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1 Introduction

The Euclidean Traveling Salesman Problem (TSP) is the
problem of: given N cities, if a salesman starting from
his homne city is to visit each city exactly once and then
return home, find the order of visits (Lhe tour) such that
the total distance traveled is minimum. The distance
between two cities is just the Euclidean distance between
them.

In recent years a variety of GAs for the TSP have
been proposed, for example [2,5,4,10,13]. In this paper
we will focus on the class of such GAs which incorporate
heuristics about the problem into the recombination oper-
ators, i.e., the crossover and mutation operators [5,4,13].
We will call such algorithms heuristic genetic algorithms
(HGA). :

There are a number of issues that need to be addressed
in determining whether the properties of GAs are re-
flected in HGAs. The reason for this results from the
possibility that HGAs perform well only because of the ef-
fectiveness of the incorporated heuristics and not because
of the properties typically attributed to GAs. In this pa-
per we study the importance of the population size, the
crossover operator and the type of mutation operalors
used. We empirically determine the following results:

1. Population size matters, i.e., tour lengths obtained at
the end of the execution of a IGA decrease inversely
with growing populalion size.

2. Crossover matters, i.e., there is a qualitative differ-
ence between a HGA that uses a crossover operator
and a HGA that does not.

3. The incorporation of more sophisticated mutation
operators (from now on called local improvement op-
erators) immproves the quality of the solutions.

2 Heuristic Genetic Algorithms

We will call a genetic algorithm a heuristic genetic algo-
rithm (HGA) if problem specific heuristics are incorpo-
rated in Lhe recombination operators. We considered the
following recombination operators:

The heuristic crossover This operator is a modifica-
tion of the crossover described in [5,4,13]. This operator

constructs an offspring from two parent tours as follows:
Pick a random city as the starting point for the offspring’s
tour. Compare the two edges leaving the starting city in
the parents and choose the shorter edge. Continue to
extend the partial tour by choosing the shorter of the
two edges in the parents which extend the tour. If the
shorter parental edge would introduce a cycle into the
partial tour, check if the other parental edge introduces
a cycle. In case the second edge does not introduce a cy-
cle, extend the tour with this edge, otherwise, extend the
tour with an edge obtained by selecting the shortest edge
from a pool of random edges which do not introduce a
cycle (in our case the size of the pool was 20). Continuc
until a complete tour is generated and then replace one
of the parent tour with this offspring tour. The heuristic
crossover operator has the tendency to combine “good”
subpaths from both parents. Furthermore, we have im-
plemented the heuristic crossover in such a manner that
it is performed more often in the beginning than towards
the end of a run of a genetic algorithm. This is determined
by checking how different the tours are before they un-
dergo crossover. We decided to allow crossover if 30% of
the edges in the parents were different.

The 2-opt local improvement operator The 2-opt
operator is an example of the more general r-opt oper-
ator introduced by Lin and Kernighan [11]]. An r-opt
operation consists of replacing r edges from a tour by r
edges not in the tour if this decreases the length of the
tour. For clarity, the 2-opt strategy randomly selects two
edges (e, f) and (g, h) from a tour and checks if

ED(e, f) + ED(g,h) > ED(e,h) + ED(f,9)

(ED stands for Euclidean distance). If this is the case,
the new tour is obtained by removing the edges (e, f) and
(g,h) and replacing them with the edges (e, h) and (g9, f)
The Or-opt local improvement operator The Or-opt
was introduced by Or [9,12] and is a variant of the 3-opt
operator of [11]. The advantage of the Or-opt operator
is the fact that it only considers a small percentage of
the exchanges that would be considered by a regular 3-
opt operator. To understand how the Or-opt procedure
works, we refer to Figure 2. For each connected string of
s cities in the current tour (s equals 3 first, then 2, then
1), we test to see if the string can be relocated between
two other cities at reduced cost. If it can, we make the
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Figure 1: Illustration of a Or-opt local improvement op-
eration.

P(t) denotes the population at time t.

t«— 0;

initialize P(t);

evaluate P(t);

while ( not terminationm condition)

{t — tt1;
select P(t);
perform z/ heuristic crossover P(t);
perform y/% 2-opt local improvement P(t);
perform z%, Or-opt local improvement P(t);
evaluate P(t); }

Figure 2: Layout of a heuristic genetic algorithm

appropriale changes. For s = 3 in Figure 1, we test to
see if the string of three adjacent cities m, n, p in the
current tour is considered for insertion between a pair
of connccted cities i and j outside of the string. The
insertion is performed il the total cost of the edges to be
erased, {a,m},{p, b}, and {i, j}, exceeds the cost of the
new edges to be added, {i,m}, {p,j} and {a,b}. After
considering all strings of three cities, all strings of two
cities and then all strings of one city are considered.

Hence the layout of a HGA is as displayed in Figure
2. The percentages z, y and z indicate the percentage
of the population that will undergo heuristic crossover,
2-opt local improvement and Or-opt local improvement
respectively during a generation (i.c., onc iteration of the
while loop). We should also mention that after an off-
spring tour (due to a crossover) or an imnproved tour (due
to local improvement operations) has been incorporated
into the new population, the offspring tour or the im-
proved tour has to be evaluated. We will call such an
evaluation a tricl The number of trials will be used to
measure the convergence rate of HGAs (see Scction 3).

3 Experimental Setup and Re-
sults

In this section we describe the results obtained for four
1iGAs applied to the krolak and lattice TSPs. The ein-

Figure 3: The krolak TSP

Figure 4: The lattice TSP

pirical results were obtained by applying these HGAs to
two TSP problems reported in the literature. Problem 1
is the krolak TSP [8], a 100 city problem of uniformly dis-
tributed cities (see Figure 3). The optimum solution for
this problem is equal to 21282. Problem 2 is the 100 cily
lattice TSP [1] (see Figure 3). The optimum solution for
this problem is equal to 100. In Section 4 we discuss our
results. We will call

2.0pt GA, the HGA which only uses the 2-opt operator.
Hence we set the percentages z and z to 0. The per-
centage y was set to 50 (hence half of the population un-
dergoes 2-opt local improvement operations). We should
also mention what we mean for a tour to undergo local
improvement. If a tour is selected for local improvemnent,
it will undergo a certain number of local improvement
attemnpts during the same generation. In all of our ex-
periments this number of attempts was set to 10. It 1s
also important to mention that the side effect of the se-
lection procedure is to randomly shuffle the tours in the
current population. This is to guarantee that all tours
have an equal probability of being chosen to undergo lo-
cal improvements during the course of the algorithm.
2-opt-cross GA, the HGA which uses the 2-opt opera-
tor in combination with the heuristic crossover. Hence
we set z to 0. The parameters z and y where each set
to 50 (hence half of the population undergoes heuristic
crossover, the other half undergoes local improvement).
2-0pt-Or-opt GA, the HGA which uses the 2-opt opera-
tor and the Or-opt operator. Hence = was set to 0. The
paramelers y and z where set to 25 (hence half of the
population underwent local unprovement operations).
2.0pt-Or-opt—cross GA, the HGA which uses the 2-opt
operator, the Or-opt operator and the heuristic crossover
operator. The pa-ameters z, y and z were set to 50, 25
and 25 respectively.
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Population Trials Average Best Worst
10 7000 9.55 3.78 14.73
25 14000 8.14 4.48 13.00
50 19000 6.78 4.55 10.23
100 51000 7.10 2t 133

Table 1: Results of the 2-opt GA on the krolak TSP.

Population Trials Avérage Best Worst
10 6000 7.3 4.14 8.69
25 7000 6.4 4.14 9.11
50 13000 7.1 4.14 9.52
100 28000 5.5 3.31 8.28

Table 2: Results of the 2-opt GA on.the lattice TSP.

3.1 2-0opt GA

In Table 1 and Table 2 we show the results of applying the
2-opt GA to the krolak and lattice problem for varying
population sizes. The first column in these tables denotes
the various population sizes, the second and third column
indicate the average number of trials and the average per-
centage away from the optimum respectively (averages
were taken over 10 experiments), the fourth (fifth) col-
umn gives the percentage away from optimum of the best
(worst) tour found during the ten experiments. For ex-
ample the first row in Table 1 (10 1400 9.55 3.78 14.73)
indicates that for population size 10, aller an average of
1400 trials, the average of the best tours found with the
2-opt GA was 9.55% away from the optimum, and 3.78
(14.73) is the percentage away from optimum for the best
(worst) tour found with this HGA during the ten exper-
iments. In Figure 5, we show the convergence rates for
the 2-opt GA applied to the krolak problemn * (optimum
is 21282) with population sizes 10, 25, 50 and 100 respec-
tively. It appears from Figure 5 that the tours obtained
are better with growing population sizes (although in our
case the 2-opt GA with population size slightly outper-
forms the 2-opt GA with population size 100). On the
other hand, the final tours in all these 2-opt GAs are
on average never better than 6.70% above the optimum.
Finally we should mention (as is normal) that the con-
vergence rate for 2-opt GAs with smaller population sizés
is faster than that for 2-opt GAs with larger population
sizes.

3.2 2-opt—cross GA

In Table 3 and Table 4 we show the results of applying the
2-opt-cross GA to the krolak and lattice problem for vary-
ing population sizes. When comparing these tables with
Table 1 and Table 2 respectively, we notice that incorpo-

LA similar figure can be obtained for the lattice problem but is
omitted from this paper.

Population Trials Avecrage Best Worst
10 7000 7.53 0.07 13.47
25 14000 5.41 271 9.90
50 37000 3.20 0.46 5.22
100 50000 2.58 0.78 6.82
Table 3: Results of the 2-opt-cross GA on the krolak
TSE:
Population Trials Average Best Worst
10 4000 4.7 2.48 6.20
25 8000 2.9 1.65 4.97
50 28000 1.7 0.0 372
100 33000 1.4 0.0 1.16

Table 4: Results of the 2-opt-cross GA on the lattice
TSP.

rating the heuristic crossover makes a distinct difference.
For example for the krolak problemn, the 2-opt—cross GA
with population size 100 yields on average a tour 2.59%
away from optimumn, as opposed with the corresponding
2-opt GA which yields on average a tour 7.1% away from
optimum. In Figure 6, we show the convergence rates
for the 2-opt-cross GAs applied to the krolak problem
(optimum is 21282) with population sizes 10, 25, 50 and
100 respectively. It is clear from Figure 6 that the tours
obtained are better with growing population sizes. Again
notice that the convergence rate for 2-opt—cross GA with
smaller population sizes is faster than that for 2-opt—cross
GA with larger population sizes.

3.3 2-0pt-Or-opt GA

In Table 5 and Table 6 we show the results of apply-
ing the 2-opt-Or-opt GA to the krolak and lattice prob-
lem for varying population sizes. When comparing these
tables with Table | and Table 2 respectively, we notice
that incorporating the Or-opt local improvement opera-
tor makes a distinct difference. For example for the krolak
problem, the 2-opt-Or-opt GA with population size 100
yields on average a tour 2.59% away from optimum, as
opposed with the corresponding 2-opt GA which yields
on average a tour 7.1% away from optimum. In Figure
7, we show the convergence rates for the 2-opt—cross GAs
applied to the krolak problem (optimum is 21282) with
population sizes 10, 25, 50 and 100 respectively. What
is particularly noticable is that the best tours obtained
by 2-opt-Oropt GAs with diflererent population sizes are
remarkably close. For example the 2-0pt-Or-opt GA with
population size 10 yields best tours 3.11% away from opti-
muin, whereas the 2-opt-Or-opt GA with population size
100 yields best tours 2.59% away from optimum. So it
appears that for these HGAs, population size does not
play a critical role.
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Population Trials Average Best Worst
10 3000 3.11 0.46 5.92
25 14000 3.77 0.46 8.22
50 37000 3.25 0.11  5.97
100 50000 2.69 0.11 8.26

Table 5: Results of the 2-opt-Or-opt GA on the krolak
TSP,

Population Trials Average Best Worst
10 17000 3.2 1.65 4.14
25 36000 2.6 0.82 4.14
50 31000 3.0 1.16 4.14
100 46000 2.7 1.656 331

Table 6: Results of the 2-opt-Or-opt GA on the lattice
TSE.

3.4 2-opt-Or-opt—cross GA

In Table 7 and Table 8 we show the results of applying
the 2-opl-Or-opt—cross GA Lo the krolak and lattice prob-
lem for varying population sizes. When comparing these
Lables with Table 5 and Table 6 respeclively, we notice
again (as in the case of the 2-opt GA and the 2-opt-cross
GA) that incorporating heuristic crossover makes a dis-
tinct difference. For example for the krolak problemn, the
2-0pt-Or-opt—cross GA with population size 100 yields on
average a tour 1.37% away from optimurn, as opposed to
the corresponding 2-opt—Or-opt GA which yields on aver-
age a tour 2.59% away from optimum. Furthermore when
we cowmnpare Table 7 and Table 8 with Table 3 and Table 4
respectively that, we find incorporating the Or-opl oper-
ator makes a distinct difference. For example for the kro-
lak problem, the 2-opt-Or-opt—cross GA with population
size 100 yields on average a tour 1.37% away from opti-
mum, wheras the corresponding 2-opt—cross GA yields on
average a tour 2.59% away from optimum. In Figure 8,
we'show the convergence rates for the 2-opt-Or-opt—cross
GAs applied to the krolak problem (optimum is 21282)
with population sizes 10, 25, 50 and 100 respectively. It
is clear from Figure 8 that the tours obtained are bet-
ter with growing population sizes. Again notice that the
convergence rate for 2-opt-Or-opt—cross GA with smaller
population sizes is faster than that for 2-opt-Or-opt—cross
GA with larger population sizes.

4 Discussion

The previous section enables us to make the following
observations:

1. Population size matters: for all HGAs, except per-
haps the 2-opt-Or-opt—cross GA, increasing the pop-
ulation size improves the Lour length of the final tour

Population Trials Average Best Worst
10 18000 3.06 0.34 8.28
25 26000 2.31 0.80 4.95
50 38000 1.70 0.56 3.03
100 59000 1.37 0.01 3.62

Table 7: Results of the 2-opt-Or-opt—ross GA on the
krolak TSP.

Population Trials Average Best Worst
10 43000 2.1 0.82 2.48
25 35000 2.0 0.82 3.31
50 32000 1.7 0.82 3.31
100 42000 0.4 0.0 0.82

Table 8: Results of the 2-opt-Or-opt—cross GA on the
lattice TSP

obtained by the various HGAs. Interestingly, it ap-
pears that the popu;lation sizew seems to play a more
vital role for HGAs with crossover.

2. The heuristic crossover substantially improves the
performance of HGAs.

3. Incorporating more sophisticated heuristics (such as
the Or-opt operator) lmproves the overall perfor-
mance of HGAs.

4. The convergence rate of HGAs for smaller popula-
tion sizes is faster than that for HGAs with larger

population sizes.

5. The is a qualitative difference between HGAs with
and without crossover, i.e., the convergence rate for
HGAs with crossover is faster than that for HGAs
without crossover. This faster convergence rate
haowever, does not lead to premature convergence.

For comparison reasons, we show in Figure 9 (Figure
10) the performance of the four HGAs (with population
size 100) applied to the krolak (lattice) problem . It ap-
pears [rom these figures that in order of weakness, the
2-opt GA comes first, the 2-opt-Or-opt GA comes sec-
ond, the 2-opt-cross GA comes third and the 2-opt-Or-
opt—cross GA comes fourth.

To put our results in perspective, we refer to [3]. They
reported on the performance of various heuristic algo-
rithms on the Krolak problem. Our best results compare
favorably with the best resulls reported there. For the
lattice problem, we refer to [L]. There the best solution
was 3% above optimum. Our algorithms yield better re-
sults.

We would like to conclude this discussion by giving
some insights about the role of heuristic crossover in
HGAs. As was already discussed in [5,4], the heuris-
tic crossover has the tendency to quickly “glue” togelher

113



114

Jog, Suh and Van Gucht

good subpaths from parent tours. This glueing process
takes place mostly in the beginning of the algorithm
(this is why the convergence rate of HGAs with crossover
have a faster coavergence rate than IIGAs without the
crossover). Furthermore, the heuristic crossover has the
interesting property (much like sitnulated annealing (7,1])
to be able to get out of local optima, by allowing crossover
to temporarily introduce worse offsprings [6]. We belicve
that this observation is one of the central reasons for the
excellent perforinance of HGAs with the crossover oper-
ator.
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