.0042 \times \frac{13}{20} = 0.0027 \]

\[P(A|M)P(M) > P(A|N)P(N) \]

=> Mammals
Naïve Bayes (Summary)

- Robust to isolated noise points

- Handle missing values by ignoring the instance during probability estimate calculations

- Robust to irrelevant attributes

- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)
Output Y is 1 if at least two of the three inputs are equal to 1.
Artificial Neural Networks (ANN)

\[
Y = I(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4 > 0)
\]

where \(I(z) \) is defined as:

\[
I(z) = \begin{cases}
1 & \text{if } z \text{ is true} \\
0 & \text{otherwise}
\end{cases}
\]
Artificial Neural Networks (ANN)

- Model is an assembly of inter-connected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links
- Compare output node against some threshold t

Perceptron Model

$$Y = I(\sum_i w_i X_i - t)$$ \text{or}
$$Y = \text{sign}(\sum_i w_i X_i - t)$$
General Structure of ANN

Training ANN means learning the weights of the neurons.
Algorithm for learning ANN

- Initialize the weights \((w_0, w_1, \ldots, w_k) \)

- Adjust the weights in such a way that the output of ANN is consistent with class labels of training examples
 - Objective function: \(E = \sum_i [Y_i - f(w_i, X_i)]^2 \)
 - Find the weights \(w_i \)'s that minimize the above objective function
 - e.g., backpropagation algorithm (see lecture notes)
Support Vector Machines

* Find a linear hyperplane (decision boundary) that will separate the data
Support Vector Machines

One Possible Solution
Support Vector Machines

- Another possible solution
Support Vector Machines

Other possible solutions
Support Vector Machines

- Which one is better? B1 or B2?
- How do you define better?
Support Vector Machines

- Find hyperplane maximizes the margin => B1 is better than B2
Support Vector Machines

\[\vec{w} \cdot \vec{x} + b = 0 \]
\[\vec{w} \cdot \vec{x} + b = -1 \]

\[f(\vec{x}) = \begin{cases}
 1 & \text{if } \vec{w} \cdot \vec{x} + b \geq 1 \\
 -1 & \text{if } \vec{w} \cdot \vec{x} + b \leq -1
\end{cases} \]

Margin = \[\frac{2}{||\vec{w}||^2} \]
Support Vector Machines

We want to maximize: \[\text{Margin} = \frac{2}{\| \vec{w} \|^2} \]

– Which is equivalent to minimizing: \[L(w) = \frac{\| \vec{w} \|^2}{2} \]

– But subjected to the following constraints:

\[f(\vec{x}_i) = \begin{cases}
1 & \text{if } \vec{w} \cdot \vec{x}_i + b \geq 1 \\
-1 & \text{if } \vec{w} \cdot \vec{x}_i + b \leq -1
\end{cases} \]

– This is a constrained optimization problem
 – Numerical approaches to solve it (e.g., quadratic programming)
Support Vector Machines

- What if the problem is not linearly separable?
Support Vector Machines

- What if the problem is not linearly separable?
 - Introduce slack variables

 - Need to minimize:

 $L(w) = \frac{||\vec{w}||^2}{2} + C\left(\sum_{i=1}^{N} \xi_i \right)$

 - Subject to:

 $f(x_i) = \begin{cases}
 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \geq 1 - \xi_i \\
 -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \leq -1 + \xi_i
 \end{cases}$
Nonlinear Support Vector Machines

What if decision boundary is not linear?
Nonlinear Support Vector Machines

- Transform data into higher dimensional space
Ensemble Methods

- Construct a set of classifiers from the training data

- Predict class label of previously unseen records by aggregating predictions made by multiple classifiers
General Idea

Original Training data

Step 1: Create Multiple Data Sets

D1 → C1

D2 → C2

... → Ct-1

Dt → Ct

Step 2: Build Multiple Classifiers

Step 3: Combine Classifiers

C*

C
Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, \(\varepsilon = 0.35 \)
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction:

\[
\sum_{i=13}^{25} \binom{25}{i} \varepsilon^i (1 - \varepsilon)^{25-i} = 0.06
\]
Examples of Ensemble Methods

- How to generate an ensemble of classifiers?
 - Bagging
 - Boosting
Bagging

- Sampling with replacement

<table>
<thead>
<tr>
<th>Original Data</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagging (Round 1)</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Bagging (Round 2)</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Bagging (Round 3)</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

- Build classifier on each bootstrap sample

- Each sample has probability \((1 - 1/n)^n\) of being selected
Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of boosting round
Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

<table>
<thead>
<tr>
<th>Original Data</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boosting (Round 1)</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>10</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Boosting (Round 2)</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Boosting (Round 3)</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds
Example: AdaBoost

- Base classifiers: \(C_1, C_2, \ldots, C_T \)

- Error rate:

\[
\varepsilon_i = \frac{1}{N} \sum_{j=1}^{N} w_j \delta(C_i(x_j) \neq y_j)
\]

- Importance of a classifier:

\[
\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)
\]
Example: AdaBoost

- **Weight update:**
 \[
 w_i^{(j+1)} = \frac{w_i^{(j)}}{Z_j} \begin{cases}
 \exp^{-\alpha_j} & \text{if } C_j(x_i) = y_i \\
 \exp^{\alpha_j} & \text{if } C_j(x_i) \neq y_i
 \end{cases}
 \]
 where \(Z_j\) is the normalization factor

- If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to \(1/n\) and the resampling procedure is repeated

- **Classification:**
 \[
 C^*(x) = \arg \max_y \sum_{j=1}^{T} \alpha_j \delta(C_j(x) = y)
 \]
Illustrating AdaBoost

Original Data

Boosting Round 1

Initial weights for each data point

Data points for training

$B_1 = 1.9459$
Illustrating AdaBoost

Boosting Round 1

B1

0.0094

+ + +

- - - -

- - -

0.4623

α = 1.9459

Boosting Round 2

B1

0.3037

- - -

- - -

0.0009

+ +

0.0422

α = 2.9323

Boosting Round 3

B1

0.0276

+ + +

0.1819

+ + + +

+ +

0.0038

α = 3.8744

Overall

+ + +

- - - - -

- -

+ +