Parallelisation of Probabilistic Sequential Search Algorithms

Prasanna Jog

Dirk Van Gucht

[ndiana University

Computer Science Department
Bloomington, [N 47405

jog@iuvax.cs.indiana.edu

vgucht@iuvax.cs.indiana.edu

Abstract .

This paper explores ways of parallelising probabilistic se-
quential search algorithms that use a local improvement
operator to generate iteratively a new candidate solution
from previous candidate solution. We study the trade-off
between the processors working in isolation and communi-
cating with each other, in terms of required effort and per-
formance achieved.

1. Introduction

Tﬁis_papcr deals with the parallelisation of probabilis-
tic sequential -search algorithms which ‘generate a sequence
of candidate solutions (structures), each'derived from the
previous one by the use of a probabilistic operator. The
type of operators under consideration are those that make
small local changes that improve tlie structure. As an ex-
ample, consider the probabilistic sequential search algorithm
of Lin and Kernighan (the r-opt strategy) [1] used to find
an approximate solution to the Traveling Salesman Problem
(TSP). The TSP can be stated as follows: Given N cities, if
a salesman starting {rom his home city is to visit each city
exactly once and then return home, find the order of visits
{the tour) such that the total distance traveled is minimum.
In the general r-opt strategy, the operator replaces r edges
in the current tour for r edges not in this tour if the re-
sulting tour has a tour length less than the length of the
previous tour. For example, the 2-opt strategy randomly
selects two edges (i1, 1) and (iz, j2) from a tour (see Figure
1) and checks if

ED(iy, i) + ED(i2,52) > ED(ir,72) + ED(i2,51)

(ED stands for Euclidean distance). If this is the case, the
tour is replaced by removing the edges (iy,71) and (iz,j2)
and replacing them with the edges (i, 2} and (i3, 1) (see
Figure 2).

One way of parallelising a probabilistic sequential search
algorithm is to split the problem into n subproblems and let
each processor work on one subproblem. Such a division is,
in general, not possible. For instance, in a TSP, it is unlikely
that we could make different processors attempt edge inter-
changes simultaneously on the same tour and hope to obtain

Figure 1. Tour with edges (1, 1) and (i3,72)

Figure 2. Tour with edges (£, 72} and (12, 11]).

a legal tour. In other words, to achieve such parallelisation
one has to 2dd conflict resolution techniques, usually result-
ing in a degradation of the performance of the algorithm.
Another way of parallelising is to let all n processors
run independently and take the best available solution at
the end. We will call this the independent strategy. A poten-
tial problem with this strategy is that as the processors run
independently, some of them may get caught in a local min-
ima or may search sub-optimal regions of the search space,
wasting valuable resource power. Intuitively, it seems likely
that we might do better if we let the processors work inde-

170

pendently for some time, then exchange information about
“good” candidatle solutions, again work for a while, exchange
We call such a method an in-
terdependent siralegy and call the time of the processing in
between two information exchanges a generafiont. Clearly,
there are many ways of exchanging information about good
candidate solutions. A straightforward strategy is to over-
write after each generation a certain number of “bad” can-
didate solutions by good candidate solutions. More sophis-
ticated strategies could involve exchanging structural parts
of good candidate solutions. Examples of such strategies are
cross-over operators found in Genetic Algorithms (GA) [3].
[n the rest of this paper, we give evidence that interde-
pendent strategies are usually better than the independent
strategy when parallelising probabilistic sequential search al-
gorithms which use local improvement operators. In fact, we
suggest that a good technique of parallelisation is to use an
interdependent strategy where information exchange is done
on a fairly regular basis. In Section 2, we illustrate this ap-
proach by parallelising a simple problem, the Classical Oc-
cupancy Problem [4]. Section 3 covers the parallelisation of
a more complicated search algorithm: the 2-opt strategy of
Lin and Kernighan for the TSP mentioned above. In Section
4, we describe experiments with a genetic algorithm for the
TSP. We show that genetic algorithms can be viewed as par-
allel search algorithms that implement an interesting kind
of interdependent strategy to achieve good, robust perfor-
mance. The standard selection procedure of the GA can be
viewed as a mechanism for achieving information exchange
and the local improvement operator can be viewed as a re-
combination operator of the GA. Finally, Section 5 offers a
discussion of the ideas and results given in this.paper.

new information and so on.

2. A Toy Problem: The Classical Occupancy Prob-
lem

Consider the classical occupancy problem: Given a
structure of N empty cells, shoot points randomly at the
cells (with a probability of 1/N of bitting any given cell)
until all cells are filled. The time for solving this problem is
the gumber of shots required to fill all N cells. This prob-
lem has been studied extensively by Kolchin et.al [5]. We
present here some experimental results which illustrate the
advantages of an interdependent strategy over the indepen-
dent strategy.

The sequential algorithm involves starting with the ini-
tial structure of N empty cells and repeatedly generating a
random number between 1 and N, this is called a (rial If
the cell was empty before, it is now assumed to be full and
if not, the trial has been unsuccessful.

In the independent case, this sequential algorithm will
run separately on all n processors. [n this case, the time
required to solve the problem is the number of shots required
by the processor that finished first. In the interdependent
case the algorithm would look as follows:

i Note that if a generation involves infinitely many trials
(attempts at local improvements), the interdependent strat-
egy reduces to the independent strategy.

assign to each processor the empty structure;

Sull — 0;

generation «— 0;

while full < N do

begin

generalion — generalion + 1,

each processor generates a number between [and N,

if (at least one processor is success{ul) then

begin

randomly choose one among the successful proces-
sors;

distribute jts structure to all other processors;

Jull — full +1;

end;

end;

We now consider results of simulation on the classical
occupancy problem with N = 100, First we fixed the num-
ber of processors and varied the number of trials per gener-
ation (tpg). As indicated by the above algorithm, alter each
generation the best structure was redistributed (copied) to
all the processors. With the number of processors n = 10,
we found that tpg = 1 resulted in the minimum number
of generations. It should be noted, however, that a higher
number of trials per generation also did well compared Lo
the independent case. For N = 100 and n = 10 processors,
the independent case required on average (taken over 500
experiments) 370 generations until completion. (Note that
100 is optimal). [n the interdependent case, for lpg = 1 the
processors required on average 128 generations, for Ipg = 4
the processors required 165 generations and for tpg = 7 the
processors required 190 generations.

Next we fixed the trials per generation and varied the
number of processors. As the number of processors increased
the generations required in the independent case reduced,
but at a slower rate than the generations required for the in-
terdependent case. For example, with 1 trial per generation
and W = 100, it took 3 processors on average 221 genera-
tions to finish in the interdependent case and on average 427
generations in the independent case. With 5 processors the
interdependent strategy required 166 generations while the
independent case required 397 generations. With 10 proces-
sors the generations required were 128 and 370 respectively.
(As the number of processors tends to infinity both strate-
gies will require NV generations). Our experiments suggest
that doing less number of trials per generation and increas-
ing the number of processors is better.

But this was a simple problem. In this problem, we
know the (optimal) solution and among processors that have
a successful trial, there is no one best structure, since they
all have the same amount of empty cells. That is, they are
all equally good. For this reason, we decided not to try a
strategy of taking the k best candidate solutions with k > 1,
although a slightly different performance may be expected.
We now consider the parallelisation of a more complex prob-
lem and compare the performance of various interdependent
strategies with each other and the independent strategy.

3. Experiments with a Search Algorithm for the -
Traveling Salesman Problem

174

The domain of this experiment is the Traveling Sales
man Problem (TSP). We use the operator of Lin and
[ernighan (Lthe r-opt strategy), described earlier as an exam
ple of a probabilistic operator that makes small local changes
to produce new structures from old ones. The larger the
value of r, the more likely it is that the flinal solution (when
no more exchanges are possible) is optimal. However, r is
usually chosen to be 2 because the possible edge interchanges
is of the order of (f) x r!f. In each generation, each pro-
cessor performs a certzin number of applications of the 2-
opt strategy on the structure it currently holds in its local
memory and after each generation the best structure was
redistributed (copied) to all the processors. The domain for
experiments described here is the lattice of 100 points spread
over (0,0}, (0,9), (9,0), (9,9) as shown in Figure 3.

Figure 3. Lattice of 100 cities

Clearly, the optimal tour length is 100f. We will consider
the total effort, given by-the number of. generations times
the number of trials per generation, required to get to within
10% of optimal performance as the number of trials per gen-
eration (tpg) is-varied. Notice.that-we do not take into ac-
count the overhead-involved in redistributing the structures
after ‘each generation. The algorithm is as follows:.
for various values of {pg-do
begin i : %
generation «— 0
generate a structure randomly;
copy it to all n processors;
while (bestper formance 2 (1.10«optimumualue))do
begin " e -
generation ggr:i_c'ralicm-'i—' 1;
each processor‘attempts pg local improvements;
find the structure with the best performance;
distribute this structire”to all other processors;
end ’
end

R
~ O e A 2

t It should be noted that Lin-and Kernighan propose a
more powerful strategy where:r is-varied dynamically, but
the simple 2-opt strategy also gives good results and is quite
efficient [2].

1 It should be noted that similar results.can be obtained
for other TSPs. R Tt e

The actual algorithm also keeps track of the number of suc-
cessful local improvements (i.c., applications of the 2-opt
operator that make the tour length smaller) and the cum-
ber of experiments that got aborted (i.e. those experiments
wherein the performance did not reach below 10% of op-
timal performance even after many generations). Figure 4
shows the graph for 10 processors. Similar graphs were ob-
tained for different number of processors. This shows that
if we have fewer trials per generation then the total effort
required to get a relatively good performance is less. (As
mentioned before, when tpg tends to infinity we have the
independent strategy, and that clearly requires a lot more
effort).

But not all trials involve successful local improvements,
Those that do not perform any local improvement will take
very little processor time because the tour does not need to
be rearranged. Therefore, to get an idea of total time re-
quired, we plotted in Figure § the number of successful local
improvements done on average. Again, we see that doing
fewer trials per generation reduces the total time required.

There is a danger in doing too few trials per generation
however. As Table [shows, out of 50 experiments for each
value of {pg, some get aborted for low values of tpg. This
happens when the algorithm gets caught in a local optimum,
which occurs because the algorithm described above has no
means of maintaining diversity of structures for low values
of tpg. Note that for higher values of {pg, that is strate-
gies closer to the independent strategy, no experiments get
aborted, showing the robustness of the operator and the al-
gorithm being used.

To avoid getting caught in a local optimum we decided
to change the interdependent strategy slightly to increase the
diversity of examined structures. Instead of taking the one
best structure we decided to experiment with the redistribu-
tion of the k best structures after each generation. (Again
as k tends to n we have the independent case). Io the ex-
periments with 10 processors we found that with k£ = 4 only
1 or 2 experiments get aborted (out of 50) for lower values
of tpg. We may conclude that increasing k (i.e. maintaining
diversity) makes the algorithm more robust.

There is another price we pay for exchanging informa-
tion too quickly. Every time we exchange information a copy
time is involved and this copy time increases as the number
of trials per generation decreases. But it will decrease as k
increases (for a fixed value of tpg)t. Thus, our experiments
show that one obtains a good interdependent strategy by
keeping (pg as low as possible to decrease the number of
total trials and to use a large enough k to make the algo-
rithm avoid getting trapped into a local minima as well as
to reduce copy time.

4. Experiments using a Genetic Algorithm

Genetic Algorithms (GA) [3], introduced by Holland,
have been applied with good success to function optimisation
problems involving complex functions [6] as well as on some
combinatorial optimisation problems [7,8,9,10,11,12,13]. A
typical GA maintains a population of structures after each.

+ It should be noted that on 2 parallel machine the.copy
time can be reduced.

172

generation, which consists of applying local improvement op-
erator a certain number of times (trials) to each structure,
uses a selection mechanism to produce a new population of
structures for the next generation. (Thus, a trial involves a
probabilistic operation that makes a small local change o
the structure). The selection mechanism assigns a strength
of performance measure to each structure. This measure
is usually the ratio of the performance of the structure to
the average performance of the population. The number of
occurences of this structure in the next generation is pro-
portional to this performance measure t.

A genetic algorithm cao be viewed as a parallel search
algorithm of the type we have been discussing io the previ-
ous sections. Whereasa sequential algorithm {using the local
improvement operator) operates on one structure 2 GA op-
erates on a population of n structures. If one imagines that
each structure is worked on by a separate processor, the se-
lection mechanism can now be viewed as an interdependent
strategy. The n processors run separately for 2 while (a
generation) and then exchange information (about perfor-
mance) resulting in processors getting 2 (possibly) different
structure for the next generation. This strategy is a more
sophisticated version of our earlier idea which consisted of
taking the k best structures from the current population

We used a version of the genetic algorithm (GA] that
uses the Z-opt local improvement operator to solve the TSP
We ran the GA for 50,000 trials, varying tpg. The population
size, or alterpatively the number of processors, is 50.

On the lattice of 100 points (optimum length is 100) the
GA did not do well for small values of £pg {5 and 10) but did
almost equally well on higher values of tpg. Table [T shows
the effort required for the CA to get to within 10% of the
optimal performance. It should be noted that these values
are close to the values obtained in our earlier interdependent
strategy of taking the one best (Table I).

Next we chose the domain to be 100 points uniformly
distributed between (0,0) (0,1) (1.0) (L1). Figure 6 shows
the performance versus tpg curve. The best performance is
seen at about tpg = 500 and it worsens a little alter that.
Therefore using the selection mechanism of 2 GA as strategy
of interdependency, and keeping (pg relatively small yields a
fast and robust algorithm with good performance

5. Conclusion
We have given evidence that probabilistic sequential

search algorithms which operate by performing 2 local
change oo 2 structure to generate a new structure, can be
parallelised by doing a reasonably large amount of local im-
provements for each structure per generation and then ex-
changing information 2bout “good” structures. Doing teo
few trials per generation, however, may not yield good per-
formance values as premature convergence may eccur. On
the other hand, we also showed that taking one best struc-
ture and redistributing it over the other processors is too
simplistic a strategy since it also causes premature conver:
gence; hence a few best should be selected for redistribution.
e

t Most GAs also use 3 crossover operator that takes two
structures and interchanges parts of them to produce two
new structures. In this paper we ignore such operators.

In fact, it turned out that the more sophisticated interdepen
dent strategy, the selection procedure of a genetic algorithm,
gave Lthe resulted in the most robust strategy. [t should be
noted that we have ignored copy Lime in the presentation of
the results. We believe however. that even il we take this
overhead into account similar results
pendent versus interdependent strategy may

concerning the mde

be obtained

Acknowledgements

We wish to thank the referees for helpful comments
which helped in clarilying some of the ideas and results of
the paper.

References

1. S. Lin and B.W._ Kernighan, “An Effective Heurnstic Al-
gorithm for the Traveling Salesman Problem”, Operalions
Rescarch 1972, pp: 498-516.

9. E. L. Lawler, J K. Lenstra, A H.G. Rinnooy Kan and
D.B. Shmoys (ED), The Traueling Salesman FProblem, John
Wiley and Sons Ltd (198%)

1] Holland, Adaplation in Natural and Artificial Systems,
University of Michigan Press, 1975.

4. N.L. Johunson, S. Katz, Urn Models and their Applico
tions, Wiley and Sons, 1977

5. V.F.Kolchin, B A Sevastyanov, v P.Chistyakov, flandom
Allocations, V. H Winston and Sons, 1978

6. K. A. Dejong, “Adaptive system design
proach” JEEE Trans. on System, Man and Cybernelics,
SMC-10(9), pp 556-574 (Sept 1980).

7. J.1. Grefenstette, R Gopal, BJ Rosmaita and 1} Vao
Gucht, “Genetic Algorithms for the Traveling Salesman

Problem”, Proc. of an Int'l Conf. on Genelic Algorithms
and Their Applications, pp 160-168 (July 1985).

g. J.J. Grefenstette, “Incorporating Problem Specaific
Knowledge into Algorithms™, To appear.

g. J.Y. Suh, D Van CGuecht, “locorporating Heurnstic fu

formation into Genetic Gearch”, Technical Report. Indiana
University, February 1987

10, L. Davis, “Job shop scheduling with genelic algorithms”,
Proc. of an Int'l Conf an Genetic Algorithms and Ther
Applications, pp 136-140 (July 1985)

11, M.P. Fourman, “Compaction of symbolic layoul using
genetic algorithms™, Froc of an Int Conf on (Tenctic
Algorithms and Their Applications, pp 141-153 (July 1985]

12. D.E. Goldberg and R Lingle, “ A lleles, loci, and the Lrav:
eling salesman problem™. Froc of an [nt1 Conf. on Genelic
Algorithms and Their Applications, pp 154-159 (July 1985}

13. D. Smith, “Bin packing with adaptive search™, FProc of
en Int’l Conf on Genclic Algorithms and Their Applica-
tions, pp 202-206 (July 1985).

a g:-.m’t!{' A
Val

173

TABLEI

tpg total success total experiments variance
cffort rate success aborted
S 1505 0.030 45.009 S 0.092
10 1820 0.034 61.320 3 0.123
20 2160 0.036 77385 3 0.093
40 2640 0.038 99.261 1 0.107
80 3360 0.035 117112 1 0.110
160 4160 0.034 140610 O 0.157
320 5440 0.030 160.867 0 0.245
640 6400 0.027 172.721 2 0.590
1280 7680 0.022 170.522 2 0.922
2560 10240 0.019 192.836 2 1.857
5120 15360 0.015 222.767 0 2.114

tpg - trials per generation

total effort = tpg ¢ (generations to get to within 10%)
success rate = fraction of trials successful

total success = total number of successful improvements done
experiments aborted are out of total of 50 for each tpg

TABLE Il

tpg total
effort
5 1500
10 2058
20 2812
40 3760
80 4480
160 5600
320 6080
640 7040
1280 7680
2560 7680
5120 10240

174

Hp oD o

[sla ol Ral:]

et Ot

momenneEn

16000

14000

12000

10000

8000

6000

4000

2000

]
n
]

200

150

100

50

T

[terchy

effort for 10 processors

o

e
S
PP
o R B JEY E— PRt
1000 2000 3000 4000 5000
trials per generation
Figure 4
success rate for 10 processors
e
L 1 Aot | 1 1
1000 2000 3000 4000 5000

trizls per generation

Figure 5

175

6000

OO R HEHAOMA o

.05

.00

.95

.80

.85

.80

.75

.70

iy

performance of 100 random cltiles

| | e o] S 1

200 400 600 800
trials per generation

Figure 6

176

1000

