
Digital Design Derivation

1. Introduction

This research applies formal methods in logic, verification, and synthesis to
digital design engineering. The work centers on the use of applicative notation for
system description and functional algebras for design development. The general
goal is to develop a comprehensive methodology for constructing correct hardware
implementations. The research objectives are to establish a practicable algebraic
framework for digital design, to clarify its relationship to conventional design meth-
ods, to explore its implications for design automation, and to incorporate contem-
porary formalisms for hardware verification.

We shall also explore the use of functional programming languages in hardware
modeling and design-aids automation. This is is almost compulsory because the
automation vehicle must readily represent the governing formalism. Automation
of this work depends on the manipulation of functions, a capability not generally
available. Higher-order constructs are of more immediate interest than higher-level
specializations of syntax. Our view is that digital system description is one dialect
of a computationally complete—and executable—modeling notation. We seek to
reduce the hierarchy of representation and interpretation common in design aids
systems, so that the integration of tools for modeling, simulation, analysis, and
fabrication is more direct.

Past research in this area outlined an approach to “behavioral synthesis” in
which sequential-system descriptions are derived from recursive specifications. This
work is reported, in diminishing detail, in [9], [10], and [11], the last of which
is appended. In the past year, some of these theoretic constructions have been
implemented. Enough function has been achieved to generate hardware in PAL
technology, and PLA generation in VLSI is at hand. The status of this work will
be reported in [13], a draft of which is appended.

Though more mathematical rigor is needed to realize the prospects of present
technology, it is equally important to see that rigor carried all the way to implemen-
tation. Our efforts in hardware generation have focused attention on the translation
of abstract behavioral descriptions into concrete hardware descriptions. Though ex-
isting theory seems adequate for this task, at least for practical purposes, its poten-
tial is not realized. The dominant problem—maintaining hierarchies of structure—is
often dismissed as theoretically superficial. Even so, any effort to attain descriptive
abstraction must also provide secure paths to concrete levels, and this necessitates
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coping with structure. The underlying problems are formally challenging because
designs are subject to orthogonal decompositions. Numerous structural hierarchies
must be simultaneously maintained.

The use of electrical simulation to explore logical design is a typical symptom
of the central research problem. Low-level simulation is often the only secure soft-
ware connection to physical implementation. The engineer is willing to forgo the
advantages of behavioral modeling unless correct fabrication can be assured. The
use of “silicon compilers” still leads to low level simulation as compiled subsystems
are put together. Research in digital description and verification has followed the
same path as efforts in design automation, attacking individual aspects of design.
Little work is addressed to organizing the global design effort. It can be expected
that formal research will be confronted by the same integration problems faced in
software design-aids. These problems are generally acknowledged as profound.

Digital engineering is selective refinement to lower levels of detail. Various in-
teracting tactics are involved. Each aspect of refinement is subject to independent
treatment, but in any design instance, these aspects become dependent facets. Since
there are many degrees of freedom in design, more descriptive latitude is needed.
The tendency of production systems to codify specific techniques leads inevitably
to a morass of incompatible tools. Hardware modeling research has sought the nec-
essary generality in higher-order calculi. To the degree that descriptive abstraction
is attained, engineering can be initiated and executed at higher levels. However, ab-
straction increases the distance between specifications and implementations, further
necessitating automation of the implementation task.

Though it is often held that good design is hierarchical, it is naive to conclude
that physical organization follows logical decomposition. A hardware system rep-
resents many disparate logical hierarchies. Packaging, routing, path-width param-
eterization, performance constraints, testability requirements, functional decompo-
sition, and so on, each projects design in a different dimension. The practicing
engineer constantly juggles these projections, often narrowing to an individual path
or element. The intent of proposed research is to exhibit one semantic framework
that maintains arbitrary decompositions of description. This immediately raises the
fundamental issue of meaningful interaction. Intelligent guidance must be assumed,
but where automation subsumes engineering tactics there is a real danger of loosing
the sense and direction(s) of design.

We are interested in developing notations and techniques that are conducive
to creative expertise. Engineering participation is essential to the progress of this
work. We enjoy a good relationship with qualified digital engineers, Franklin Prosser
and David Winkel, who provide insights into design methods and strategies. We
are now engaged in several design projects that together constitute an experimen-
tal laboratory for this research. These include an MSI implementation of a full
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computer system and a number of gate-level designs for storage architecture. The
work leading to this proposal has already produced working implementations, one
of which is discussed in Section 2.

Under the NSF CER program, this department is now building a research
facility with a strong component of hardware design tools. Winkel and Prosser
have developed, in-house, an excellent support vehicle for wire-wrap prototyping
and microcode development. Full design-aids systems for VLSI have been acquired
in the last year. The period of this grant will see several substantial designs derived
as a result of the proposed research.

This work adapts results, techniques, and constructions from software-related
research, exploiting results in denotational semantics, program transformation, com-
piler construction, and comparative schemata. The approach to hardware descrip-
tion correlates with software-oriented research done in this Department [2]. We
expect to strengthen a connection between software engineering research and hard-
ware engineering research, as they are conducted here.

2. Background

We describe digital systems in applicative notation. The fundamental expres-
sion is a term, such as f(x, c). An abstraction is the expression of a function in
lambda-notation; λX.E denotes the function with rule E and parameter X. When
abstractions are named, it is conventional to omit the lambda, writing

AndNot(u, v) = and(u, not(v))

instead of
AndNot = λ(u, v).and(u, not(v)).

Often, abstractions serve the same purpose as symbols in schematics; the formal
parameters giving internal names.

Functions may be freely expressed and applied. For example,

compose(f, g) = λx.f(g(x))

applies its arguments in series. Functionals like compose are fundamental to any
transformation algebra but also arise in descriptive contexts, often as a means to
suppress representation details. An example can be seen later.
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A ground type, is a basis of primitive operations, constants, and predicates,
together with a collection of rules that relate them. It may be an aggregate of (more)
complex and (more) concrete subtypes, such as “arrays of integers” or “functions
on characters.” Though it is assumed that types are developed as domains [23], it
is often appropriate simply to address descriptions to some primitive vocabulary.

A discrete interpretation of applicative notation assigns individual values to
variables; a term denotes the application of a function to argument-values. From
this model is developed the language of recursive function definitions [16, 15] and
the more abstract algebra of denotational semantics [23].

To describe systems, the discrete interpretation is extended to a sequential in-
terpretation. If V is a set of values, then behaviors of V is the set of (computable)

sequences (v0, v1, . . .) where each vi ∈ V. The signal f (X, c ) denotes the sequence
S in which Si = f(Xi, c). (The boxes are a convention to distinguish sequential
expressions.) An operator ‘!’ prefixes values to sequences; it often denotes stor-
age/delay.

X = v ! S means that X0 = v and Xk+1 = Sk.

Sequential systems are described by simultaneous signal-defining equations, such as

SP(I) = O where


C = true ! I

O = and (I, not (c))

Recursions describe feed-back, although this example has none. SP is a logical
description of a “single pulser” circuit [24], which produces a unit pulse for every
pulse on its input, I.

It is intuitive to regard SP as a recurrence relation for sequences I, C, and O
(as, for example, in [7]). However, signals may range over higher-order domains. In
[13], for example SP is transformed to

SP(I) = O where

 C = Abst (true ! I)

O = C(I)

where

Abst(v)
def
= v → [λv.false], [λv.v]

This was done to bridge levels of description; the two values of Abst, constant-false
and the identity function, suggesting a pass transistor in NMOS. The symmetry in
treatment of signals and components, in which both may be computed and applied,
is of technical interest in our research. It is an extension of “proper abstraction,”
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which has proven its worth in programming languages. Such treatments seem war-
ranted, if not in the direct description of hardware, then certainly for systems (both
formal and programmed) that describe how hardware is described.

In [9], a technique is developed to derive digital system descriptions from
recursive-function specifications. The key fact is that the class of iterative recur-
sion schemata characterizes synchronous digital systems. Synchronous systems are
typically implemented with externally clocked hardware, but self-timed or buffered
implementations are just as well described. Since the proof of the characterization is
constructive, derivation is mechanizable. Iterative schemata have long been known
to be equivalent to finite-state control descriptions; the derivation techninque recasts
standard methods for control synthesis (e.g. [24]) in a functional algebra. However,
unlike standard methods, the construction also develops the connectivity of con-
trolled elements. That is, the extraction of the controlling subsystem establishes, as
a by-product, a correct global description of architecture. Hence, the construction
yields a correct starting point for subsequent refinement of architecture.

The theoretic construction in [9] has been implemented and used to develop
working circuits. The research objective, now partly established, was to forge a
path to actual hardware by restricting the class and level of specifications (dis-
cussed later), by addressing hospitable target technologies (e.g. programmable
PALs and standardized gate arrays), and by exploiting available analytic tools (e.g.
for boolean simplification, and fuse-map generation). A kind of editor has been
developed for executing various correctness-preserving transformations on sequen-
tial descriptions. It employs the familiar algebra for terms with specializations for
expressions of delay.

The “back end” of this prototype editor is a collection of syntax transducers
that generate source input to available hardware-generation systems. One such
interface has produced working circuitry in PAL technology. Partial VLSI layouts
have been generated, but we are at least a year from attempting fabrication. For
reasons that will become obvious, a path to printed-wire boards is of more immediate
concern.

The physical implementation of behavioral descriptions entails descending to
successively more concrete levels of description. There are two interacting aspects
in this process: isolation of relevant subsystems and imposition of representations.
The editor provides some basic algebra for the first, but, at this time, none for the
second.

Given an initial behavioral specification, one task is to segregate that portion
which is subject to detailed design. This problem has received little attention, but
is a key to maintaining global correctness. We have implemented a general transfor-
mation, called system factorization, which encapsulates subsystems. What to factor
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is now a matter of judgement; and, in some cases, how to factor is determined in-
teractively. From the exercises we have done, some typical reasons for factorization
are the following (there are numerous examples in the appendices):

◦ Combination. This is simply the enclosure of a collection of terms by the
formation of a combinator, a “macro.” The first version of SP, above, might
be expressed as

SP(I) = O where

C = Delayt (I)

O = AndNot (I, C)

where
AndNot(u, v)

def
= and(u, not(v))

and
Delayt(S)

def
= true ! S

SP itself is a combination and might have been factored from a larger system.

◦ Information Hiding. A more serious kind of factorization is done to encapsulate
complex objects of the ground type. It is often a tactic to isolate internal data
paths of a register architecture from the external structures (e.g. memories,
stacks, co-processes) they operate against. In this context, it is called abstract
component factorization in [9, 10, 11].

◦ Targeting. A typical example is the encapsulation of arithmetic operations as
a multi-function arithmetic unit. This involves the synthesis of an instruction
signal to govern the unit’s function and the introduction of selector-terms to
switch operands. There are many criteria for targeting, but we have found that
in moderately large designs, reasonable factorizations can be found after a few
trials.

◦ Packaging. The growth of programmable logic has increased the importance
of partitioning descriptions into physical modules. For example, a “bit slice”
partitioning can exploit the massive switching capabilities of array logic to
eliminate the bussing of conventional register-transfer designs. Bit slicing is
one example of how physical modularity can be completely orthogonal to func-
tional modularity. For this reason, the translation of a functionally oriented
behavioral description to a physically oriented circuit description is pervasive,
although the transformations are based on simple algebra.

The second aspect of concrete design derivation is the introduction of represen-
tations for the ground type. This is different from the objective of system factor-
ization, which is essentially to isolate a level of description. Representation is the
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replacement of one type by another. Briefly, given a type V one must present a set
R and an interpretation, α:R→ V, saying what value each element of R represents.
An operation f :V → V is implemented by F :R→ R if for all r ∈ R,αF (r) = f(αr);
that is, if F gets the right answer for every representable input value. (There are
other versions of this statement, but this is the one used in most hardware verifica-
tion research.)

In hardware, the most concrete type is usually binary logic. Hence, values in
V are represented by tuples, R = Bitn; and, to make matters worse, n may be
left variable until the final stages of implementation. In the course of a design,
“addition” might reasonably acquire a spectrum of signatures, such as

(Integer × Integer) → Integer,

(Bitn × Bitn) → (Bitn × [Carry ]Bit),

even
(Int×Bitn) → (Bitn+1),

and ultimately
Bit2n → Bitn+1.

Since we do not yet have automated means to address representation, our experi-
ments have involved simple hierarchies, but even so, the experience is encouraging.

In the development of a garbage collector [13], factorizations were used to
isolate the data paths for a register architecture. Communicative specifications for
the factored modules (memories, arithmetic logic) were synthesized, while a correct
global description was maintained. State generation and control encoding were
automatically derived (following [9]), simplified, and assembled to programmable
PALs after manual assignment of binary representations for symbolic values. What
remained was a system of signal equations expressed in terms of record manipulation
in the ground subtypes of “addresses” and “contents.” These project to identity
functions in the binary representation; hence, any group of data-path signals, re-
interpreted in binary-logic, constituted a plausible bit slice. Packaging was a matter
of selecting appropriate groups for automatic assembly into PAL. The result was
eight distinct programs for thirty-four PALs, which comprised the registers and
control for collecting a twenty-four bit address space.

The contribution of developmental work is its demonstration that the over-all
organization of a design problem can be secured in an natural framework. Its pur-
pose is to manage the exacting detail of design manipulation as various intellectual
hierarchies are explored. We were able to project arbitrary subsystems into pro-
grammable technology, while preserving global coherence. This is crucial to the
assurance of correct implementations. The whole of a digital design effort is a com-
plex interleaving of tactical decompositions, whose general organization demands
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further study. While it is certainly true that the analysis and reasoning for specific
tactics must continue to be researched, too little attention is paid to supporting the
interplay of tactics.

Proposed Research

The experimental aspects of this work are driven by the need to address al-
ternative technologies and more subtle design strategies. Much of this broadening
comes through the piecemeal incorporation of classical techniques. In this, the pri-
mary concern is how these techniques might be unified in an abstract algebra. Such
formalism taxes the patience of participating engineers, but has contributed to new
insights into the use of current technology [25]. A purely functional perspective is
also shedding light on modeling and simulation of hardware and software systems
[12, 20].

Formal hardware description is approaching benefit to practice, but it remains
to be demonstrated how more rigorous foundations can advance the engineering
discipline. We hope to incorporate some good work by Sheeran [21, 22] in our
more general framework. Our experimentation leaves little doubt about topics to
be addressed in the continuation of this work.

We must first attack the representation of simple objects: getting from terms,
say, of integers to terms of bits. Though the more general problems of higher-order
representation are certainly relevant, they are not as urgent. This topic brings
questions of type inference to the forefront. Type mismatches are the most com-
mon descriptive errors and the most difficult to correct. Type translations can be
extremely confusing. Similar sentiments can be found in many related publications;
we quote below from the conclusion of a survey by Boute [1]

Additional streamlining is required for the second-order system semantics
of sequential circuits. A promising approach appears to consist in formal-
izing and extending [an FP algebra] and introducing a formal type def-
inition language into [system description languages]. . .. Experience with
our notation for describing complex computer architectures indicates the
desirability of such a type language for other purposes as well.

In our experience, the last sentence is an understatement, but an understand-
able one because the dominant typing problems in hardware are structural: having
to do mainly with product formation. The entailed inference is regarded as theo-
retically mundane, but there is a deeper issue at play. Temporal behavior, logical
decompositions, physical decomposition, binary representation, all involve products.
A VLSI description is virtually pure structure. It is difficult to maintain the intent
of structurings, in part because they are formally indistinguishable.
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One topic of proposed research is to develop and implement algebra for
the imposition of representations in concrete descriptions. Mechanisms
are needed to declare representations, to check for consistency, do trivial
coercions, and to unify distinct objects through their representation.

Boute’s work seems the closest to our own in notation and motivation. We are
in near agreement with his notion of “open semantics,” where a single descriptive
syntax is subjected to a various interpretations (besides the discrete/behavioral
models) for the purpose of analysis and implementation. Applied to automation,
this means that a single circuit description is executed in distinct environments,
to obtain logical, analytical, and geometrical information. Locally, O’Donnell has
done the most work on this subject, showing how a description generates behavioral
simulations, wiring lists, connectivity graphs, and layouts [20].

The thesis that circuit analyses and fabrication can be done in a compo-
sitional manner needs close examination. It can probably be made true
by adding more descriptive structure and semantic abstraction. This ap-
proach leads to more dimensions of of orthogonal decomposition, the cen-
tral problem considered in this proposal.

Our main difference with Boute is our use of reflexive domains in behavioral
modeling; he proposes a more rigorous hierarchy of order, and makes a credible
assertion that underlying types can be constructively built [1]. In our view, full
abstraction should not be precluded from descriptive bases, but this perspective
comes from a background in programming languages, not digital engineering. Gor-
don cogently argues for a freer use of higher-order constructs in digital verification
[4]. Our motivation has more to do with specification:

It is a long-term goal to extend the frontier of what constitutes a hardware
specification. We seek to develop a broader class of of functional descrip-
tions from which digital implementations can be systematically obtained.

A more concrete goal is to incorporate a logic for reasoning about sequential sys-
tems. Gordon makes an attractive case for a pure predicate calculus [4], Mozskowski
for a temporal logic [19], and Milne for a communicating calculus [17]. All provide
a mechanized support specialized to hardware. A more immediate prospect is the
verification work of Hunt [8].

Hunt’s is one of the most exhaustive hardware verification exercises to appear
in the literature. He employs the Boyer-Moore system to mechanically verify the
correctness proof of a microprocessor description. German and Wang also use Boyer-
Moore to prove classes of circuits [3]. Other microprocessor proofs have been done
at Cambridge [5] and Calgary [14]. Hunt’s approach is attractive for two reasons.
First, it is based in applicative notation and can most readily be integrated in our
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development project. Second, Hunt (and also German and Wang) directly addresses
the validity of binary representations.

There are two independent parts to Hunt’s proof. First, he establishes gate-
level implementations the machine’s ground type (integer arithmetic). He then
proves that a micro-coded interpreter implements the microprocessor’s instruction
semantics. This second proof is carried out in the more abstract type. Hunt’s
“verified microprocessor” is just a textual description, of course, given at mixed
levels of detail. It is the kind of description, that we foresee transforming to physical
hardware. The processor is specified in a form (it is an iterative recursion equation)
that we have already shown be can be translatable to architecture. The subsequent
incorporation of binary representations is the main topic of proposed research.

We see in Hunt’s work a good opportunity to demonstrate the general
relationship between direct verification and transformational development,
applied to hardware [18]. The contribution of the proposed research is to
develop a secure framework for the incorporation of verified subsystems in
surrounding designs.

In summary, the next two years of research focus on the latter stages of hard-
ware derivation. The primary goal is to bridge lower levels of representation hi-
erarchy by exploring the algebra needed to manipulate descriptive structure. Our
experimental work will broaden the tactics and target media for implementation.
Formal research centers on expanding the classification of functional specifications
from which hardware may be obtained, and in particular, to study the use of recur-
sive types in behavioral description. An immediate topic is to establish a connection
to hardware verification research.
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