Replacement Lemma and its proof

Venkatesh Choppella

February 21, 2002

Abstract

This note proves the Replacement Lemma that we talked about in class on Tuesday 2/19/2002.

Lemma 0.1 (Replacement) If

1. \(D \triangleright \Gamma \vdash E[e] : t \), such that the hole in \(E \) occurs at position \(p \)
2. \(D' \triangleright \Gamma \vdash e : t' \)
3. \(D' \) is a subderivation of \(D \) occurring at position \(p \) and
4. \(\Gamma \vdash e' : t' \)
then, \(\Gamma \vdash E[e'] : t \).

It is crucial that \(D' \) be a subderivation of \(D \). For otherwise, the hypotheses

1. \(\Gamma \vdash E[e] : t \),
2. \(\Gamma \vdash e : t' \) and
3. \(\Gamma \vdash e' : t' \)
do not imply \(\Gamma \vdash E[e'] : t \). Consider the counter-example \(E = \Box, e = \text{DivZero} \), \(e' = 5, t = \text{bool} \) and \(t' = \text{int} \). The judgements
1. $\Gamma \vdash \Box [\text{DivZero}] : \text{bool}$,

2. $\Gamma \vdash \text{DivZero} : \text{int}$ and

3. $\Gamma \vdash 5 : \text{int}$

are all true but imply $\Gamma \vdash \Box [5] : \text{int}$, which is false.

Also, it is necessary that the position of D' in D and the position of e in E be the same. Otherwise, we have the counter-example $E[\text{DivZero}]$, where $E = \text{if } \Box \text{ then DivZero else 1}$. If

1. $D \triangleright \emptyset \vdash e : \text{int}$

2. $D_1 \triangleright \emptyset \vdash \text{DivZero} : \text{bool}$ and

3. $D_2 \triangleright \emptyset \vdash \text{DivZero} : \text{int}$

then both D_1 and D_2 are subderivations of D. If the restriction about the sub-derivation D' being at position p were removed, then choosing D' to be D_2 means that the propositions

1. $D \triangleright \emptyset \vdash E[\text{DivZero}] : \text{int}$

2. $D_2 \triangleright \emptyset \vdash \text{DivZero} : \text{int}$

3. D_2 is a subderivation of D and

4. $\emptyset \vdash 5 : \text{int}$

are all true, but imply the false judgement $\emptyset \vdash E[5] : \text{int}$.

Proof (of Replacement Lemma)

By induction on D. For the base cases, D has exactly one node. Therefore, $E = \Box$, $D' = D$, and $t = t'$ and the result follows.

For the inductive cases, we have the following subcases depending on E:

1. $E = \Box$. This implies $D = D'$ and $t = t'$ and this is similar to the case above.
2. \(E = +(E_1, e_2) \): By the Inversion Lemma, \(t = \text{int} \), and there are derivations \(D_1 \) and \(D_2 \) such that

\[
D = \text{AOP} \quad \frac{D_1 \triangleright \Gamma \vdash E_1[e] : \text{int} \quad D_2 \triangleright \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash +(E_1[e], e) : \text{int}}
\]

It follows that \(D' \) is a subderivation of \(D_1 \). Clearly, \(D_1 \) is a proper subderivation of \(D \). Thus, by the induction hypothesis, \(\Gamma \vdash E_1[e'] : \text{int} \). Again, by the Inversion Lemma, \(\Gamma \vdash e_2 : \text{int} \). The result follows from the application of the AOP rule.

The other cases for \(E \) are similar and omitted.