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Abstract

Many mainstream languages have operators named yield that share common semantic roots but
differ significantly in their details. We present the first known formal study of these mainstream yield
operators, unify their many semantic differences, adapt them to a functional setting, and distill the
operational semantics and type theory for a generalized yield operator. The resultant yield, with its
delimiter run, turns out to be a delimited control operator of comparable expressive power to shift-
reset, with translations from one to the other. The mainstream variants of yield turn out to be one-shot
or linearly used restrictions of delimited continuations. These connections may serve as a means of
transporting ideas from the rich theory on delimited continuations to mainstream languages which
have largely shied away from them. Dually, the restrictions of the various existing yield operations
may be treated as shift-reset variants that have found mainstream acceptance and thus worthy of
study.

1 Introduction

Many mainstream programming languages such as Ruby, Python, C#, and JavaScript have variations of
an operator called yield. In all of these languages yield provides a means of suspending a computation
temporarily with the ability to resume it later — a feature that immediately suggests the presence of
continuations. A variant of the operator appeared in CLU and Icon, but its recent popularity may be
attributed to its use in Ruby. In the Ruby language, yield forms a central means of composition with
almost every iteration/enumeration mechanism being defined in terms of it.

For an operator that enjoys such widespread acceptance, yield has been largely ignored by the liter-
ature on continuations and control operators. The semantics of yield varies from language to language,
often to the point where algorithms in one language cannot be directly translated into another. We pro-
vide the first formal investigation of yield. We do this by investigating the semantics of several popular
yield operators, unifying their behavior into one operator. Further we disentangle yield from its impera-
tive roots and adapt it to a functional setting thereby providing a semantics using a typed lambda calculus
extended with pairs and sums, λ→×+.

The resulting yield operator turns out to be a new sort of delimited continuation operator equivalent
to shift-reset and this is our main result. Establishing such a connection between theoretically well
understood delimited continuations and widely accepted programming practice carries benefits for both
theory and practice:

• The literature of languages that support yield operators do not describe yield as a delimited con-
tinuation operator. In fact, such languages have explicitly distanced themselves from (delimited)
continuations which are perceived as complex, inaccessible, and inefficient. By making the con-
nection between yield and standard delimited continuations precise we expect the rich literature
on delimited continuations to be more accessible and hence to inform more precise cost-benefit
decisions in mainstream languages.

• From the perspective of language theory, the generalized yield provides a new perspective on
delimited continuations, providing the full power of delimited continuations without giving direct
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access to the continuation. Moreover the variants of yield from mainstream languages provide
several new operators that encapsulate stylized uses of such delimited continuations. Stylized uses
of continuations have been proposed early on [FH85] and studied extensively as a linear discipline
on continuation use [BORT02]. In the case of yield, stylized uses of continuations can be defined
by simple syntactic restrictions, suggesting that yield provides a superior interface for delimited
continuations.

2 A Survey of yield operators

Languages such as C#, Ruby, Python, Cω, JavaScript, Sather, F#, and CLU all support yield operators.
Describing the full syntactic and library-level support provided by these languages is beyond the scope of
this paper and hence we look at only a few of these languages in detail, describing the relevant properties
of yield at each step. Unfortunately, many languages only give informal descriptions of their yield
variants with just a few examples, and hence our presentation informally proceeds from the informal to
the formal.

This section helps develop an insight into yield’s semantics and establishes relevant terminology.
Since the terminology of each language is different, as we explore the design space of yield operators we
establish our own common vocabulary for concepts common to different languages.

Ultimately, we use this section to provide an informal derivation of our generalized yield. We rec-
oncile existing semantic differences by merging functionality whenever possible, often biasing design
choices in favor of a functional programming style.

2.1 yield return in C#

C# 2.0 [ECM06] introduced a yield operator with the addition of the keyword yield return . The func-
tion fibonacci below uses the yield operator to generate the infinite Fibonacci series. Its return type,
IEnumerable<int>, indicates that it yields a (potentially infinite) sequence of int values.

IEnumerable<int> fibonacci ( ) {
int a = 0 , b = 1;
while ( true ) {
yield return a ;
b = a + b ;
a = b − a ;

}

}

void useFibonacci ( ) {
foreach ( int n in fibonacci ( ) ) {
if (n > 100) break ;
Console . WriteLine (n ) ;

}

}

We use the term iterator to refer to computations that yield values. The argument to the yield
operator becomes an output of the iterator. We refer to these outputs as yielded values. The usage of the
word output here needs some clarification: yielding values is not an output operation in the conventional
sense of a process interacting with the operating system. Rather the yielded values are “interactive”
outputs from the iterator to its calling context. In this sense it is handy to think of yield as a delimited
IO operator.

The caller, useFibonacci, invokes the iterator using a foreach loop. The loop body executes each time
a value is output from the iterator. Variable n is bound to the yielded value at each loop iteration. Each
time fibonacci yields, its execution is suspended. When the loop body finishes, execution of the iterator
resumes from the point of suspension. The state of the iterator is preserved across a yield suspension.
Thus yield lets us model streams and lazy lists in a natural way.

When an iterator yields, it need not be resumed by its caller even though it may have pending
computations to perform. For instance, useFibonacci breaks out of the loop eventually leaving fibonacci
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suspended for good. In the absence of break, one may be led to think of yield as merely the invocation of
an implicit function which is the loop body. However under that interpretation break would be a non-local
escape. In addition to break, the loop body can also execute return which will cause control to go to the
caller of useFibonacci.

To summarize, yield allows a function to output values to its calling context. State is preserved while
yielding and resuming a suspended iterator causes it to continue from the point of yielding. An infinite
sequence of values may be yielded and the caller only resumes the iterator at its discretion.

2.2 Ruby

With these insights from C#, let’s look at yield in Ruby [TH00]. Ruby is a “duck typed” language
primarily developed by Yukihiro Matsumoto. Much of the present day popularity of yield is attributed to
its implementation in Ruby, which was in turn motivated by yield in CLU and control blocks in Smalltalk.

The important difference between Ruby and C# is that yield in Ruby returns a value, whereas in
C# there is no such return value. Further in Ruby the iterator can return a final result at termination,
which is distinguished from yielded values. We illustrate yield using the inject function below which
is a simplification of its standard Ruby library implementation. The inject function folds over a Ruby
object.

def inject ( state )
self . each { | v | state = yield (v , state ) }
state

end

def useInject ( )
total = [ 1 . . 1 0 0 0 ] . inject ( 0 ) { | v , sum |
if prime?(v )
sum+v

else
sum

end
}

end

The components of the object self are enumerated by each. The iterator inject yields each compo-
nent of self and the current state . The variable state is updated with the value returned by yield. After
the components of the current object have been enumerated, inject returns the accumulated state .

The caller, useInject , invokes the inject method of an array object and builds the sum of primes. The
block construct, syntactically {| variable | body}, is Ruby’s equivalent of the C# foreach. This usage of
yield simulates higher-order programming in an imperative context. However, the code block following
the inject invocation is not just a lambda abstraction; like the body of the foreach loop in C#, the block
can execute a break or a return .

Summarizing, iterators in Ruby take input from their calling context to resume their computation,
i.e., unlike C#, each invocation of yield in Ruby returns a value. Further, yielding computations can
also return a value on completion. The execution of the iterator is suspended each time it yields. The
iterator maintains state and when resumed, behaves exactly as if the operator yield had returned. What
the iterator does next on resumption can depend on its input value. The return value of an iterator is
distinguished from a yielded value, in particular the input, output and return values of an iterator can
have different types. In Ruby nomenclature iterators are sometimes referred to as asymmetric coroutines,
ones that are restricted to transfer control only to their calling context.

2.3 JavaScript

JavaScript 1.7 [Moz06, Fla06] introduced a yield operator that is yet to be ratified in the ECMA speci-
fication [ECM99] of the language. In the previous examples, we used yield along with a loop construct
that interacted with one iterator at a time. This usage is sometimes referred to as internal iterators, in the
sense that the caller’s interaction with the iterator is encapsulated by the loop construct. The suspended
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iterator is always implicit. To use more than one iterator at a time, we have to make this suspension an
explicit object.

Let us look at a JavaScript example that decouples the iterator usage from the loop construct, thereby
enabling us to interleave interaction with multiple iterators. These iterators are first class values — a
usage that is referred to as external iterators:
function fibonacci ( ) {
val a = 0 , b = 1
while ( true ) {
yield a
b = b + a
a = b − a

}

}

function each ( array ) {
for ( val i = 0; i < array . length ( ) ; i++) {
yield array [ i ]

}

}

function compare ( array ) {
try {
iter1 = fibonacci ( )
iter2 = each ( array )
while ( true ) {
if ( iter1 . next ( ) == iter2 . next ( ) )
return true

}

}

catch ( err instanceOf StopIteration ) { }
return false

}

In the example above, compare invokes two iterators, executing them in lock step. Each Fibonacci
number is computed only when required until either a match is found or the array is exhausted. In
JavaScript, when an iterator terminates its . next () method invocation raises a StopIteration exception.

Since one cannot enumerate all the ways in which someone might want to interleave iterators, having
external iterators is more expressive than having only internal iterators. We quote the classical Design
Patterns book [GHJV95]:

External iterators are more flexible than internal iterators. It’s easy to compare two collec-
tions for equality with an external iterator, for example, but it’s practically impossible with
internal iterators [. . . ] But on the other hand internal iterators are easier to use because they
define the iteration logic for you.

C#, F# and Python also have the ability to treat iterators as first class values, though they differ in
how termination is handled. Given first class iterators of this form, a programming language may always
add a handy loop construct to recover the common foreach paradigm. (See Section 3.2 for a realization
of this idea.)

Traditionally Ruby has only supported iteration over one iterator at a time. An ad hoc solution
to provide external iterators is the Generator library which relies on Ruby’s callcc operator. Using the
Generator library however limits the iterator’s input and return capabilities. Ruby version 1.9, that is cur-
rently under development, is expected to support internal and external iterators with an implementation
based on OS Fibers .

In the imperative languages (C#, Ruby and JavaScript) discussed here, a iterator is inherently a
stateful object. Invoking . next () on a iterator to resume it, also changes its state. Since we are interested
in modeling yield in a functional setting, we will modify this stateful behavior to an immutable one in
Section 2.5.

2.4 Python, F#, Cω, CLU and other languages

Python [vRD03] versions prior to 2.5 [YvR01] have support for yield as an output only operator (like
in C#). Python version 2.5, based on PEP 342 [vRE05], supports yield as an expression instead of
a statement i.e., it has support for yield returning values. Both Python and JavaScript iterators can
yield out values and take input values. They do not return values at the end of evaluation, but instead
indicate termination by raising a distinguished exception. Given that these languages lack static types,
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in principle, the return value could be encoded as the last yielded value or by some other convention.
However, in practice this is inconvenient since one would have to always keep track of the last yielded
value.

CLU [Lis93] has support for an output only variadic yield and a for loop construct for consuming
such iterators. It also attempts to capture the type of the yielded values in the type signature of iterators.
Sather [MOSS96, Omo91] has an output only yield construct with weaker restrictions on the usage
within loop constructs. Due to the absence of a formal description of the semantics, we are unsure of the
precise nature of these restrictions.

Cω [MSB03, BMS05] and F# [Sym03] have yield return statements, much like C#’s, that are pri-
marily used to model potentially infinite lazy lists/streams. The Cω type system is enhanced with types
such as int ∗ and int+ to indicate if these are streams of zero or more integers. There are other languages,
such as Groovy [KGK+07], Icon [GG83], that implement yield or iterator-like constructs that we have
not detailed here.

2.5 Towards a generalized yield

In summary, an iterator may perform some arbitrarily complex computation. Its consumer, the calling
context of the iterator, is abstracted from the details of this computation. Dually, the iterator does not
know anything about the computation performed by its calling context, or even if it will be resumed
again. The yield operator separates control flow concerns and allows us to encapsulate iterators and their
callers into reusable software components.

Based on our brief survey, we unify yield and iterator properties from the various languages, intro-
ducing types as appropriate. An iterator can be thought of as a sub-process, a special computation, that
is restricted to communicate with its calling context using yield. In the course of its computation it can
yield out many values of type o and receive inputs of type i. When an iterator terminates it returns a final
value of type r. Hence we can give iterators the abstract type Yield i o r. The construct yield is a delim-
ited IO operation available to such iterators that enables them to communicate with their calling context.
Each invocation of yield suspends the state of its iterator and suspended iterators are first-class values.
Resuming a suspended iterator is at the discretion of the calling context and the value used to resume
the iterator becomes available as the return value of the suspending yield. A single yield statement may
be seen as the simplest possible interesting iterator with the abstract type o→ Yield i o i, allowing more
interesting iterators to be built by composition. A pure computation in contrast does not do any such IO,
and only returns a result. Diagrammatically, if we visualize pure functions t1→ t2 and computations t as
shown to the left, then we can visualize an iterator Yield i o r and the yield operator of type o→ Yield i o i
as shown to the right:

t1 → t2
t2t1

t
t

Yield i o r
r

o i

output/input to the context

yield
i

o i

o

A first attempt to formalize yield might be to simply add yield to the call-by-value λ-calculus. How-
ever this is quickly seen to be inadequate. The main complication is to decide how to separate the iterator
from its caller. To this end, we introduce a delimiting operator called run to explicitly separate the itera-
tor from its calling context. The operator run marks the boundary of an iterator and delimits the action
of yield. The argument to run is an opaque computation that can yield and it returns a concrete data
structure that the calling context can interact with. This immediately suggests a monadic encapsulation
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for the effectful iterator computations with yield as the only effect operator of the monad. Since run
marks the boundary of this effect, it can be used as the run operation that escapes the monad.

Indeed the imperative languages that we have considered here do have such a run delimiter, which is
usually implicit, and is apparent in the fact that methods that yield are treated differently from methods
that don’t, requiring the former to be called in a special manner. In the C# and Ruby examples, the
equivalent of run was hidden in the implementation of the loop construct and in JavaScript it was implicit
in the iter1 =fibonacci () assignment. In C#, GetEnumerator() is the equivalent of run and it takes an opaque
computation of type IEnumerable<T> to an interactive object of type IEnumerator<T>. The interface
IEnumerator exposes methods for retrieving the current yielded value (Current) and for advancing the
iterator computation (MoveNext). We can use GetEnumerator() explicitly as follows:

IEnumerator<int> iter = fibonacci ( ) . GetEnumerator ( ) ;
while ( iter . MoveNext ( ) ) {
Console . WriteLine ( iter . Current ) ;

}

In C#, instead of using the implicit run hidden in loops, we can use the GetEnumerator() and the
IEnumerator interface as an explicit run construct.

3 A Monadic yield

We are now ready to introduce the syntax of a monadic meta-language with yield. This language is
Moggi’s monadic metalanguage (MML) extended with the opaque monadic type Yield i o r and a type
Iterator i o r for interacting with iterators:

types, t, i,o,r = b | t→ t | Iterator i o r | Yield i o r
expressions,e = x | λx.e | e1 e2 | Result e | Susp e e | case e e1 e2

| return e | do x← e;e | yield e | run e
evaluation contexts,E = � | E[do x←�;e]

The set of expressions includes a pure subset consisting of variables, functions, applications, Result,
Susp, and case, and a computational subset consisting of return, do, and yield. The operator run acts as
the interface between pure and computational expressions. There are several possible type systems of
varying expressive power (see Section 3.1). We present below a simple type system in which the types i
and o are fixed for each iterator:

Γ(x) = t
Γ ` x : t

var Γ, x : t1 ` e : t2
Γ ` λx.e : t1→ t2

lambda
Γ ` e1 : t1→ t2 Γ ` e2 : t1

Γ ` e1 e2 : t2
application

Γ ` e : r
Γ ` Result e : Iterator i o r result

Γ ` e1 : o Γ ` e2 : i→ Iterator i o r
Γ ` Susp e1 e2 : Iterator i o r

susp

Γ ` e : Iterator i o r Γ ` e1 : o→ (i→ Iterator i o r)→ t Γ ` e2 : r→ t
Γ ` case e e1 e2 : t

case

Γ ` e : r
Γ ` return e : Yield i o r return

Γ ` e1 : Yield i o r′ Γ, x : r′ ` e2 : Yield i o r
Γ ` do x← e1;e2 : Yield i o r do

Γ ` e : o
Γ ` yield e : Yield i o i

yield Γ ` e : Yield i o r
Γ ` run e : Iterator i o r

run

As can be seen from the type system, the interactive type Iterator i o r is a particular sum type that,
for ease of presentation, we have hardwired into the type system. The case construct is the eliminator for
this type and constructors Susp and Result are the two introductions for this type.

6



Yield: Mainstream Delimited Continuations R. P. James, and A. Sabry

Evaluation is specified as the pure relation → which can be applied non-deterministically in any
subexpression and the monadic reduction 7→ which forces reductions to happen in a certain order.

(λx.e) e′ → e[e′/x] 〈do x← e1;e2,E〉 7→ 〈e1,E[do x←�;e2]〉
case (Susp e1 e2) f g → f e1 e2 〈do x← return e1;e2,E〉 7→ 〈e2[e1/x],E〉

case (Result e) f g → g e

The above reductions are completely standard [MS04]. In particular, the relation 7→ is closed over
the transitive closure of→, i.e., an arbitrary number of→ steps may be applied to the components of the
configuration 〈e,E〉 for any 7→ step. The evaluation rule for run given below ties→ and 7→ together and
gives the semantics for the yield operation as delimited by run:

run e → Result e′ if 〈e,�〉 7→∗ 〈return e′,�〉
run e → Susp e′ (λx.run E[return x]) if 〈e,�〉 7→∗ 〈yield e′,E〉

A run expression evaluates the subexpression using any number of pure or monadic steps. If that
evaluation terminates with a normal return then the returned value is also the final answer of the run
expression. However if that evaluation encounters a yield, a new suspension is built. The suspension
includes e′, the output of the yield operation that is communicated to the caller, and an iterator which
can be called to resume the suspended computation. An important distinction between yield of the
imperative languages presented and our functional semantics is that resuming a suspended iterator does
not destroy it, unlike a call to MoveNext(). In other words, the term (λx.run E[return x]) is indeed a pure
function that may be called any number of times. The same behavior can be achieved by cloning the
IEnumerator and this is a topic occasionally discussed on various Internet message boards. We discuss
the issue of the linear use of continuations and their resultant expressive power in Sections 3.2 and 5.

3.1 Haskell Implementations

To make the abstract semantics more relevant to implementers, we present two monadic implementations
of yield in Haskell. These have the advantage of being immediately usable and the structure of the
monads suggest implementation approaches for language implementers. Further, embedding the yield
type system into Haskell serves as a proof of its soundness by appeal to the soundness of Haskell’s type
system.

Frame Grabbing Implementation: One way to implement yield would be to use a yield occurrence
as a trigger which starts the accumulation of pending stack frames. This accumulation stops when an
explicit run statement is encountered. Below is the monadic realization of this which achieves the desired
semantics. Note that the interface of the iterator and the opaque computation type Yield are the same in
this monad.

data Iterator i o r = Result r
| Susp o (i −> Iterator i o r )

type Yield = Iterator

yield : : o −> Yield i o i
yield v = Susp v return

instance Monad ( Yield i o ) where
return = Result
( Result v ) >>= f = f v
( Susp v k ) >>= f = Susp v (\x −> (k x )>>=f )

run : : Yield i o r −> Iterator i o r
run = id

In many of the languages discussed in the introduction, yield suspends exactly the current method and
the continuations captured by it may be described as one-frame or lexically delimited continuations. To
implement such a version of yield, the frame-grabbing implementation only needs a calling convention
or a compiler macro that can be used to suspend multiple stack frame by re-yielding from one frame to
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the other, i.e., by translating call sites, such as “func()”, that don’t have an explicit run, to ones that yield
explicitly, “foreach(o in func()) yield o”. While this implementation is inefficient due to the explicit
frame-by-frame unwinding of the stack, it is interesting since it can be readily implemented in most
languages. This is similar to nested iterator methods [JMPS05].

CPS Implementation: As suggested before, yield has close connection to continuations, and tech-
niques studied for implementing continuations [Dan00, KBD98, HDI94, CHO99, BWD96] carry over
as techniques for implementing yield.

We can implement yield by instantiating the conventional continuation monad. The usual Cont
monad has type (a→ r)→ r and here we adapt it by choosing the answer type to be Iterator i o b.
The result type b of the iterator can be quantified since composition in the monad is independent of the
final result. The input and output types (i and o) of the iterator are fixed for the duration of computation.
The resulting CPS type Yield i o r allows for a completely standard definition of return and >>=, for
which yield simply builds the suspension (Susp) and run passes the initial continuation (Result).

newtype Yield i o r = Yield {unY : : ( forall b . (r −> ( Iterator i o b ) ) −> ( Iterator i o b ) ) }

instance Monad ( Yield i o ) where
return e = Yield (\k −> k e )
( Yield e ) >>= f = Yield (\k −> e (\v −> ( unY (f v ) ) k ) )

yield : : o −> Yield i o i
yield v = Yield ( Susp v )

run : : Yield i o r −> Iterator i o r
run ( Yield e ) = e Result

In the usual monadic representation for delimited continuations such as [DJS07], delimiters reset
or pushPrompt do not escape the monad. Although the iterator escapes the monad, it encapsulates the
continuation in a pure value which forbids the control effect from leaking.

Other type systems: Another type system for yield results from relaxing the restriction of having i
and o types fixed for the lifetime of the iterator computation, thereby letting each yield invocation chose
a specific type. We do this by turning i and o into parametric types thereby allowing yield :: o a→
Yield i o (i a). This type system may be realized by both the frame-grabbing implementation or the
CPS implementation discussed previously by merely replacing type definitions. This requires the GHC
−XExplicitForAll extension. For instance, the iterator type and the CPS type would be:

data Iterator i o r = Result r | forall a . Susp (o a ) ( ( i a ) −> Iterator i o r )
data Yield i o r = Yield { unY : : ( forall b . (r −> ( Iterator i o b ) ) −> ( Iterator i o b ) ) }
yield : : o a −> Yield i o (i a )
run : : Yield i o r −> Iterator i o r

While the the parametric yield may be overkill for most applications, they are interesting in the
context of encoding shift-reset as we will see in Section 4.

3.2 Examples

In this section we will start with simple examples of using yield that are readily expressible in existing
languages, moving on to some that have no direct equivalent in any language that supports yield today.

As a first example, we express a simple depth-first tree traversal function as an iterator. As expected,
the function depthWalk only captures the traversal logic; it does not prescribe what to do with the yielded
values.
data Tree a = Leaf a | Node ( Tree a ) ( Tree a )

depthWalk : : Tree a −> Yield b a ( Tree b )
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depthWalk ( Node l r ) = do l ’ <− depthWalk l
r ’ <− depthWalk r
return ( Node l ’ r ’ )

depthWalk ( Leaf a ) = do b <− yield a
return ( Leaf b )

The function depthWalk recursively traverses a binary tree and yields each leaf value. It uses the
input values to reconstruct a tree that has the same structure as the original one, with new leaf values.
Iterators like depthWalk abstract an operation that we want to perform on the elements of a data structure
i.e., they characterize the visitor pattern [GHJV95]. For simple recursive data types without cycles, they
can be automatically derived based on the recursion template [JL03].

We can now write algorithms that rely on depth-first tree traversal. Here renum renumbers the leaves
of a Tree Int by adding 1 to each leaf.
renum ( Susp n k ) = renum (k (n+1) )
renum ( Result t ) = t

We can test this as follows:

∗Main> let tr = Node ( Leaf 10) ( Leaf 20)
∗Main> renum ( run ( depthWalk tr ) )
Node ( Leaf 11) ( Leaf 21)

Here the tree “Node (Leaf 10)(Leaf 20)” is used to create the iterator “depthWalk tr.” The context renum
is insulated by run and uses the values produced by the iterator. The iteration performed by renum is a
common pattern and we can abstract it in a Ruby/C#-like loop construct:

loop : : (o −> i ) −> Yield i o r −> r
loop f m = each ( run m )

where
each ( Susp v k ) = each (k (f v ) )
each ( Result r ) = r

renum = loop succ

The loop body may also be parametrized by an arbitrary monad allowing it to throw exceptions, break
out of iteration, accumulate state, etc. We omit the straightforward definitions of such combinators.

We get a solution to the classic same fringe problem, by replacing the renum function above, with
one that compares leaf values of two trees.

same ( Result _ ) ( Result _ ) = True
same ( Susp a ka ) ( Susp b kb ) | a == b = same (ka a ) (kb b )
same _ _ = False

test> same ( run ( depthWalk tree1 ) ) ( run ( depthWalk tree2 ) )

As a slight twist on same fringe, consider the swap fringe problem here where the objective is to not
compare but to swap the leaves of two trees, of possibly dissimilar structure as long as they have the
same number of leaf values:

swap ( Susp a ka ) ( Susp b kb ) = swap (ka b ) (kb a )
swap ( Result t1 ’ ) ( Result t2 ’ ) = (t1 ’ , t2 ’ )
swap _ _ = error "Unequal number of leaves"

This last example uses the iterators input, output and return capabilities and the ability to operate
over more than one iterator at a time. This is already not naturally expressible in any of the existing yield
implementations without resorting to assignments or some more complex encoding. Further, it does not
use any continuation twice. This is a simple example that shows that there is some expressiveness to be
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gained by just adding these abilities to a language’s yield implementation without adding non-linearly-
used first-class delimited continuations with indefinite extent.

4 Delimited Continuations

The general folklore is that continuations are more expressive than all the yield variants commonly
found in current languages. Indeed, in blogs and message boards discussing these various languages,
one commonly finds statements expressing the limited nature of the relevant yield compared to “true”
continuations. We can make these statements more precise by formalizing the connection between our
generalized yield and the traditional shift and reset for delimited continuations: we can give encodings
of yield-run in terms of the traditional shift-reset and vice versa. The following definitions realize yield
and run in terms of the traditional control operators:

run e ≡ reset (do x← e;return (Result x))
yield e ≡ shift (λk.return (Susp e k))

A run expression corresponds to a control delimiter. The body e is evaluated under this delimiter and
its value is wrapped in the constructor Result before it is returned. A yield expression simply captures the
continuation up to the closest delimiter and immediately returns this continuation as part of a suspension.

The only complexity for the reverse encoding arises from the fact that the continuation captured by
yield is only accessible through the suspension object to the context of the iterator. Hence it is necessary
to have a little “interpreter” to recursively unwind the iterator one suspension at a time in order to extract
the underlying delimited continuation.

shift e ≡ yield e interp iter = case iter
reset e ≡ interp (run e) (λ f k. reset ( f (λi.interp (k i))))

(λr.r)

It is possible to prove that the encodings above (in both directions) properly implement the desired
operators. In order to make the proof accessible, we present the semantics of shift-reset in the same
monadic style as the semantics for yield/run. The interesting rules are the following:

reset e → e′ if 〈e,�〉 7→∗ 〈return e′,�〉
reset e → reset (e′(λx.reset E[return x])) if 〈e,�〉 7→∗ 〈shift e′,E〉

It is a straightforward exercise to check that the translation of each pair of operators is consistent
with the semantics of the other pair. We omit the straightforward calculations.

Operators shift-reset and yield have multiple type systems. The choice of type system for one set of
operators affects types affordable by the other via translation. While the full relationship between the type
systems of these operators needs further investigation, some connections can be made. The simple type
system for yield allows for the following shift-reset with shift : ((a→ ans)→ SR a ans ans)→ SR a ans a
and reset : SR a ans ans→ ans.
type SR i ans r =
Yield i ( ( i −> ans ) −> C i ans ans ) r

data C i ans r = C { unC : : SR i ans r }

shift : : ( ( a−>ans )−>SR a ans ans )−>SR a ans a
shift e = yield (C . e )

reset : : SR a ans ans −> ans
reset e = interp ( run e )

where
interp ( Susp f k ) =
reset $ unC $ f $ \i −> interp (k i )

interp ( Result r ) = r

The main restriction of this system is that it fixes both the answer type ans and the input type a of
the continuations. The fact that the input type is fixed is an artifact of the fact that i and o are fixed for
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an iterator. With the more expressive parametric type system for yield this restriction can be removed
allowing for shift : ((a→ ans)→ SR ans ans)→ SR ans a and reset : SR ans ans→ ans.

type SR ans r = Yield In ( Out ans ) r
data In a = In { unIn : : a }
data Out ans a = Out (a −> ans ) −> SR ans ans

shift : : ( ( a −> ans ) −> SR ans ans )−>SR ans a
shift e = ( yield ( Out e ) ) >>= ( return . unIn )

reset : : SR ans ans −> ans
reset e = interp ( run e )

where
interp ( Susp ( Out f ) k ) =
reset $ f $ \i −> interp (k (In i ) )

interp ( Result r ) = r

Here we have a fixed answer type ans but continuations of any input type can be captured. Handling
full answer type polymorphism as in the system developed by Asai and Kameyama [AK07] is a topic of
future work.

5 Conclusion

Motivating Delimited Continuations. In the first paper to introduce delimited continuations, Felleisen
[Fel88] motivated the control operators F and prompt #, using a tree walking example. That example
separates two processes using a prompt: a process that traverses a recursive data structure and produces
the leaves as it encounters them; and a second process that consumes the leaves as it receives them. The
expression used to process the leaf values is e = λl.(F (λk.(cons l (λ .# (k nil))))

This is essentially an implementation of an output-only yield operator: indeed each time the process
yields it produces the pair of the output value and a continuation that is resumable by “_.” Although
Felleisen does not isolate this pattern into a separate control operator, it is intriguing that programming
with delimited continuations was first demonstrated by encoding a yield combinator and then program-
ming with yield.

Generalized Coroutines. In a recent study of coroutines, de Moura et al. [dMI09] stress the lack
of a single standard formalization of coroutines and study many constructs finally introducing a yield-
like operator for an imperative language. The semantics of their operator involves a global store and
stateful iterators which obscure the control aspects of the operator. Looking at their specification, one
can sense some connection to continuation-based operators, but the entangled state effects prevent them
from formalizing operational equivalence with delimited continuations.

Restricting the Power of Yield. Based on the introductory discussion, we can identify several variants
of yield in the spirit of Berdine et. al. [BORT02] that are stylized uses of full delimited continuations, but
less expressive than the full yield. An “internal-only yield” can be used only in the context of a foreach-
like loop, where the iterators can do input, output and return and is much like the yield of Ruby where the
continuation is never exposed. Alternately an “externalized yield” allows iterators that can be decoupled
from foreach loops and can allow the use of multiple iterators at the same time giving us an operator that
allows us to express the swap leaves problem but is still restricted to one-shot continuations. Another
generalization that avoids continuations reuse is “yield with an explicit delimiter” where the control
action is not delimited by method boundaries, but by an explicit run operation, thereby allowing yield
to suspend multiple method frames, which — as noted in Section 3.1 — can be implemented in most
languages by a frame accumulating approach.

The differences in yield’s various semantics and its connection to continuations, coroutines and clo-
sures have been the topic of much debate in various online forums, Lambda the Ultimate [HE06], comp
.lang.ruby, python−list and more. Our formalization clarifies many of these intuitions and bridges
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practical language design and foundational research into continuations. In a larger context, the signifi-
cance of yield can be stated as follows: it is an operator that brings delimited continuations to the main-
stream; it is intuitive enough and appealing enough that many programming languages have adopted it
in one form or another; it is natural enough to have been rediscovered many times in different contexts;
its restricted (linearly-used) versions are still useful and their expressiveness deserves further study.

Acknowledgments. We would like to thank Michael D. Adams, Kyle Ross and Simon Peyton-Jones
for many helpful discussions.
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