Genetic Algorithms for
the Traveling Salesman Problem

John Grefenstette!, Rajeev Gopal,
Brian Rosmaita, Dirk Van Gucht

Computer Science Department
Vanderbilt University

Abstract

This paper presents some approaches to the
application of Genetic Algorithms to the
Traveling Salesman Problem. A number of
representation issues are discussed along with
operators. Some
preliminary analysis of the Adjacency List
representation is presented, as well as some

several recombination

promising experimental results.

1. Introduction

Genetic Algorithms (GA’s) have been applied to
a variety of function optimization problems, and
have been shown to be highly effective in
searching large, complex response surfaces even n
the presence of difficulties such as high-
dimensionality, multimodality, discontinuity and
noise (4]. However, GA’s have not been applied
extensively to combinatorial problems. The
major obstacle is in finding an appropriate
representation. This paper presents some
approaches to the design of GA's for a well
known combinatorial optimization problem — the
Traveling Salesman Problem (TSP). The TSP is
easily stated: Given a complete graph with N
nodes, find the shortest Hamiltonian path
through the graph. (In this paper, we will assume
Euclidean distances between nodes.) The TSP is
NP-Hard, which probably means that any
algorithm which computes an exact solution of
the TSP requires an amount of computation time
which is exponential in N, the size of the problem
[5]). In addition to its many important
applications, the TSP is often used to illustrate
heuristic search methods [2,7,8], so it is natural to
investigate the use of GA’s for this problem.

Choosing an appropriate representation is the
first step in applying GA’s to any optimization
problem. If the problem involves searching an N-

dimensional space, the representation problem 1s
often solved by allocating a sufficient number of
bits to each dimension to achieve the desired
accuracy. For the TSP, the search space 1s a
space of permutations and the representation
problem is more complex. Consider a path
representation in which a tour 1s represented by a
list of cities: (2 b ¢ d e)
that the representation is not unique: each tour
has N representations This can be golved by
fixing the initial city. Another problem 1s that
the crossover operator does not generally yield
offspring which are legal tours. For example,
suppose we cross tours (a b ¢ d e) and (adechb)
between the third and fourth cities. We get as
offspring (2 b c ¢ b) and (a d e d e), neither of
which are legal tours. Finally, there is a problem
in applying the hyperplane analysis of GA's to
this The definition of =
hyperplane is unclear in this representation. For
example, (a # # # #) appears to be a first order
hyperplane, but it contains the entire space. The
problem that this representation, the
semantics of an allele in a given position depends
on the surrounding alleles. Intuitively, we hope
that GA’s will tend to construct good solutions
by identifying good building blocks and
eventually combining these to get larger building
blocks. For the TSP, the basic building blocks
are edges. Larger building blocks correspond to
larger subtours. The path representation does
not lend itself to the description of edges and
longer subtours in ways which are useful to the

GA.

The first problem is

representation

18 in

In section 2, we present two representations
which offer some improvements over the path
representation. Section 3 discusses the design of
a heuristic recombination operator for what we
consider to be the most promising representation.
In section 4, some preliminary experimental

IResearch supported in part by the National Science Foundation under Grant MCS-8305693.

160

results are described for the TSP.
discusses some future directions.

Section 5

2. Representations for TSP

2.1. Ordinal Representation

In the ordinal representation, a tour is described
by a list of N integers in which the ith element
can range from 1 to (N-i+1). Given a path
representation of a tour, we can construct the
ordinal representation TourList as follows: Let
FreeList be an ordered list of the cities. For each
city in the tour, append the position of that city
in the FreeList to the TourList and delete that
city from the FreelList. For example, the path
tour (a ¢ e d b) corresponds to an ordinal tour
(123 21) as shown:

TourList FreeList
0 (abcde)
(1) (becde)
(12) (bde)
(123) ® Q)
(1239 (b)
(12321) 0

Note that it is necessary to {ix the starting city
to avoid multiple representation of tours.

A similar procedure provides a mapping from
the ordinal representation back to the path
representation. In fact, the mapping between the
two representations is one-to-one.

The primary advantage of the ordinal
representation is that the classical crossover
operator may be freely applied to the ordinal
representation and will always produce the
ordinal representation of a legal tour. However,
the results of crossover may not bear much
relation to the parents when translated to the
path representation. For example, consider the
[ollowing two tours:

ordinal tours path tours
(12321) (acedb)

161

(24111) (beacd)

Suppose that we cross the ordinal tours between
the second and third positions. We get the
following tours as offspring:

ordinal tours path tours

(12111) (acbde)

(24321) (bedca)

The subtours corresponding to the genes in the
ordinal tours to the left of the crossover point do
not change. However, the subtours corresponding
to genes to the right of the crossover points are
disrupted in a fairly random way. Furthermore,
the closer the crossover point is to the front of
the tour, the greater the disruption of subtours in
the offspring.

As predicted by the above consideration of
subtour disruptions, experimental results using
the ordinal representation have been generally
poor. In most cases, a GA using the ordinal
representation does no better than random search

on the TSP.

2.2. Adjacency Representation

In the adjacency representation, a tour 1is
described by a list of cities. There is an edge in
the tour from city i to city j if the allele 1n
position i is j. For example, the path tour
(1 3 54 2) corresponds to the adjacency tour
(3152 4). Note that any tour has exactly one
adjacency list representation.

2.2.1. Crossover Operators

Unlike the ordinal representation, the adjacency
representation does not allow the classical
crossover operator. Several modified crossover
operators can be deflined.

Alternating Edges

Using the alternating edges operator, an
offspring is constructed from two parent tours as
follows: First choose an edge at random from one
parent. Then extend the partial tour by choosing

the appropriate edge from the other parent.

Continue extending the tour by choosing edges
from alternating parents. If the parent's edge
would introduce a cycle into a partial tour, then
extend the partial tour by a random edge which
does not introduce a cycle. Continue until a
complete tour is constructed.

For example, suppose we have

mom = (234561)
dad = (251643)

Then we might get the following offspring:

kid =(254163)

where the only random edge introduced into the
offspring is the edge (4 1). All other edges were
inherited by alternately choosing edges from
parents, starting with the edge (1 2) from mom.

Experimental results with the alternating edges
operator have been uniformly discouraging. The
obvious explanation seems to be that good
subtours are often disrupted by the crossover
operator. Ideally, an operator ought to promote
the development of coadapted alleles, or in the
TSP, longer and Idénger high performance
subtours. The next operator was motivated by
the desire to preserve longer parental subtours.

Subtour Chunks

Using the subtour chunking operator, an
offspring is constructed from two parent tours as
follows: First choose a subtour of random length
from one parent. Then extend the partial tour
by choosing a subtour of random length from the
other parent. Continue extending the tour by
choosing subtours from alternating parents.
During the selection of a subtour from a parent,
if the parent’s edge would introduce a cycle into a
partial tour, then extend the partial tour by a
random edge which does not introduce a cycle.
Continue until a2 complete tour is constructed.

Subtour chunking performed better than
alternating edges, as expected, but the absolute
performance was still unimpressive. An analysis
of the allocation of trials to hyperplanes provide a
partial explanation for the poor performance of

162

this operator.

2.2.2. Hyperplane Analysis
The primary advantage the adjacency
representation is that it permits the kind of

of

hyperplane analysis which has been applied to the
N-dimensional GA
paradigm [1,3,6]. Hyperplanes defined in terms of
a single defining position correspond to the
natural building blocks, i.e., edges, for the TSP
problem. For example, the hyperplane
(# # # 2 #) is the set of all permutations in
which the edge (4 2) occurs. We briefly
gummarize the main points of the classical
hyperplane analysis of GA’s: In the absence of
recombination operators, selection of structures
for reproduction in proportion to the structure’s
observed relative performance allocates trials to
all represented hyperplanes in the population
(roughly) according to the following formula:

function optimization

M(H,1+1) = M(ELO)*(u(Lt) / o(P))
where
M(H,t) = # of representatives of H at time t

u(H,t) = observed performance of H at time t

u(P,t) = mean performance of population at
time t.
The elements of any hyperplane partition

compete against the other elements of that
partition, with the better performing elements
eventually propagating through the population.
This in turn leads to & reduction in the
dimensionality of the search space, and the
construction of larger high performance building
blocks.

In the adjacency representation, a first order

hyperplane partition consists of all of the
hyperplanes which are defined on the same
position. For example:

{(#Fa#14) Fas2H) FEHHE3H)
#F##5#)}

is a first order hyperplane partition. Each
element of the partition contains an equal

number of tours. Selection is supposed to
distinguish among the elements of this partition
and to favor the high performance hyperplanes.
However, the following theorem shows that
selection has very little information on which to
allocate trials to

hyperplanes.

competing first order

Theorem 1. Suppose that H_ and H__ are

two first-order hyperplanes defined by the edges
(2 b) and (a c), respectively, in a Euclidean TSP.
Then | u(H_,)- u(H,)| < 4(ab + ac) where ab

and ac represent the lengths of the edges (a b)
and (a c), respectively.

Proof. We show that there is a one-to-one
mapping { between the tours in Hab and the tours

H“ such that if x is a tour in H_, and y = {(x) is
the corresponding tour in H_, then

| Length(y) - Length(x) | < 4(ab+ac).
The theorem follows directly.

The following illustrates the mapping {:

p i a b d
o——0o—0

That is, y is obtained by exchanging the nodes
b and ¢ in the tour x. Using the triangle
inequality, it is easy to show that:

~(4ab + 2ac) < Distance(y) - Distance(x)
< (4ac + 2ab).

So

| Distance(y) - Distance(x) | = 4(ab+ac),
QED.

In practice, the observed difference between
competing first order hyperplanes is usually an
order of magnitude less than the bounds in the
theorem. And since the overall tour length is
generally very large compared to the bound in
the theorem, there is generally no significant
difference between the mean relative performance
of any two competing first order hyperplanes.
Our experimental studies have shown that the
difference in the observed performance of
competing first order hyperplanes in a TSP of
gize 20 is generally less than 5% of the mean
population tour length. In larger problems, this
difference can be expected to rapidly approach

Lero.

One might suspect that the TSP 1s not a
suitable problem for GA's, that the TSP is in
some sense GA-Hard. Bethke[l] characterizes
some problems for which GA's are unsuitable.
Informally, Bethke shows that there are functions
and representations for which the low order
hyperplanes can mislead the GA into allocating
trials to suboptimal areas of the search space.
However, Bethke's techniques, which involve the
Walsh transform of the objective function, apply
to one-dimensional functions of a real variable
using a fixed-point representation. A similar-set
of results may be derivable for combinatorial
problems using the adjacency representation. But
Theorem 1 does not indicate that the information
in the first order hyperplanes of the adjacency
representation is misleading, just that it is buried.
In other words, measuring the fitness of a tour by
the tour length may be too crude a measure for
apportioning credit. We now describe a crossover
operator which performs a secondary
apportionment of credit at the level of individual
alleles.

3. Heuristic Crossover

Theorem 1 shows that selection alone may not
be able to properly allocate trials to first order
hyperplanes, given our adjacency representation
for the TSP. The heuristic crossover operator
attempts to perform a secondary apportionment

of credit at the allele level. This operator
constructs an offspring from two parent tours as
follows: Pick a random city as the starting point
for the child's tour. Compare the two edges
leaving the starting city in the parents and
choose the shorter edge. Continue to extend the
partial tour by choosing the shorter of the two
edges in the parents which extend the tour. If
the shorter parental edge would introduce a cycle
into the partial tour, then extend the tour by a
random edge. Continue until a complete tour is
generated.

In order to compare this operator with the
previous two recombination operators, 1000
random pairs of parents were chosen for a TSP of
size 20. For each pair of parents, an offspring
constructed according to each of the
crossover operators. For all three operators, the
offspring generally inherited about 30% of the
The remaining 40%

Wwas

edges from each parent.

were random edges introduced by the
recombination operator to create a legal tour.
For the first two operators, the offspring

generally show no improvement in overall tour
length when compared to the better parent. Not
surprisingly, the heuristic crossover produces
offspring which are, on average, about 10%
better than the better parent. It seems
reasonable that such an improvement should give
selection a way to promote the propagation of
good edges through the population. The next
section shows some experimental results which
confirm this expectation.

It is important to note that, with the proper
choice of data structures, the heuristic crossover
operator can be implemented to run as a linear
function of the length of the structures [9]. This
implies that, if E is the number of trials and N is
the number of cities, our GA’s for the TSP run
with asymptotic complexity O(EN), the same as
pure random search.

4. Experimental Results

This section describes some experiments with
the adjacency representation and the heuristic
crossover operator. For each experiment, N cities
were randomly placed in & square Euclidean
space. The population consisted of
randomly generated tours. The selection method

initial

164

was based on the expected value model The
crossover rate was set at 50%, and there was no
explicit mutation operator.

Figure 1 shows the results of a 50 city problem,
Figure 2 shows a 100 city problem and Figure 3
shows a 200 city problem. Each Figure shows a
representative tour from the initial population,
the best tour obtained part way through the
search, and the best tour obtained after the entire
search, along with a randomly selected tour in the
final population. It can be seen, especially in
Figues 2 and 3, that good subtours tend to
survive and to propagate. The figures also show
that there is still a good deal of diversity in the

final population.

Statistical techniques [2] allow us to estimate
that the expected length of an optimal tour for
experiment 1 1is approxamately 37.45. The
optimal tour obtained by the GA differs from this
expected optimum by about 25%. After an equal
number of trials, random search produces a best
tour of length 148.6, nearly 300% longer than the
optimal tour. The optimal tour obtained in
experiment 2 differs from the expected optimum
by 16%. The optimal tour obtained in
experiment 3. differs from the expected optimum
by about 27%. These results are encouraging and
suggest that further investigation of this
approach is warranted.

Experiments show that GA’s which use heuristic
crossover but not selection perform better than
random search but significantly worse than GA's
which use both selection and heunistic crossover.
That is, there appears to be a symbiotic
relationship between the two levels of credit
assignment performed by selection and heuristic
crossover. We currently working on
clarifying the relationship between selection and
the heuristic crossover operator.

are

5. Future Directions

This papers presents preliminary
observations and experiments. Many more
questions about the TSP need to be investigated.
Some interesting future projects include:

some

Combining GA’s with other heurtstics. In
may be useful to heuristically choose the initial

population of tours. For example, the nearest
algorithm
relatively good tours when started from various
For very large problems, nearest

neighbor can be approximated by choosing =a

neighbor can generate a et of

initial cities.

random set of cities and taking the one closest to
the current city. Heunstics could also be invoked
at the end of the GA to do some local
modifications to the tours in the final population.
For example, the Figures shows many
opportunities for improving the final tour by
some local edge reversals.

Comparison with simulated annealing.
Simulated annealing is another randomized
beuristic algorithm which has been applied to
very large (N > 1000) TSP's. From the
published literature on simulated annealing (2,7],
it appears that our results are at least
competitive. A careful comparison of these two
techniques would be very interesting.

Effects of GA parameters. There are several
control parameters involved in any GA
implementation, such as population size,
crossover rate, etc. which may have an effect on
the performance of the system. The proposed
GA'’s are sufficiently different from previous GA's
that it might be useful to investigate the effects
of these parameters for the TSP.

Other combinatorial applications. How do the
ideas developed thus far apply to combinatorial
problems other than the TSP?

References

1. A. D. Bethke, Genetic algorithms as
function optimizers, Ph. D. Thesis,
Dept. Computer and Communication
Sciences, Univ. of Michigan (1981).

2. E. Bonomi and J.-L. Lutton, *The N-
city traveling salesman problem:
statistical mechanics and the
Metropolis Algorithm,® SIAM Review
Vol. 26(4), pp. 551-569 (Oct. 1984).

3.K. A. Dejong, Analysis of the
behavior of a class of genetic
adaptive systems, Ph. D. Thesis,

Dept. Computer and Communication

165

K. A. Dejong,

.M. R. Garey and D. S.

Sciences, Univ. of Michigan (1975).

"Adaptive system
design: a genetic approach,” [EEFE
Trans. Syst., Man, and Cyber. Vol
SMC-10(9), pp. 556-574 (Sept 1980)

Johnson,
Computers and Intractability,
W. H. Freeman Co., San Fransisco
(1979).

. J. H. Holland, Adaptation in Natural

and Artifictal Systems, Univ. of
Michigan Press, Ann Arbor (1975)

. 8. Kirkpatrick, C. D. Gelatt, and

M. P. Vecchi, ®*Optimization by
simulated annealing,® Science Vol
£20(4598), pp. 671-680 (May 1983)

. J. Pearl, Heuristics, Addison-Wesley,

Menlo Park (1984).

. B. J. Rosmaita, Ezodus: An eztension

of the the genetic
problems dealing with permutations,
M.S. Thesis, Computer Science
Department, Vanderbilt University
(Aug. 1985)

algorithm to

FIGRE 1b

FIGRE la
58 CITIES 58 CITIES
DISTANCE = 187.82 DISTANCE = 64.76
INITIRL POPULRTION GENERATION 38 1863 TRIALS
FIGRE lc FIGRE Id
S8 CITIES 58 CITIES
DISTANCE = 68.32 DISTANCE = 46.84
FINARL POPULRTION GENERATION 294 14686 TRIALS

Figure 1.

166

VARG
RN

ik

N
X -...5“ i
Y ‘;e,;-‘._/q‘a‘:

.‘ ‘
a\D

AR
S
LA RN Y
;7' ‘w!ilgigif el

1.‘?

.-:;'\\-.s\“‘ .—‘
e

FIGRE 23
188 CITIES
DISTANCE = 547.12

FIGRE 2b
1808 CITIES
DISTANCE = 118.47

INITIAL POPULATION GENERATION 125 62396 TRIALS
FIGRL 2c FIGRE 2d
188 CITIES 188 CITIES

DISTANCE = S3.84
FINAL POPULATION

Figure 2.

167

DISTANCE = 87.21

GENERATION 487 28338 TRIALS

.—-—\ N t ﬁ
_B!qu_l] 711—_!/ :/
%
N
~ FIQRE 3a FIGRE 3
288 CITIES 288 CITIES

DISTANCE = 1475.68

DISTANCE = 223.81

INITIAL POPULRTION GENERATION 227 11373 TRIARLS
FIGRE 3c FIGRE 34
288 CITIES 288 CITIES

DISTANCE = 351.22
FINAL POPULRTION

Figure 3.

168

DISTANCE = 283.46

GENERARTION 483

24596 TRIALS

