WaveScript Benchmarks Performance Report

November 12, 2007

Machine information:
Linux faith 2.6.18-4-k7 #1 SMP Wed May 9 23:42:01 UTC 2007 i686 GNU/Linux

WaveScript SVN:
Revision: 2892

WaveScope Engine SVN:
Revision: 1495

1 Microbenchmarks

This section reports various microbenchmarks that stress the implementation of particular language constructs or data types.
Per-stream-element overheads

One thing that you can see, is that currently (2007.10) the C++/XStream engine has a high per-tuple (that is, per-element) on the communication channels relative to the ML backend. The just_timer test stresses this, doing nothing but passing a large number of unit tuples.

Notes:

- FFT results for Scheme above depend on whether or not it is configured to use FFTW, or a native Scheme fourier transform.

2 Language Shootout Benchmarks

This is where I will accumulate some of the small benchmarks from the language shootout. Here are some per-benchmark comments:

- fannkuch - “pancake flipping”. This is a translation of the gcc version of the benchmark. Tests indexed access to a small array.
3 Application Benchmarks

This section includes performance results on larger programs, namely, our current applications. Presently (2007.10) the largest of these by far is the marmot application.

3.1 Marmot Application

We start off by looking at the original, hand-optimized marmot application that we deployed.
4 Data Representation Profiling

This is stale data for now... having sneaky problems with the datarep Makefile that are hosing regression tests. [2007.11.07]

This section includes an analysis of the efficiency of different data representations under different back-ends. This should theoretically be run on different hardware platforms as well (such as the ARM-based ensboxes).

4.1 Arrays of Arrays

Arrays of arrays are notable because they cannot generally be flattened (the inner arrays will always be pointers). In the future we may look at tentative flattening based on profiling data. But first, here are the times for repeatedly allocating an array of arrays, and for repeatedly folding the values in an array of arrays.

Next we look at allocating arrays of tuples and vice versa. We look at both square sizes and at highly skewed dimensions. This is limited by not being able to make tuples very large.

Then we do examine folding over arrays of tuples and tuples of arrays.
A Appendix: Raw numbers for above graphs

Microbenchmarks

User time for each benchmark/backend

Benchmark "Scheme -O2" "Scheme -O3" "XStream -j 1 --at_once" "XStream DepthFirst -j 1 --at_once" "CoreFit DF -j 1" "MLton -O2" "MLton -O3"

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>C++</th>
<th>MLton</th>
<th>readfile_bigwins</th>
<th>edge_stress</th>
<th>printing_lists</th>
<th>conv_SigsegArr</th>
<th>fft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2368</td>
<td>1140</td>
<td>296.0</td>
<td>9869.0</td>
<td>1496.0</td>
<td>26949</td>
<td>4840</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>32</td>
<td>15.0</td>
<td>1368.0</td>
<td>5568.0</td>
<td>12 2200.0</td>
<td>388.0</td>
</tr>
</tbody>
</table>

Language Shootout:

User time for each language-shootout benchmark/backend

Benchmark "Scheme -O2" "Scheme -O3" "XStream -j 1 --at_once" "XStream DepthFirst -j 1 --at_once" "CoreFit DF -j 1" "MLton -O2" "MLton -O3"

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>C++</th>
<th>MLton</th>
<th>fannkuch2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21898</td>
<td>15993</td>
<td>740.0</td>
</tr>
<tr>
<td></td>
<td>2200.0</td>
<td>752.0</td>
<td>724.0</td>
</tr>
</tbody>
</table>

Marmot Application:

Running original marmot app.

B Appendix: Additional system information

Top results before running benchmarks:

top - 06:58:52 up 105 days, 17:31, 7 users, load average: 1.06, 1.05, 1.02
Tasks: 448 total, 1 running, 447 sleeping, 0 stopped, 0 zombie
Cpu(s): 14.0%us, 1.6%sy, 3.0%ni, 79.6%id, 1.7%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 2076424k total, 490964k used, 1585460k free, 8692k buffers
Swap: 1951856k total, 15993 740.0 752.0 724.0 972.0 712.0

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
28502 newton 19 0 2624 1268 792 R 2 0.1 0:00.02 top
1 root 15 0 2072 100 72 S 0 0.0 2:00.24 init
2 root RT 0 0 0 0 S 0 0.0 0:02.83 migration/0
3 root 34 19 0 0 0 S 0 0.0 0:37.33 ksoftirqd/0
4 root RT 0 0 0 0 S 0 0.0 0:03.42 migration/1
5 root 34 19 0 0 0 S 0 0.0 1:47.49 ksoftirqd/1
6 root 10 -5 0 0 0 S 0 0.0 0:00.16 events/0
7 root 10 -5 0 0 0 S 0 0.0 0:00.11 events/1
8 root 11 -5 0 0 0 S 0 0.0 0:00.00 khelper
Top results after running benchmarks:

```
top - 06:58:53 up 105 days, 17:31,  7 users,  load average:  0.98,  1.04,  1.01
Tasks:  448 total,   1 running, 447 sleeping,   0 stopped,   0 zombie
Cpu(s): 14.0%us,  1.6%sy,  3.0%ni,  79.6%id,  1.7%wa,  0.0%hi,  0.0%si,  0.0%st
Mem:   2076424k total, 490980k used, 1585444k free,         8720k buffers
Swap:  1951856k total, 120788k used, 1831068k free,         158492k cached
```

<table>
<thead>
<tr>
<th>PID</th>
<th>USER</th>
<th>PR</th>
<th>NI</th>
<th>VIRT</th>
<th>RES</th>
<th>SHR</th>
<th>%CPU</th>
<th>%MEM</th>
<th>TIME+</th>
<th>COMMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>28531</td>
<td>newton</td>
<td>19</td>
<td>0</td>
<td>2632</td>
<td>1268</td>
<td>72</td>
<td>0.1</td>
<td>0</td>
<td>00.06</td>
<td>top</td>
</tr>
<tr>
<td>1</td>
<td>root</td>
<td>15</td>
<td>0</td>
<td>2072</td>
<td>100</td>
<td>72</td>
<td>0.0</td>
<td>0</td>
<td>00.24</td>
<td>init</td>
</tr>
<tr>
<td>2</td>
<td>root</td>
<td>34</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>00.00</td>
<td>ksoftirqd/1</td>
</tr>
<tr>
<td>3</td>
<td>root</td>
<td>34</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>00.00</td>
<td>ksoftirqd/0</td>
</tr>
<tr>
<td>4</td>
<td>root</td>
<td>34</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>00.00</td>
<td>ksoftirqd/1</td>
</tr>
<tr>
<td>5</td>
<td>root</td>
<td>34</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>00.00</td>
<td>ksoftirqd/1</td>
</tr>
<tr>
<td>6</td>
<td>root</td>
<td>34</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>00.00</td>
<td>ksoftirqd/1</td>
</tr>
<tr>
<td>7</td>
<td>root</td>
<td>10</td>
<td>-5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>00.11</td>
<td>events/1</td>
</tr>
<tr>
<td>8</td>
<td>root</td>
<td>10</td>
<td>-5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>00.00</td>
<td>khelper</td>
</tr>
<tr>
<td>9</td>
<td>root</td>
<td>10</td>
<td>-5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>00.00</td>
<td>kthread</td>
</tr>
<tr>
<td>10</td>
<td>root</td>
<td>10</td>
<td>-5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>00.00</td>
<td>events/0</td>
</tr>
<tr>
<td>11</td>
<td>root</td>
<td>10</td>
<td>-5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>00.00</td>
<td>kthread</td>
</tr>
<tr>
<td>12</td>
<td>root</td>
<td>10</td>
<td>-5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>00.00</td>
<td>kthread</td>
</tr>
<tr>
<td>13</td>
<td>root</td>
<td>10</td>
<td>-5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>00.00</td>
<td>kthread</td>
</tr>
<tr>
<td>14</td>
<td>root</td>
<td>10</td>
<td>-5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>00.00</td>
<td>kthread</td>
</tr>
<tr>
<td>15</td>
<td>root</td>
<td>10</td>
<td>-5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>00.00</td>
<td>kthread</td>
</tr>
</tbody>
</table>